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Abstract: The synthesis, spectroscopic characterization and X-ray crystal structure of the title
compound, (4-tolyl)3PAu[SC(O-i-Pr)=NC6H4NO2-4] (1) are described. Spectroscopy exhibited the
expected features confirming the formation of the compound. The molecular structure of 1 confirms
the expected linear P–Au–S coordination geometry defined by thiolate-S and phosphane-P atoms.
The nearly 7◦ deviation from linearity is ascribed to the close approach of the imine-bound phenyl
group, indicative of a semi-localized Au . . . π(arene) interaction. The three-dimensional molecular
packing is consolidated by methyl- and tolyl-C–H . . . O(nitro) and tolyl-C–H . . . π(tolyl) interactions.
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1. Introduction

Gold(I) is well known to be a carbophilic Lewis acid and this characteristic underscores the
great current interest of “catalytic gold” [1,2]. This carbophilicity extends to the solid-state with
Au . . . π(arene) interactions shown to sustain well-defined supramolecular aggregation patterns
that occur independently of other recognizable supramolecular synthons, such as hydrogen
bonding [3–5]. The energy associated with Au . . . π(arene) interactions has been calculated to
be around 12 kcal/mol [6] which is of the same order of magnitude as both conventional
hydrogen bonding and aurophilic interactions [7,8]. Herein, the crystal and molecular structures of
(4-tolyl)3PAu[SC(O-i-Pr)=NC6H4NO2-4] (1), Scheme 1, is described along with spectroscopic (i.e., 1H,
13C{1H} and 31P{1H} NMR, UV and IR) data. As discussed below, the molecule of 1 features an
intramolecular Au . . . π(arene) interaction whereas many of the literature analogues are known to
present Au . . . O interactions instead [9], a conformation achieved by a rotation about the C–S bond, as
indicated by the green arrow in Scheme 1. Calculations have shown that for the crystallographically
characterized conformational polymorphs of Ph3PAu[SC(OEt)=NPh], the form with the Au . . . π(arene)
interaction [9] is over 5 kcal/mol more stable than the form featuring the intramolecular Au . . . O
interaction [10]. As a continuation of studies in this area [6–10], the structural characterization of 1 is
described herein.
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2. Results and Discussion

Compound 1 was prepared in good yield (79%) by standard methods [11] and was characterized
by spectroscopy; see Supplementary Materials for original spectra. The NMR data showed the expected
resonances and integration (1H). In the IR, characteristic bands ascribed to ν(C=N) [1330 (vs)], ν(C–O)
[1139 (vs)] and ν(C–S) [1099 (vs)] were observed. No evidence was found for a signal due to N–H in the
1H-NMR spectrum or of a band due to ν(N–H) in the IR spectrum [12]. In the UV spectrum, the most
prominent band at λabs 240 nm is attributed to the thiolate ligand-centered π→π* transition [13].
The two shoulders at 267 and 276 nm are assigned to intra-ligand transition of tri(4-tolyl)phosphane,
while the band at 340 nm arises from the 1[n(S)→π*(C6H4NO2)] intra-ligand charge transfer [13]. Full
characterization of 1 was achieved by single-crystal X-ray crystallography.

The molecular structure of 1 is shown in Figure 1 with salient geometric parameters included in
the figure caption. To a first approximation, the gold(I) center is linearly coordinated by thiolate-S1 and
phosphane-P1 atoms. The thiolate assignment is readily vindicated by comparing the C1–S1 and C1–N1
bond lengths of 1, i.e., 1.771(5) and 1.260(8) Å, respectively, with the equivalent bonds of recorded
for the free ligand, i.e., S=C(O-i-Pr)N(H)C6H4NO2-4, of 1.678 (3) and 1.352 (3) Å, respectively [12].
This shows considerable lengthening and shortening in the thiocarbamate anion consistent with
significant reorganization of π-electron density in 1 compared to that seen in the original thiocarbamide
molecule [12]. The systematic changes in the angles subtended at the quaternary-C1 atom are also
consistent with above, with the widest angles subtended by the imine-N1 atom, e.g., S1-C1-O1 is the
narrowest angle in 1, at 108.3(4)◦, but is the widest, at 126.2(2)◦, in the free molecule [12]. The central
CNOS chromophore is strictly planar with the r.m.s. deviation of the fitted atoms being 0.0082 Å
with the maximum deviation from this plane being 0.014(4) Å, for the C1 atom. There is an almost
orthogonal relationship between this plane and the appended phenyl ring with the dihedral angle
computing to 85.80(15)◦. A small twist between the phenyl ring and the 4-nitro group connected to it
is evident, as seen in the dihedral angle between the planes of 7.4(8)◦.
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Figure 1. The molecular structure of 1 showing atom labelling and displacement ellipsoids at the
70% probability level. Selected geometric parameters: Au-S1 = 2.2993(12), Au-P1 = 2.2649(12),
C1-S1 = 1.771(5), C1-O1 = 1.348(6), C1=N1 = 1.260(8) Å; Au-S1-C1 = 107.33(16), S1-C1-O1 = 108.3(4),
S1-C1-N1 = 131.1(4), O1-C1-N1 = 120.5(5)◦.

A key feature of the structure is found in the relative orientation of the N1-bound phenyl ring
which is disposed over the gold(I) center. The Au . . . ring centroid(C2-C7) distance is 3.50 Å with the
shortest separations found for Au . . . C7 and Au . . . C2 of 3.173(6) and 3.244(5) Å, suggesting the nature
of the interaction is semi-localized [14,15] towards the C2–C7 bond. The specific Au . . . C interactions
are less than the sum of the van der Waals radii of gold and carbon, i.e., 3.36 Å [16] and the Au . . . ring
centroid(C2–C7) distance is less than the sum of the Waals radii of gold and a phenyl ring (taken as
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1.9 Å [17]) i.e., 3.56 Å. The relatively close proximity of the phenyl ring to gold is likely to be responsible
for the deviation of the S1-Au-P1 angle, i.e., 173.15(4)◦, from ideal linearity.

In the absence of conventional hydrogen bonding interactions, the molecular packing in the
crystal of 1 features non-covalent interactions of type C-H . . . O and C-H . . . π, based on the distance
criteria embodied in PLATON [18]; geometric parameters characterizing these are listed in Table 1.

Table 1. Geometric parameters (Å, ◦) characterizing the non-covalent (A–H···B) interactions present in
the crystal of 1.

A H B H···B A···B A–H···B Symmetry Operation

C10 H10a O2 2.43 3.382(7) 165 1
2 − x, 1 − y, 1

2 + z
C26 H26 O3 2.46 3.194(7) 134 1

2 + x, 1 1
2 − y, 1 − z

C30 H30 Cg(C11–C16) 2.97 3.833(5) 152 1 − x, − 1
2 + y, 1 1

2 − z

Each of the nitro-oxygen atoms participates in a C-H . . . O interaction, with the donor atoms
being methyl-H and tolyl-H. The other interaction identified is an end-on tolyl-C-H . . . π(tolyl) contact.
These interactions extend in three-dimensions to consolidate the crystal. A view of the unit cell contents
is shown in Figure 2.
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lines, respectively.

Until the publication of a systematic analysis of R3PAu[SC(OMe)=NR’] structures, for R,
R’ = aryl [11], all molecules with that general formula had featured intramolecular Au . . . O interactions.
However, with the judicious choice of R and R’, e.g., isomeric tolyl groups, intramolecular
Au . . . π(arene) interactions could be promoted. For example, when R = 4-tolyl, Au . . . π interactions
formed, unless precluded by steric crowding. Subsequent studies, in particular, based on
computational chemistry [6,9], suggest that molecules having intramolecular Au . . . π interactions are
thermodynamically favored.
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In conclusion, the X-ray crystal structure determination of (4-tolyl)3PAu[SC(O-i-Pr)=NC6H4NO2-
4] confirms the spectroscopy and discloses an intramolecular, semi-localized Au . . . π interaction,
which is expected based on electronic, steric, and thermodynamic grounds.

3. Materials and Methods

3.1. General Information

All standard chemicals and solvents were sourced from Merck (Darmstadt, Germany) and used
without further purification. The melting point was determined on a Biobase automatic melting point
apparatus MP450 (Biobase Group, Jinan, Shandong Province, China). The IR spectrum was measured
on a Bruker Vertex 70v FTIR (Billerica, MA, USA) spectrophotometer from 4000 to 400 cm−1. Elemental
analyses were performed on a Leco TruSpec Micro CHN Elemental Analyser (Saint Joseph, MI, USA).
1H and 13C{1H} NMR spectra were recorded in CDCl3 solution on a Bruker Ascend 400 MHz NMR
(Billerica, MA, USA) spectrometer with chemical shifts relative to tetramethylsilane. 31P{1H} NMR
spectra were recorded in CDCl3 solution on the same instrument but with the chemical shifts recorded
relative to 85% aqueous H3PO4 as the external reference. The optical absorption spectra were obtained
from an acetonitrile solution of 1 × 10−5 M in the range 200–800 nm on a Shimadzu UV-3600 plus
UV/VIS/NIR (Shimadzu Corporation, Kyoto Prefecture, Japan) spectrophotometer.

3.2. Synthesis and Characterization

NaOH (0.2 mmol, 0.008 g) in MeOH (1 mL) was added to a suspension of tri(4-
tolyl)phosphanegold(I) chloride [11] (0.2 mmol, 0.107 g) in MeOH (5 mL), followed by the addition of
O-isopropyl-N-4-nitrophenyl thiocarbamide [12] (0.2 mmol, 0.048 g) in MeOH (5 mL). The resulting
mixture was stirred at 50 ◦C for 2 h and then left for slow evaporation under ambient conditions.
Yellow crystals were collected after two weeks. Yield: 0.117 g, 79%. M. pt: 143.0–143.7 ◦C. Anal. Calc.
for C31H32AuN2O3PS: C, 50.28; H, 4.36; N, 3.78. Found: C, 50.59; H, 4.32; N, 3.50. IR (cm−1): 1501 (s),
1309 (s) ν(NO2), 1330 (vs) ν(C=N), 1139 (vs) ν(C-O), 1099 (vs) ν(C-S). 1H NMR (CDCl3): δ 7.92 (d, 2H,
3-phenyl-H, 3JHH = 8.96 Hz), 7.31–7.23 (m, br, 12H, 4-tolyl), 6.89 (d, 2H, 2-phenyl-H, 3JHH = 8.96 Hz),
5.24 (sept, 1H, OCH, 3JHH = 6.20 Hz), 2.41 (s, 9H, tolyl-CH3), 1.34 (d, 6H, i-Pr-CH3, 3JHH = 6.20 Hz) ppm.
13C{1H} NMR (CDCl3): δ 164.9 (Cq), 157.7 (Ph, C1), 142.6 (Ph, C4), 142.3 (d, 4-tolyl, 4JPC = 2.31 Hz),
133.9 (d, 3-tolyl, 3JPC = 14.12 Hz), 129.9 (d, 2-tolyl, 2JCP = 11.90 Hz), 126.2 (d, 1-tolyl, 1JPC = 60.02 Hz),
124.9 (Ph, C3), 122.5 (Ph, C2), 71.4 (OCH), 22.0 (i-Pr-CH3), 21.5 (d, tolyl-CH3, 5JPC = 1.04 Hz) ppm.
31P{1H} NMR (CDCl3): δ 36.7 ppm. UV (acetonitrile; nm, L·cm−1·mol−1): λabs = 240, ε = 42,500; λabs(sh)
= 267, ε = 13,400; λabs(sh) = 276, ε = 8800; λabs = 340, ε = 14,500.

3.3. X-ray Crystallography

A SuperNova Dual AtlasS2 diffractometer fitted with Cu Kα radiation (λ = 1.54178 Å) was
employed for the intensity data collection at T = 100 K for 1. CrysAlis Pro [19] was employed for
data reduction and absorption correction. Of the 20549 reflections included up to θmax = 67.1◦, 5276
were unique (Rint = 0.044) and of these, 5133 data satisfied the I ≥ 2σ(I) criterion. The structure was
solved by direct methods [20] and refined (anisotropic displacement parameters and C-bound H atoms
in the riding model approximation) on F2 [21]. A weighting scheme of the form w = 1/[σ2(Fo

2) +
(0.017P)2] was introduced, where P = (Fo

2 + 2Fc
2)/3). Based on the refinement of 357 parameters,

the final values of R (obs. data) and wR (all data) were 0.019 and 0.044, respectively. The absolute
structure was determined based on differences in Friedel pairs included in the data set. The molecular
structure diagram was generated with ORTEP for Windows [22] and the packing diagram using
DIAMOND [23].

Crystal data for C31H32AuN2O3PS (1): M = 740.58, orthorhombic, P212121, a = 11.19860(10),
b = 14.59850(10), c = 18.2307(2) Å, V = 2980.41(5) Å3, Z = 4, Dx = 1.650 g cm−3, F(000) = 1464,
µ = 10.712 mm−1.
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Supplementary Materials: The following are available online. 1H, 13C{1H} and 31P{1H} NMR, UV and IR
spectra, and crystallographic data for 1 in Crystallographic Information File (CIF) format. CCDC 1874265 also
contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/conts/retrieving.html.
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