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Abstract: The crystal chemistry of the zinc-triad binary 1,1-dithiolates, that is, compounds of xanthate
[−S2COR], dithiophosphate [−S2P(OR)2], and dithiocarbamate [−S2CNR2] ligands, is reviewed.
Owing to a wide range of coordination modes that can be adopted by 1,1-dithiolate anions, such as
monodentate, chelating, µ2-bridging, µ3-bridging, etc., there exists a rich diversity in supramolecular
assemblies for these compounds, including examples of zero-, one-, and two-dimensional
architectures. While there are similarities in structural motifs across the series of 1,1-dithiolate
ligands, specific architectures are sometimes found, depending on the metal centre and/or on
the 1,1-dithiolate ligand. Further, an influence of steric bulk upon supramolecular aggregation is
apparent. Thus, bulky R groups generally preclude the close approach of molecules in order to
reduce steric hindrance and therefore, lead to lower dimensional aggregation patterns. The ligating
ability of the 1,1-dithiolate ligands also proves crucial in determining the extent of supramolecular
aggregation, in particular for dithiocarbamate species where the relatively greater chelating ability of
this ligand reduces the Lewis acidity of the zinc-triad element, which thereby reduces its ability to
significantly expand its coordination number. Often, the functionalisation of the organic substituents
in the 1,1-dithiolate ligands, for example, by incorporating pyridyl groups, can lead to different
supramolecular association patterns. Herein, the diverse assemblies of supramolecular architectures
are classified and compared. In all, 27 structurally distinct motifs have been identified.

Keywords: crystal engineering; coordination polymers; structural chemistry; zinc; cadmium;
mercury; xanthate; dithiophosphate; dithiocarbamate

1. Introduction

The monofunctional 1,1-dithiolate ligands included in this review are the most well-studied of this
class of ligand and have been around for a long time [1]; the chemical structures for the anions covered
in this review are illustrated in Figure 1. The first of these, the dithiocarbonate anion, comprises alkyl
esters of dithiocarbonic acid, (RO)C(=S)SH, which are quite unstable, but their alkali metal salts are
both stable and easily prepared, usually from the reaction of ROH, CS2, and MOH. The common
name for these anions is “xanthates”. While this term is useful to distinguish these anions from the
dithiocarbamates (see below), the name xanthate was actually introduced by the Danish chemist
Zeise around 1820. The name is derived from the Greek “xanthos” and was coined in response to
the yellow appearance of lead xanthates [2]. Dithiophosphates made their appearance about one
century later, being made from the reaction of P2S5, ROH, and a base [3]. Particularly pertinent to
this review is the fact that zinc(II) dithiophosphates came to the fore in the 1940’s as a versatile class
of compounds that were employed in various oils and grease as anti-wear additives, as corrosion
inhibitors, and even function as anti-oxidants [4]. The aetiology of the dithiocarbamates is not as well
defined [5], as opposed to xanthates and dithiophosphates. Dithiocarbamates have probably been
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around for over 150 years as Dobus is reported to have described the synthesis of dithiocarbamic acids
in 1850 [6] and Delépine, the synthesis of metal salts of dithiocarbamates in 1907 [7].
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Figure 1. Chemical diagrams for 1,1-dithiolate ligands covered in this survey: (a) xanthate
(O-alkyldithiocarbonate); (b) dithiophosphate; and (c) dithiocarbamate. R, R’ = alkyl, aryl.

While this bibliographic review has as its focus the structural characteristics of the binary zinc-triad
1,1-dithiolates, it should be acknowledged that many investigations into these compounds were
motivated by a broad range of practical applications such as their use as lubricants, pesticides, in the
vulcanisation of rubber, beneficiation reagents of minerals, biological remediation of toxic elements,
synthetic precursors for chemical vapour deposition of metal sulphide nanomaterials, and even in
medicine as potential therapeutics. In short, the utility of this class of compound has ensured that many
X-ray structural studies have been conducted over recent decades. Summaries of the applications and
structural chemistry of the binary zinc-triads are found in early reviews on metal 1,1-dithiolates [8–10],
in general reviews covering specific classes of 1,1-dithiolate anions [5,11–15], and in more specialist
reviews dedicated to the zinc-triad elements only [16,17], with the last of these published in 2003.
Since then, interest in these compounds has not waned and it is opportune to summarise the known
structures at this time, especially as new structural motifs have been discovered over the past 15 years
(see below).

2. Methodology and Organisation

As for a recent bibliographic survey on zinc and cadmium 1,1-dithiolates with potentially bridging
bipyridyl-type ligands [18], the structures included in this survey were extracted in the form of
crystallographic information files (CIF’s) from the Cambridge Structural Database (CSD, Version 5.39,
November 2017 release) [19]. Data were routinely analysed using PLATON [20] and original diagrams
were drawn with the graphics program, DIAMOND [21]. The review is arranged so that xanthate
structures are discussed first, followed by dithiophosphates and then dithiocarbamates. Within each
of these categories, zinc structures are discussed before cadmium and mercury structures. Then,
the structures are usually discussed in terms of the smallest R substituent to the largest. The focus of
the discussion is upon a description of the modes of coordination of the 1,1-dithiolate ligands leading
to the resultant aggregation patterns. The interested reader is referred to the original publication for
precise details of geometric parameters, which are not discussed in detail. Similarly, descriptions of
molecular packing of the aggregates are not included. In all, among the xanthates, there are four, six,
and 10 zinc-, cadmium-, and mercury-containing structures, respectively. For dithiophosphates there
are four, seven, and four examples, and for the more numerous dithiocarbamates, there are 65, 41,
and 44 examples, respectively.

3. Discussion

3.1. Zinc-Triad Binary Xanthate Structures

There are four, six, and 10 zinc, cadmium, and mercury structures to be described in this category.
Starting from zinc, with three distinct structural motifs, it is obvious that an enormous structural
diversity is evident among the known crystal structures as, often for these compounds, the xanthate
ligand adopts a bidentate bridging mode of coordination. The compounds, coordination donor sets,
and structural motifs/designations are summarised in Table 1.
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Table 1. Summary of the general features of M(S2COR)2, M = zinc (1–4), cadmium (5–10), and mercury
(11–20), structures.

Compound R/R’ Donor set Motif Designation Ref.

1 Et S4 layer A [22]
2 n-Pr S4 chain B [23]
3 i-Pr S4 tetramer C [24]

4 1 n-Bu S4 tetramer C [25]
5 Me S6 chain D [26]

6 2 Et S4 layer A [27]
7 3 Et S4 layer A [28]
8 i-Pr S4 layer A [29,30]
9 n-Bu S4 layer A [31]

10 CH2CH2OMe S6 chain D [32]
11 Me S3 chain E [33]

12 4 Et S4 layer A [34]
13 3 Et S4 layer A [35]
14 n-Pr S4 layer A [36]
15 i-Pr S4 layer F [37]
16 n-Bu S4 layer A [38]
17 (CH2)2C(H)Me2 S4 layer A [38]
18 (CH2)2CMe3 S4 layer A [38]
19 Pent S4 layer A [38]
20 C(H)[(CH2)2]2NCH2Ph S5 chain G [39]

1 Three benzene molecules of solvation per tetramer; 2 Pa polymorph; 3 P21/c polymorph; 4 P21 polymorph.

3.1.1. Zinc Xanthates

There are four binary zinc xanthate structures in this category, 1–4 [22–25], and key features of
these are summarised in Table 1 along with the other cadmium and mercury structures included
in this Section. In 1, that is, with R = Et [22], both xanthate ligands are bidentate, bridging two
zinc centres laterally, with the result that a two-dimensional array ensues. As shown in Figure 2a,
the layer, with a flat topology, comprises interconnected, 16-membered {–ZnSCS}4 rings. The zinc
atom exists within an S4 donor set with each sulphur atom derived from a different xanthate ligand;
the S4 coordination geometry approximates a tetrahedron. This structural motif, motif A, is repeated
in several cadmium and many mercury analogues (see below). Crucial for the discussion below, is the
observation that the ethyl groups are directed above and below the layer.

In what might be thought of as a trivial chemical change, that is, changing R = ethyl in 1 to n-Pr in
2 [23], a major structural change is brought about, which is unprecedented in the analogous chemistry
of transition metal xanthates [11–13]. The common features of the two structures are tetrahedral S4

coordination geometries and the formation of 16-membered {–ZnSCS}4 rings. However, in the case
of 2, there are both bridging and chelating xanthate ligands. The observed supramolecular chain
comprises corner shared 16-membered {–ZnSCS}4 rings, as shown in Figure 2b, and is assigned as
structural motif B. Yet another major change in structure is found in isomeric 3, in which the straight
chains of 2 are replaced by branched i-Pr groups [24]. As for 1 and 2, S4-tetrahedra and 16-membered
{–ZnSCS}4 rings prevail in the structure of 3, but the clear difference is evident from Figure 2c, namely,
the structure is an isolated tetramer, motif C. The different structures arise owing to the different
ratios of bridging and chelating xanthate ligands: in 1, all ligands are bridging, in 2 the ratio is 2:1,
and in 3 there are equal numbers of bridging and chelating xanthate ligands. A qualitative explanation
has been offered to rationalise the appearance of the three distinct structural motifs described thus
far. This explanation is based on the relative steric bulk of the R groups. In short, the bulkier the
R substituent, the less likely it is that supramolecular aggregation will occur. This concept is now
well established in the structural chemistry of main group element 1,1-dithiolates [17,40–42] and in
the structural chemistry of related organotin carboxylates [43–45], where bulky groups can disrupt
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secondary bonding interactions [18,46–48]. Further, it should be stressed that the nature of R, at least
that present in the overwhelming majority of zinc-triad xanthate structures, does not exert a significant
influence upon the electronic structure of the xanthate anion [49]. In the present series, the relatively
bulky i-propyl groups define a three-dimensional exclusion zone around the tetramer in 3, precluding
additional bridging. In 2, the exclusion zone defined by the n-propyl groups is two-dimensional so
that chains can be formed in the third dimension. Finally, in 1, there is a one-dimensional exclusion
zone leading to the layer motif. The final structure in this category, namely [Zn(S2CO-n-Bu)2]4 (4), was
isolated as a benzene solvate [25]. The structural motif is as for 1, that is, layer motif, A.
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Figure 2. Aggregation in the crystals of (a) [Zn(S2COEt)2]n (1); (b) [Zn(S2CO-n-Pr)2]n (2);
and (c) [Zn(S2CO-i-Pr)2]4 (3). Colour code in this and subsequent diagrams: zinc or cadmium or
mercury, orange; sulphur, yellow; oxygen, red, carbon, grey. Non-acidic hydrogen atoms and solvent
molecules have been omitted in all diagrams.

3.1.2. Cadmium Xanthates

There are five different xanthate compounds to be described in this Section, 5–10 [26–31],
with structures 6 and 7 being polymorphs. The immediate coordination geometry of the cadmium
centre in [Cd(S2COMe)2]n (5) [26] is square-planar, a geometry defined by four sulphur atoms derived
from two chelating xanthate ligands, Figure 3a; the cadmium atom lies on a crystallographic centre of
inversion. Significant supramolecular aggregation occurs via secondary Cd···S bonding, leading to
a 4 + 2 distorted octahedral coordination geometry. It should be noted that the Cd–S bond lengths in
the square-plane are not that much shorter than those in the axial positions, that is, 2.64 Å compared
with 2.89 Å. The result is the formation of a linear supramolecular chain and is designated as structural
motif D. Structures 6–9 uniformly adopt layer motif A in the solid-state, but with minor variations in
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the orientations of the alkyl substituents and in the geometric parameters. Structures 6 [27] and 7 [28]
have the common composition [Cd(S2COEt)2]n but, are polymorphs, crystallizing in the Pa and P21/c
space groups, respectively. The relationship between the polymorphs is readily seen from the views
normal to the layers shown in Figure 3b,c. In 6, the ethyl substituents are orientated to leave voids
within the 16-membered {–CdSCS}4 rings. While this pattern is also apparent in Figure 3c for 7, this only
occurs in alternate rows going across the page, and the ethyl groups in the other rows are orientated to
block the voids in the rings. This change in symmetry is reflected in the doubling of the relevant crystal
axis in 7 compared with 6. In [Cd(S2CO-i-Pr)2]n (8) [29,30] and [Cd(S2CO-n-Bu)2]n (9) [31], the same
layer motif appears, with that of 8 being the only example with the cadmium atom lying on a special
position, in this case a 2-fold axis symmetry, leading to an aesthetically pleasing two-dimensional array,
Figure 3d. The last structure in this section, [Cd(S2COCH2CH2OMe)2]n (10) [32], closely resembles
the structure of 5, being a linear supramolecular polymer with a 4 + 2 coordination geometry for
the cadmium atom which lies on a centre of inversion; this is motif D. In this case, there is a greater
disparity in the Cd–S bond lengths compared to those in 5, with those in the square-plane of 2.63 and
2.64 Å being significantly shorter than those in the axial positions of 3.02 Å.
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(7); and (d) [Cd(S2CO-i-Pr)2]n (8).

3.1.3. Mercury Xanthates

There are 10 mercury xanthate structures to be described in this Section, 11–20 [33–39],
with structures 12 and 13 being polymorphs. A new structural motif, motif E, is realised in the
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crystal of [Hg(S2COMe)2]n (11) [33], being based on a helical chain and propagated by crystallographic
21 symmetry, Figure 4a. Here, one xanthate ligand is bidentate bridging albeit asymmetrically (Hg–S:
2.38 and 2.92 Å), while the other is monodentate with Hg–S of 2.37 Å. The two sulphur atoms forming
the shorter bond lengths are linearly disposed (S–Hg–S is 165◦), while the less strongly bound sulphur
is in a position orthogonal to the S–Hg–S vector so that the mercury atom has a (planar) T-shaped
geometry; the two proximate intra-chain oxygen atoms are disposed well above the HgS3 plane and
with Hg . . . O separations of 2 × 2.93 Å are not considered as significant bonding interactions [33].
Both P21 (12) [34} and P21/c (13) [35] polymorphs of [Hg(S2COEt)2]n have very similar structures
and unit cell dimensions, but with the c-axis in 13 being approximately double the a-axis in 12. Each
adopts the two-dimensional motif, motif A. The major difference between the polymorphs rests with
the symmetry of the two-dimensional grid defined by the mercury atoms, which is marginally squarer
in appearance in 12, as judged by the distances between diagonally opposite mercury atoms within the
16-membered {–HgSCS}4 rings, that is, 6.90 and 9.10 Å for 12 and 6.69 and 9.30 Å for 13, indicating that
the latter has a more diamond-like appearance. The structures of 12 and 13, with open or accessible
voids in the 16-membered rings, resemble the situation in [Zn(S2COEt)2]n (1) [22] and [Cd(S2COEt)2]n

(6) [27], Pa polymorph, meaning [Cd(S2COEt)2]n 7 [28], the P21/c polymorph, is the exceptional
structure, with half the voids being partially blocked. It is noted that there are no correlations between
the space group and congestion about the voids in the 16-membered rings.
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and (c) [Hg{S2COC(H)[(CH2)2]2NCH2Ph}2]n (20). Additional colour code: nitrogen, blue.
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Two-dimensional arrays are also found in the crystals of [Hg(S2COR)2]n, for R = n-Pr (14) [36],
i-Pr (15) [37], n-Bu (16), CH2CH2C(H)Me2 (17), CH2CH2CMe3 (18), and Pentyl (19) [38]. With the
exception of 15, the structures adopt the common motif A and with obvious voids in the structure
when viewed normal to the plane of the array; congestion obviously increases with the size of the R
substituent, especially in 17 and 18. A new structural motif is found for [Hg(S2CO-i-Pr)2]n (15) [37],
designated as F. This motif has features found for the majority of the zinc-triad binary xanthates in
that one of the two independent mercury atoms is tetrahedrally coordinated by four sulphur atoms
derived from four bridging xanthate ligands, that is, characteristic of motif A. By contrast, the second
independent mercury atom has its tetrahedral S4 donor set defined by a chelating xanthate ligand,
as well as two sulphur atoms derived from two bridging xanthates, that is, reminiscent of the zinc
xanthate motifs B and C (see above). As all bridging xanthate ligands extend laterally, the overall
structure is two-dimensional, as shown in Figure 4b.

The final structure to be described in this section has a non-conventional oxygen-bound
substituent, that is, 1-benzylpiperidin-4-yl to yield [Hg{S2COC(H)[(CH2)2]2NCH2Ph}2]n (20) [39].
In the crystal, this is a coordination polymer with five-coordinate mercury atoms, Figure 4c. Thus,
the mercury atom is coordinated by two chelating xanthate ligands, one of which simultaneously
bridges a symmetry-related mercury atom to generate the chain. A measure of the nature of
the coordination geometry for five-coordinate systems is the value of τ, which is 0.0 for an ideal
square-pyramidal geometry and 1.0 for an ideal trigonal-pyramid [50]. In 20, the S5 coordination
geometry approximates a square-pyramid with τ = 0.20. In this description, the less tightly bound
sulphur atom involved in forming the bridge occupies the apical position. In acknowledgement of
the different coordination mode/geometry of the linear coordination polymer in 20, this structure is
assigned as motif G.

3.2. Zinc-Triad Binary Dithiophosphate Structures

The zinc-triad binary dithiophosphates comprise the smallest number of structures of the
1,1-dithiolates surveyed herein. Nevertheless, new and unprecedented structural motifs occur, with the
common feature of all motifs being an S4 donor set for the central element; all structures crystallised
solvent-free. Data for the 15 zinc-triad binary dithiophosphate structures, 21–35 [51–63], discussed in
this section are presented in Table 2.

Table 2. Summary of the general features of M[S2P(OR)2], M = zinc (21–24), cadmium (25–31),
and mercury (32–35), structures.

Compound R Donor set Motif Designation Ref.

21 Me S4 H chain [51]
22 i-Pr S4 I dimer [52]
23 i-Bu S4 I dimer [53]
24 Cy S4 I dimer [54]
25 Me S4 J chain [55]
26 n-Pr S4 J chain [56]
27 i-Pr S4 I dimer [52]
28 n-Bu S4 J chain [56]
29 i-Bu S4 J chain [57]
30 s-Bu S4 I dimer [58]
31 Cy S4 K dimer [59]
32 Me S4 A layer [60]

33 1 i-Pr S4 L chain [61]
34 2 i-Pr S4 L chain [62]
35 c-Pentyl S4 L chain [63]

1 C2/c polymorph; 2 P21/c polymorph.
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3.2.1. Zinc Dithiophosphates

Of the four known zinc dithiophosphates, 21–24 [51–54], two distinct and thus far, unprecedented
structural motifs, are observed. For the structure with the smallest R substituent, {Zn[S2P(OMe)2]2}n

(21) [51], a zig-zag supramolecular chain is formed in the crystal as the result of bidentate bridging
dithiophosphate ligands propagated by glide symmetry matched by equal numbers of chelating
ligands, Figure 5a. This new motif is designated motif H. The second motif for zinc dithiophosphates is
found for each of {Zn[S2P(O-i-Pr)2]2}2 (22) [52], {Zn[S2P(O-i-Bu)2]2}2 (23) [53], and {Zn[S2P(OCy)2]2}2

(24) [54], and also features equal numbers of bridging and chelating ligands, but in this case leading to
a dimeric aggregate, as illustrated for 24 in Figure 5b. The aggregates in 22 and 24 have crystallographic
2-fold symmetry while that in 23 approximates 2-fold symmetry. This motif is assigned as motif I.
As indicated below, many of the zinc-triad dithiocarbamates adopt a very similar motif, but often
these feature quite significant transannular M···S interactions and are centrosymmetric. In motif I,
the zinc atom coordination geometries are distorted tetrahedrally based on S4 donor sets, indicating
the absence of transannular Zn···S interactions.
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3.2.2. Cadmium Dithiophosphates

There are seven structures in this category and these adopt two distinct structural motifs in the
solid-state, one of which is new. The new motif, J, is found in the crystals of four compounds, namely
{Cd[S2P(OR)2]2}n for R = Me (25) [55], Figure 6a; n-Pr (26) [56]; n-Bu (28) [56]; and i-Bu (29) [57]. Here,
all dithiophosphate ligands are bidentate bridging, leading to eight-membered {-SPSCd}2 rings that
are linked at the cadmium atom to form a twisted chain; the chain in 25 has crystallographic 2-fold
symmetry. The eight-membered ring in motif J has the form of a boat with two sulphur atoms above
and two below the plane through the Cd2P2 atoms. The remaining three structures, Cd[S2P(OR)2]2}2

for R = i-Pr (27) [52]; s-Bu (30) [58], Figure 6b; and Cy (31) [59], adopt motif I. A distinguishing
feature of 31 is that the dimeric aggregate is disposed about a centre of inversion as opposed to 2-fold
symmetry for 27 and 30. In order to distinguish between the two symmetries for the dimer, dimeric
aggregates with 2-fold symmetry, approximate or crystallographically-imposed, are designated as I,
while those disposed about a centre of inversion or close to this are designated as K. Finally, in terms
of the two structural motifs adopted by cadmium dithiophosphates, that is, to a first approximation
dimeric or polymeric, it is noted that for the three derivatives with branching at the alpha-carbon atom,
the dimer form is adopted, again suggesting a significant steric influence in determining the ultimate
motif found in the crystal.
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3.2.3. Mercury Dithiophosphates

There are four structures to be described in this section, but only three compounds as a pair
are polymorphic. The structure of {Hg[S2P(OMe)2]2}n (32) [60] is a two-dimensional layer as all
dithiophosphate ligands are bidentate bridging. As seen in Figure 7a, the resemblance between
this structure, with edge-shared 16-membered {-HgSPS}4 rings, and those of many of the zinc-triad
xanthates is obvious and accordingly, this is an example of motif A. The three remaining examples,
that is, polymorphic {Hg[S2P(O-i-Pr)2]2}n (33) [61] and (34) [62], adopting C2/c and P21/c space
groups, respectively, and {Hg[S2P(O-c-Pentyl)2]2}n (35) [63], Figure 7b, also adopt a previously
described structural motif. Thus, linear chains arising from equal numbers of chelating and bridging
dithiophosphate ligands are found, akin to motif H. However, in motif H, the chains have a zig-zag
topology, whereas in 33–35, a helical topology is evident as the coordination polymers are propagated
by 21-screw symmetry in each case. In acknowledgment of the distinct topologies, those with 21-screw
symmetry are labelled as L. The differences between the polymorphs of {Hg[S2P(O-i-Pr)2]2}n primarily
relate to differences in Hg–S bond lengths, with the range of Hg–S bond lengths in the C2/c polymorph
of 2.39–2.89 Å [61] being greater than in the P21/c form of 2.44–2.83, corresponding to ∆(Hg–S) values
of 0.50 and 0.39, respectively.
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3.3. Zinc-Triad Binary Dithiocarbamate Structures

By far the most numerous structures included in this review are the zinc-triad binary
dithiocarbamates. While these generally adopt mononuclear or more likely binuclear motifs
(see below), the presence of a heteroatom in the organic substituents can lead to further aggregation in
the solid-state.

3.3.1. Zinc Dithiocarbamates

Data for the 65 Zn(S2CNRR’)2 structures discussed in this section, 36–100 [25,64–110], are collected
in Table 3. The first motif noted is monomeric and designated M. The zinc atom in those structures
adopting motif M is chelated by two dithiocarbamate ligands which are generally coordinating in
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a symmetric mode, for example, 2.32 and 2.35 Å in the structure of Zn(S2CNCy2)2 (37) [25], illustrated
in Figure 8a. This structure has the zinc centre located on a 2-fold symmetry axis; similar symmetry
is also found in 38 [65] and 44 [71]. The coordination geometry is based on distorted tetrahedral S4

environments as the ZnS2C chelate planes are approximately orthogonal to each other. The assignment
of monomeric structures is based on the lack of intermolecular Zn···S associations less than the sum
of the van der Waals radii of zinc and sulphur, taken as 4.05 Å [20]. This is true for most of the
examples, but in four structures, Zn···S less than the sum of the van der Waals radii is evident, that is,
42 (3.93 Å), 45 (3.86 Å), 39 (3.58 Å), and 43 (3.44 Å). Such alignment of molecules gives the potential
for dimerization, leading to binuclear motifs N (39) and O (42, 43 and 45), as discussed below. Such
a potential dimerization is illustrated in Figure 8b for 39.

Table 3. Summary of the general features of Zn(S2CNRR’)2 structures 36–100.

Compound R/R’ Donor Set Motif Designation Ref.

36 CH2CH2OMe/CH2CH2OMe S4 M monomer [64]
37 Cy/Cy S4 M monomer [25]
38 Benzyl/Benzyl S4 M monomer [65]
39 Me/Cy S4 M monomer [66]
40 n-Pr/CH(Me)Et S4 M monomer [67]
41 NRR’ = 3,4-dihydroquinoline S4 M monomer [68]
42 n-Bu/5-t-Bu-3-Me-2-OH-benzyl S4 M monomer [69]
43 CH2CH2OH/CH2(ferrocenyl) S4 M monomer [70]
44 (CH2)3OEt/3,5-di-t-Bu-4-OH-benzyl S4 M monomer [71]
45 Benzyl/CH2(1-Me-pyrrol-2-yl) S4 M monomer [72]
46 Benzyl/4-OMe-benzyl S4 M monomer [73]
47 Benzyl/R1 1 S4 M monomer [74]
48 CH2(4-OMe-phenyl)/CH2(2-furyl) S4 M monomer [75]
49 Me/Me S4 + 1 N dimer [76]

50 2 n-Bu/n-Bu S4 + 1 N dimer [77]
51 3 n-Bu/n-Bu S4 + 1 N dimer [78]
52 Me/CH2(ferrocenyl) S4 + 1 N dimer [74]
53 Et/Et S4 + 1 O dimer [79]
54 n-Pr/n-Pr S4 + 1 O dimer [80]
55 i-Pr/i-Pr S4 + 1 O dimer [81]
56 CH2C(H)=CH2/CH2C(H)=CH2 S4 + 1 O dimer [82]

57 4 CH2CH2OH/CH2CH2OH S4 + 1 O dimer [83]
58 2 CH2CH2OH/CH2CH2OH S4 + 1 O dimer [84]
59 5 CH2CH2OH/CH2CH2OH S4 + 1 O dimer [85]
60 R + R’ = (CH2)4 S4 + 1 O dimer [86]
61 R + R’ = (CH2)5 S4 + 1 O dimer [87]
62 R + R’ = (CH2)6 S4 + 1 O dimer [88]
63 R + R’ = (CH2)5-4-Me S4 + 1 O dimer [89]
64 R + R’ = (CH2)5-4-C(=O)OEt S4 + 1 O dimer [72]

65 6 R + R’ = (CH2)5-4-C(=O)ON[C(=O)CH2]2 S4 + 1 O dimer [90]
66 R + R’ = (CH2CH2)2NEt S4 + 1 O dimer [91]
67 R + R’ = (CH2CH2)2NPh S4 + 1 O dimer [92]
68 R + R’ = (CH2CH2)2NC6H4-3-OMe S4 + 1 O dimer [93]
69 R + R’ = (CH2CH2)2NC6H4-4-OMe S4 + 1 O dimer [93]
70 Me/Et S4 + 1 O dimer [94]
71 Me/n-Pr S4 + 1 O dimer [94]
72 Me/i-Pr S4 + 1 O dimer [94]
73 Me/n-Bu S4 + 1 O dimer [94]
74 Me/Ph S4 + 1 O dimer [95]

75 7 Me/CH2CH2OH S4 + 1 O dimer [96]
76 8 Me/CH2CH2OH S4 + 1 O dimer [83]
77 Me/CH2C(=O)OMe S4 + 1 O dimer [97]
78 Me/CH2C(H)(OMe)2 S4 + 1 O dimer [98]

79 9 Me/R2 9 S4 + 1 O dimer [74]
80 Et/i-Pr S4 + 1 O dimer [99]
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Table 3. Cont.

Compound R/R’ Donor Set Motif Designation Ref.

81 Et/n-Bu S4 + 1 O dimer [100]
82 Et/Cy S4 + 1 O dimer [25]

83 3 Et/Ph S4 + 1 O dimer [101]
84 5 Et/Ph S4 + 1 O dimer [102]
85 Et/CH2CH2OH S4 + 1 O dimer [83]
86 n-Pr/i-Pr S4 + 1 O dimer [103]

87 10 i-Pr/CH2CH2OH S4 + 1 O dimer [96]
88 c-Pr/CH2C6H4-4-OMe S4 + 1 O dimer [104]
89 n-Bu/Ph S4 + 1 O dimer [105]
90 Benzyl/(CH2)13Me S4 + 1 O dimer [106]

91 9 Benzyl/R2 9 S4 + 1 O dimer [74]
92 CH2(2-furyl)/CH2C6H4-4-Cl S4 + 1 O dimer [75]
93 CH2(2-furyl)/R2 9 S4 + 1 O dimer [74]
94 CH2C6H4-4-OMe/(CH2)2N(CH2CH2)2O S4 + 1 O dimer [74]
95 i-Bu/i-Bu S4 M monomer [107]

S4 + 1 O
96 R + R’ = (CH2)4NMe NS4 P polymer [108]

97 11 Benzyl/CH2(3-py) NS4 Q dimer [72]
98 CH2(ferrocenyl)/CH2(3-py) NS4 Q dimer [109]

99 12 Et/CH2(4-py) NS4 P polymer [110]
100 13 CH2(ferrocenyl)/CH2(4-py) N2S4 R layer [109]

1 R1 is 2,3-dihydro-1,4-benzodioxin-6-yl)CH2; 2 C2/c polymorph; 3 P21/c polymorph; 4 Pbcn polymorph; 5 P¯1
polymorph; 6 tetra-acetonitrile solvate; 7 di-hydrate; 8 methanol solvate; 9 R2 is 1,3-benzodioxol-5-CH2; 10 hydrate;
11 ethanol solvate; 12 di-4-methylpyridine solvate; 13 dimethylformamide solvate.
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Figure 8. (a) Molecular structure of Zn(S2CNCy2)2 (37) where the the zinc atom lies on a 2-fold
axis; (b) supramolecular association via Zn···S interactions (3.58 Å) between two molecules disposed
about a 2-fold axis of symmetry in the crystal of Zn[S2CN(Me)Cy]2 (35); (c) molecular structure
of {Zn(S2CNMe2)2}2 (49) where the molecule has 2-fold symmetry; and (d) molecular structure of
{Zn(S2CNEt2)2}2 (53) where the molecule is disposed about a centre of inversion. The dashed bonds in
(c) and (d) represent transannular Zn···S interactions.

The vast majority of the binary zinc dithiocarbamates are binuclear, adopting one of two motifs.
The common feature of each motif is that there are equal numbers of chelating and bidentate bridging
dithiocarbamate ligands, resulting in central, eight membered [-SCSZn]2 rings. Transannular Zn···S
interactions are noted within these rings. The differences between the motifs arise as a result of the
relative disposition of the chelating ligands. In motif N, illustrated in Figure 8c for [Zn(S2CNMe2)2]2

(49) [76], both chelating rings are on the same side of the molecule, that is, the molecules have 2-fold or
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close to 2-fold symmetry. In motif O, illustrated in Figure 8d for [Zn(S2CNEt2)2]2 (53) [79], the chelating
molecules lie on opposite sides of the central ring, that is, the molecules are disposed around a centre
of inversion or are close to centrosymmetric. In terms of the central [-SCSZn]2 rings, in motif N, they
adopt a boat form, whereas in motif O, they have the form of a chair. Of the 46 binuclear structures,
four adopt motif N and 42 adopt motif O.

Motif N is adopted by four molecules, with 49, 50, and 52 each having crystallographically-imposed
2-fold symmetry, whereas 51 has pseudo 2-fold symmetry only. That there is a fine balance between the
symmetry in the structures conforming to motif N is found in the polymorphs of {Zn(S2CN(n-Bu)2]2}2,
whereby 50 [77] is strictly symmetric and 51 [78] is not. The chelating dithiocarbamate ligands form very
similar Zn-S bond lengths, with differences between them typically less than 0.1 Å, but those formed by
the bidentate bridging ligands are even more symmetric. A common feature of each structure is the
formation of transannular Zn···S interactions involving the bridging-sulphur atoms with separations
normally in the range of 2.9–3.1 Å. Hence, the coordination geometry is described as S4 + 1. With τ [50]
values between 0.39 (49) and 0.64 (51), the resultant coordination geometries are intermediate between
the ideal square-pyramidal (τ = 0.0) and trigonal-bipyramidal (τ = 1.0).

The majority of the binary zinc(II) dithiocarbamates adopt the binuclear motif O, with the
overwhelming majority of these molecules being disposed about a crystallographic centre of
inversion. There is only one exception to this rule, whereby the binuclear molecule found in
{Zn[S2CN(Me)CH2CH2OH]2}2 (76) [83] is disposed by a non-crystallographic inversion centre.
This structure is a methanol solvate [83]. The same binuclear molecule is found in a di-hydrate (75)
and is centrosymmetric [96]. The persistence of the centrosymmetric motif is also seen in the structures
of {Zn[S2CN(CH2CH2)2NPh]2}2 (67) [92] and {Zn[S2CN(Me)Et]2}2 (70) [94] for each of which there are
two crystallographically independent binuclear molecules, each disposed about a centre of inversion.
The general trend in the observed Zn-S bond lengths for structures adopting motif N is also found for
molecules adopting motif O, in that the bridging dithiocarbamate ligands form more symmetric
Zn-S bonds than the chelating ligands. There are two sets of solvato-polymorphs amongst the
compounds adopting motif O. The first, {Zn[S2CN(Et)Ph]2}2, is dimorphic, crystallising in monoclinic
(P21/c) and triclinic (P¯1) space groups, that is, 83 [101] and 84 [102], respectively. The second set of
polymorphs is found for trimorphic {Zn[S2CN(CH2CH2OH)2]2}2, which crystallises in orthorhombic
(Pbcn; 57) [83], monoclinic (C2/c; 58) [84], and triclinic (P¯1; 59) [85] space groups. The molecules with
motif N adopt S4 + 1 coordination geometries that are highly distorted. Using the values of τ [50] as
a measure, the coordination geometry most closely resembling an ideal square-pyramidal geometry
(τ = 0.0) is found in the triclinic polymorph of {Zn[S2CN(CH2CH2OH)2]2}2 (59) [85], with τ = 0.16,
and the one with a geometry resembling a trigonal-bipyramid (τ = 1.0) is found in the structure of
{Zn[S2CN(Me)CH2-5-1,3-benzodioxol]2}2 (79) [74], with τ = 0.62.

The adoption of motif mononuclear M as opposed to binuclear N and O can be partially explained
in terms of the steric bulk of the nitrogen-bound substituents. For example, Zn(S2CNCy2)2 (37) [25],
with bulky cyclohexyl groups, is mononuclear, but when one cyclohexyl group is substituted by
a smaller ethyl group to give {Zn[S2CN(Et)Cy]2}2 (82) [25], the binuclear O motif is formed. That other
factors coming into play are evidenced by the structure of {Zn[S2CN(Me)Cy]2}2 (39) [66], where the
ethyl group of 82 is replaced by a methyl group, as 39 adopts mononuclear motif, M. This fine balance
is no better exemplified by the structure of {Zn[S2CN(i-Bu)2]2}2 (95) [107], whereby two independent
molecules comprise the crystallographic asymmetric unit, one mononuclear (motif M), and the other
binuclear (motif O); neither molecule has crystallographic symmetry.

The five remaining structures to be described in this section carry potential nitrogen donor
atoms in their nitrogen-bound substituents. In {Zn[S2CN(CH2CH2)2NMe]2}n (96) [108], one of
the nitrogen atoms of the 4-methylpiperazine residue coordinates a symmetry-related zinc atom
to generate a one-dimensional coordination polymer with a zig-zag topology, as illustrated in
Figure 9a. The resulting NS4 donor set is intermediate between the ideal square-pyramidal (τ = 0.0)
and trigonal-bipyramidal (τ = 1.0) coordination geometries, as seen in the value of τ = 0.56 [50].
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The structure of 96 is assigned motif P. Two structures, {Zn[S2CN(Benzyl)CH2(3-py)]2}n (97) [72],
Figure 9b, and {Zn[S2CN(CH2ferrocenyl)CH2(3-py)]2}n (98) [109], adopt motif Q, which is binuclear
and located about a centre of inversion. Here, only one of the dithiocarbamate ligands employs the
nitrogen atom in coordination with the second pyridyl-nitrogen atom being non-coordinating. In motif
Q, the resulting aggregate is a dimer. The NS4 donor set in 97 is close to a square-pyramid with
τ = 0.20 and the nitrogen atom occupying the apical position. With a value of τ = 0.36, the coordination
geometry in 98 is less regular than in 97. A coordination polymer with a zig-zag topology is found in
the crystal of {Zn[S2CN(Et)CH2(4-py)]2}n 99 [110] as one of the dithiocarbamate ligands is bridging in
a µ2-κ3 coordination mode via two sulphur atoms and the pyridyl-nitrogen atom, Figure 9c; the other
dithiocarbamate ligand for each of the two independent Zn[S2CN(Et)CH2(4-py)]2 residues is chelating.
The NS4 coordination geometries are based on square-pyramidal geometries with τ = 0.23 and 0.32 [110].
Despite having a pyridyl- rather than an amine-nitrogen donor, the structure of 99 is assigned to motif
P as for 96.
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Figure 9. (a) One-dimensional coordination polymer in {Zn[S2CN(CH2CH2)2NMe]2}n (96);
(b) molecular structure of dimeric {Zn[S2CN(Benzyl)CH2(3-py)]2}n (97); and (c) one-dimensional
coordination polymer in {Zn[S2CN(Et)CH2(4-py)]2}n (99).

The final binary zinc dithiocarbamate structure to be described, {Zn[S2CN(CH2ferrocenyl)
CH2(4-py)]2}n (100) [109], also carries pyridyl-nitrogen atoms in the organic substituents and in
this case, both participate in coordination to symmetry-related zinc atoms. The resulting aggregation is
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of a two-dimensional layer. As seen in the upper view of Figure 10, the layer is flat, with the ferrocenyl
residues lying to either side. The N2S4 donor set in motif R is trans-octahedral.

3.3.2. Cadmium Dithiocarbamates

Several of the motifs adopted by the binary cadmium(II) dithiocarbamates, 101–141 [98,111–137],
are closely related to those observed for their zinc counterparts. Over and above these, are several
unprecedented polymeric structures. There is a complete lack of mononuclear, tetrahedral structures
(motif M), reflecting the propensity of cadmium(II) to increase its coordination number. Data for the 41
known Cd(S2CNRR’)2 structures are collated in Table 4.

Table 4. Summary of the general features of Cd(S2CNRR’)2 structures 101–141.

Compound R/R’ Donor set Motif Designation Ref.

101 n-Bu/n-Bu S5 N dimer [111]
102 Et/Et S5 O dimer [112,113]
103 n-Pr/n-Pr S5 O dimer [114]
104 i-Pr/i-Pr S5 O dimer [115]
105 CH2C(H)=CH2/CH2C(H)=CH2 S5 O dimer [116]
106 i-Bu/i-Bu S5 O dimer [117]

107 1 Cy/Cy S5 O dimer [118]
108 2 Benzyl/Benzyl S5 O dimer [119]
109 3 Benzyl/Benzyl S5 O dimer [120]
110 CH2CH2OH/CH2CH2OH S5 O dimer [121]
111 R + R’ = (CH2)5 S5 O dimer [122]

112 4 R + R’ = (CH2)5 S5 O dimer [123]
113 R + R’ = (CH2)5Me S5 O dimer [124]
114 R + R’ = (CH2)6 S5 O dimer [125]
115 Me/Ph S5 O dimer [126]
116 Et/Cy S5 O dimer [118]
117 n-Pr/i-Pr S5 O dimer [127]

118 5 i-Pr/CH2CH2OH S5 O dimer [128]
119 6 i-Pr/CH2CH2OH S5 O dimer [129]
120 7 i-Pr/CH2CH2OH S5 O dimer [129]
121 Benzyl/CH2(2-furyl) S5 O dimer [130]
122 Benzyl/CH2C6H4-3-Cl S5 O dimer [131]
123 Benzyl/CH2C6H4-4-Cl S5 O dimer [73]
124 Me/(CH2)3NMe2 NS4 Q dimer [132]
125 CH2(3-py)/R1 8 NS4 Q dimer [133]
126 CH2C6H4-4-Cl/CH2(furyl) 2 × S5 + S6 S trimer [131]
127 CH2C6H4-4-Me/CH2(furyl) 2 × S5 + S6 S trimer [133]
128 Me/(CH2)2NMe2 NS4 T polymer [134]

129 9 Et/CH2(4-py) N2S4 U double-layer [135]
130 Benzyl/CH2(3-py) N2S4 R layer [133]
131 CH2(furyl)/CH2(3-py) N2S4 R layer [133]
132 CH2(thiophen-2-yl)/CH2(3-py) N2S4 R layer [133]
133 CH2(ferrocenyl)/CH2(3-py) N2S4 R layer [109]
134 CH2(3-py)/CH2(3-py) N2S4 R layer [133]
135 Me/Me S6 V polymer [136]

136 10 i-Pr/CH2CH2OH S6 V polymer [129]
137 Benzyl/R2 11 S6 V polymer [131]
138 CH2(furyl)/CH2C6H4-4-F S6 V polymer [131]
139 CH2(furyl)/CH2C6H4-4-NO2 S6 V polymer [131]
140 Me/CH2C(H)(OMe)2 S6 W polymer [98]

141 12 i-Pr/CH2CH2OH S6 W polymer [128]
1 di-dichloromethane solvate; 2 P21/n polymorph; 3P¯1 polymorph; 4 mono-benzene solvate; 5 di-ethanol
solvate; 6 di-acetonitrile solvate di-hydrate; 7 1:2 co-crystal with 3-isopropyl-1,3-oxazolidine-2-thione; 8 R1 is
1H-indol-3-ylmethyl; 9 3-methylpyridine solvate; 10 ethanol hemi-solvate; 11 R2 is 1,3-benzodioxol-5-CH2; 12 1/3
acetonitrile solvate.
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There is a sole example of a cadmium dithiocarbamate adopting motif N, that is, a 2-fold
symmetric, binuclear structure with equal numbers of chelating and bridging dithiocarbamate ligands.
This structure, {Cd[S2CN(n-Bu)2]2}2 (101) [111], Figure 11a, exhibits a very narrow range of Cd-S
bond lengths, 2.55 and 2.59 Å for the chelating ligand and 2.51 and 2.61 Å for the bridging ligand.
The transannular Cd-S interaction is considerably shorter at 2.89 Å than the equivalent interaction
observed for the zinc analogues and therefore, the cadmium centre can be considered as five-coordinate.
The S5 donor set, with a value of τ = 0.50, is exactly intermediate between ideal square-pyramidal
(τ = 0.0) and trigonal-pyramidal (τ = 1.0) geometries [50].

A considerably larger number of binuclear [Cd(S2CNRR’)2]2 structures, that is, 22, adopt
the centrosymmetric analogue of motif N, that is, motif O, with archetypical [Cd(S2CNEt2)2]2

(102) [112,113] shown in Figure 11b. In most structures, the range of chelating and bridging
Cd-S bond lengths is quite narrow, with the narrowest range of 2.58 to 2.59 Å being found in
{Cd[S2CN(CH2)5-4-Me]}2 (113) [124]. There is only one exceptional structure where the Cd-S bond
lengths span a considerably greater range, that is, in {Cd[S2CN(i-Pr)CH2CH2OH]2}2 (120), isolated
in a 1:2 co-crystal with 3-isopropyl-1,3-oxazolidine-2-thione [129], where the Cd-S bond lengths span
a range of about 0.30 Å, that is, with bridging Cd-S bond lengths of 2.42 and 2.56 Å, and chelating
bonds of 2.51 and 2.71 Å. The latter structure also presents the longest transannular contact of
3.05 Å. In the rest of the structures, these interactions are usually less than 2.85 Å, and as short as
2.74 Å, as in {Cd[S2CN(i-Pr)CH2CH2OH]2}2 (119) [129], isolated as a di-acetonitrile solvate, di-hydrate.
The coordination geometries tend to be closer to square-pyramidal for the molecules in this category.
The most extreme coordination geometry is found in {Cd[S2CN(Benzyl)CH2(2-furyl)]2}2 (121) [130]
with τ = 0.0, with the bridging-sulphur atom occupying the apical position. Only three of the
molecules have values of τ > 0.50, for example, {Cd[S2CN(n-Pr)-i-Pr]2}2 (117) [127] (τ = 0.51) and
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{Cd[S2CN(n-Pr)CH2C6H4-3-Cl]2}2 (122) [131] (τ = 0.62). The third structure, {Cd[S2CN(CH2)5]2}2

(111) [122], has two independent molecules in the crystallographic asymmetric unit, with one of the
molecules having τ = 0.54 and the other having τ = 0.39. The {Cd[S2CN(Benzyl)2]2}2 compound has
been characterised in two polymorphs. In the triclinic form, 108 [119], τ = 0.54, and in the monoclinic
form, 109 [120], with two independent molecules in the asymmetric unit, the values of τ compute to
0.01 and 0.42.

The flexibility in the [Cd(S2CNRR’)2]2 molecules adopting motif O is clearly appreciated when
one compares the pairs of structures 108 and 109 (coordination geometries), and 118 and 119 (Cd-S
bond lengths).

Two molecules, that is, {Cd[S2CN(Me)(CH2)3NMe2]2}2 (124) [134], Figure 11c, and {Cd[S2CNCH2

(3-py)(1H-indol-3-ylmethyl)]2}2 (125) [133], adopt binuclear motif Q owing to the coordination of
a nitrogen atom of an organic substituent to a symmetry related cadmium atom; both binuclear species
are centrosymmetric. The five-coordinate indicator, τ, is 0.22 for 124 with the nitrogen atom in the apical
position, and 0.42 for 125, indicating a more distorted geometry.

A new motif, trinuclear motif S, is found in two structures, namely {Cd[S2CN(CH2C6H4-4-X)
CH2(furyl)]2}3, for isostructural X = Me (126) [131] and X = Cl (127) [133], Figure 11d. The motif
sees a central Cd(dithiocarbamate)2 residue associated with two other residues so that the cadmium
atoms in the outer molecules have S5 coordination geometries, resembling the situation in motif O.
By contrast, the central cadmium atom is six-coordinate within a S6 donor set; each trinuclear molecule
is located on a centre of inversion. In 126, the range of Cd-S bond lengths for the five-coordinate
cadmium atom is 2.55 to 2.65 Å with the transannular distance being 2.71 Å, and the value of τ is
0.30. The Cd-S bond lengths for the central cadmium span a wider range, that is, 2.59 to 2.89 Å.
The equivalent parameters in 127 present very similar features and the same value for τ.
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Figure 11. Molecular structures of (a) dimeric (2-fold symmetry) {Cd[S2CN(n-Bu)2]2}2 (101), (b) dimeric
(inversion symmetry) {Cd[S2CN(n-Bu)2]2}2 (102), (c) dimeric {Cd[S2CN(Me)(CH2)3NMe2]2}2 (124),
and (d) trimeric {Cd[S2CN(CH2C6H4-4-Me)CH2(furyl)]2}3 (127).

The remaining binary cadmium dithiocarbamate structures are polymeric owing to coordination
by amine- or pyridyl-nitrogen atoms or by bridging dithiocarbamate ligands. In {Cd[S2CN(Me)
(CH2)2NMe2]2}n (128) [134], a one-dimensional array is formed as a result of the coordination of an
amine-nitrogen atom to a symmetry-related cadmium atom, Figure 12a. This chain resembles motif
P, except that the topology in 128 is helical so it is assigned as motif T. The NS4 donor set is almost
perfectly between the ideal square-pyramidal (t = 0.0) and trigonal-bipyramidal (τ = 1.0), having a value
of τ = 0.53 [50]. A new motif, motif U, is found in the crystal of {Cd[S2CN(Et)CH2(4py)]2}n (129) [135].
Here, both dithiocarbamate ligands are S,S-chelating one cadmium atom and at the same bridging
different cadmium atoms so as to form a double-layer, Figure 12b. This arrangement defines square
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channels in which solvent 3-methylpyridine molecules reside (not shown). The resultant N2S4 donor set
is based on an octahedron and, crucially, the nitrogen donors occupy mutually cis-positions. In a clear
difference, the remaining five structures with potential pyridyl-nitrogen atoms feature trans-N2S4

donor sets. This arrangement allows for the formation of two-dimensional arrays reminiscent of motif
R, and an exemplar, Cd[S2CN(Benzyl)CH2(3-py)]2}n (130) [133], is illustrated in Figure 12c.Crystals 2018, 8, x FOR PEER REVIEW  17 of 32 
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Figure 12. Images of (a) one-dimensional {Cd[S2CN(Me)(CH2)2NMe2]2}n (128); (b) the double-layer in
{Cd[S2CN(Et)CH2(3-py)]2}n (129); and (c) two-dimensional {Cd[S2CN(Benzyl)CH2(3-py)]2}n (130).

The distinctive feature in the seven crystals of 135–141 [98,128,129,131,136] is that each of the
dithiocarbamate ligands adopts a µ2κ

3-coordination mode, leading to octahedral S6 coordination
geometries and one-dimensional chains. Five of the structures feature 2-fold symmetry with
the cadmium atom located on the axis, whereas the chains are propagated by crystallographic
inversion symmetry in the remaining two structures. Two views of the chain for [Cd(S2CNMe)2]n

(135) [136], being an exemplar for motif V, are shown in Figure 13a, and equivalent views for
{Cd[S2CN(i-Pr)CH2CH2OH]2}n (141) [128], motif W, are shown in Figure 13b. The key difference
between the chains, both of which have twisted topologies, is found in the orientation of the
nitrogen-bound substituents, which are directed in the same direction in motif V, reflecting the
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2-fold symmetry, but in different directions for motif W, this time reflecting the inversion symmetry.
The chains found in 136 [129] and 141 [128], that is, adopting motifs S and T, respectively,
are supramolecular isomers [137], suggesting relatively small energy differences between the motifs.
Further, solutions of each of 136 and 141 converted over time, within hours, into the dimeric motif
O, that is, into 118 [128] and 119 [129], respectively, are consistent with the notion that the commonly
observed binuclear motif is the thermodynamic outcome of the crystallisation of these compounds.
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3.3.3. Mercury Dithiocarbamates

Unlike the foregoing binary zinc(II) and cadmium(II) dithiocarbamates, the structural chemistry
of the mercury(II) analogues features quite extensive supramolecular association based on
secondary Hg . . . S interactions [138]. Key geometric data for the 44 Hg(S2CNRR’)2 structures,
142–185 [39,70,101,105,139–163], described in this section are listed in Table 5. The exceptional
series of structures, at least in terms of forming intermolecular Hg···S interactions, are strictly
monomeric 142–145 [139–142], illustrated for Hg[S2CN(i-Pr)2]2 (142) [139] in Figure 14a, as there are
no intermolecular Hg···S contacts less than 4.0 Å in their respective crystals. Each of the four structures
has the mercury atom lying as a 2-fold axis of symmetry and conforms to motif M, that is, distorted
tetrahedral geometry within an S4 donor set. In Hg(S2CNCy2)2 (143) [140], the dithiocarbamate ligand
chelates the mercury centre with symmetric Hg-S bond lengths of 2.53 and 2.54 Å, and the widest
S-Hg-S angle is 142◦. At the other extreme, for Hg(S2CNBenzyl2)2 (144) [141], the dithiocarbamate
ligand coordinates with asymmetric Hg-S bond lengths of 2.40 and 2.79 Å, and with the widest angle
of 160◦ formed between the more tightly bound sulphur atoms.

Compounds 146–155 [39,70,101,105,143–147] also adopt motif M, but lack the symmetry
exhibited by 142–145. The dithiocarbamate ligands generally coordinate with disparate Hg-S
bond lengths, with the differences between the short and long bonds usually being 0.3–0.4 Å.
Supramolecular molecular association between centrosymmetrically-related molecules is always
found in 146–155, with intermolecular Hg . . . S separations ranging from a short 3.18 Å in Hg[S2CN
(CH2CH2OH)CH2(ferrocenyl)]2 (155) [70] to a long 3.85 Å in Hg[S2CN(Benzyl)CH2(1-Me-1H-
pyrrol-2-yl)] (152) [146], much in the same way as discussed above for the transition of zinc
dithiocarbamates between motifs M and O, see Figure 8. For mercury and sulphur, the sum of the van
der Waals radii is assumed to be 3.35 Å [20]. An exemplar for the tendency towards dimerization in the
mercury dithiocarbamates is shown in Figure 14b for Hg[S2CN(CH2)4NCH2C(H)=C(H)Ph] (147) [144].

Mononuclear motifs are also found for 156–160 [72,148–151], with the major difference being
that the S4 donor set is strictly square-planar, with the mercury atom located on a crystallographic
centre of inversion in all cases except for Hg[S2CN(CH2CH2OH)2]2 (160) [151]. Accordingly, this
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series is assigned motif U. The dithiocarbamate ligands for motif U coordinate in an asymmetric
mode, with the differences between long and short Hg-S bonds being around 0.6 Å; this contrasts with
the symmetric square-planar geometries observed for motif D. The widest angle in the square-plane
is 180◦ for all structures adopting motif X, including for non-symmetric Hg[S2CN(CH2CH2OH)2]2

(160) [151]. The alteration in geometry and increased asymmetry in the Hg-S bond lengths correlates
with the formation of two intermolecular Hg···S interactions, leading to linear supramolecular chains
in the respective crystals. The Hg . . . S separations range from 3.18 Å for one of the contacts in
Hg[S2CN(CH2CH2OH)2]2 (160) [151] to 3.40 Å in Hg(S2CNMe)2 (156) [148]. This supramolecular
association is shown in Figure 14c for Hg(S2CNEt2)2 (157) [150]. The extended coordination geometry
is S4 + S2, with the weakly associated sulphur atoms mutually trans.

Table 5. Summary of the general features of Hg(S2CNRR’)2 structures 142–185.

Compound R/R’ Donor Set Motif Designation Ref.

142 i-Pr/i-Pr S4 M monomer [139]
143 Cy/Cy S4 M monomer [140]
144 Benzyl/Benzyl S4 M monomer [141]
145 R + R’ = (CH2)4 S4 M monomer [142]
146 i-Bu/i-Bu S4 K monomer [143]
147 R + R’ = (CH2)4NCH2C(H)=C(H)Ph S4 M monomer [144]
148 N(RR’) = R1 1 S4 M monomer [145]

149 2 Et/Ph S4 M monomer [101]
150 i-Pr/Cy S4 M monomer [143]

151 3 Me/Ph; n-Bu/Ph S4 M monomer [105]
152 Benzyl/CH2(1-Me-1H-pyrrol-2-yl) S4 M monomer [146]
153 Benzyl/CH2(ferrocenyl) S4 M monomer [147]
154 CH2(3-py)/CH2(1-Me-1H-pyrrol-2-yl) S4 M monomer [39]
155 CH2CH2OH/CH2(ferrocenyl) S4 M monomer [70]
156 Me/Me S4 X monomer [148]
157 Et/Et S4 X monomer [149]
158 Benzyl/CH2(3-py) S4 X monomer [72]
159 Benzyl/CH2(4-py) S4 X monomer [150]
160 CH2CH2OH/CH2CH2OH S4 X monomer [151]
161 n-Bu/CH2(1H-pyrrol-2-yl) S4 Y monomer [152]
162 CH2(4-py)/CH2(1H-pyrrol-2-yl) S4 Z monomer [146]
163 Et/Et S4 + 1 O dimer [149,153]
164 i-Pr/i-Pr S4 + 1 O dimer [154]
165 n-Bu/n-Bu S4 + 1 N dimer [143]
166 R + R’ = (CH2)4 S4 + 1 O dimer [155]
167 R + R’ = (CH2)5Me S4 + 1 O dimer [156]
168 R + R’ = (CH2)6 S4 + 1 O dimer [157]
169 CH2(2-furyl)/CH2(2-furyl) S4 + 1 O dimer [158]
170 Me/Ph S4 + 1 O dimer [159]
171 Me/(CH2)2Ph S4 + 1 O dimer [160]
172 Et/Cy S4 + 1 O dimer [143]
173 Et/Ph S4 + 1 O dimer [161]
174 i-Pr/CH2CH2OH S4 + 1 O dimer [162]
175 Benzyl/CH2(2-furyl) S4 + 1 O dimer [158]
176 (CH2)2Ph/CH2(2-furyl) S4 + 1 O dimer [163]
177 (CH2)2Ph/CH2CH2(thiophen-2-yl) S4 + 1 O dimer [163]
178 CH2(3-py)/CH2(ferrocenyl) S4 + 1 O dimer [109]

179 3 CH2(3-py)/CH2(1-naphthyl) NS4 Q dimer [39]
180 4 NRR’ = R2 5 2 × S5 + S6 S trimer [145]
181 Me/CH2(4-py) NS4 Z polymer [72]
182 CH2(3-py)/CH2(1,3-benzodioxo-5-yl) NS4 P polymer [72]
183 CH2(4-py)/CH2(2-furyl) N2S4 R layer [72]
184 (CH2)2Ph/CH2(3-py) NS5 AA polymer [72]
185 (CH2)2Ph/CH143(1H-pyrrol-2-yl) S6 V polymer [152]
1 R1 is 3,4-dihydroquinoline-1(2H); 2 tolyl hemi-solvate; 3 mono-ethanol solvate; 4 mono-pyridine solvate; 5 R2 is
1,2,3,4-tetrahydroquinoline.
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Figure 14. (a) Molecular structure of monomeric Hg[S2CN(i-Pr)2]2 (142). Supramolecular association
via Hg . . . S secondary bonding interactions: (b) loosely associated dimer in Hg[S2CN(CH2)4

NCH2C(H)=C(H)Ph] (147) (Hg . . . S = 3.47 Å); (c) linear supramolecular chain in the crystal of
Hg(S2CNEt2)2 (157) (Hg . . . S = 3.29 Å); (d) twisted chain in Hg[S2CN(n-Bu)CH2(1H-pyrrol-2-yl)]
(161) (Hg . . . S = 3.48 and 3.61 Å); and (e) twisted chain in Hg{S2CN[CH2(4-py)]CH2(1H-pyrrol-2-yl)}
(162) (Hg . . . S = 3.82 Å). The dashed Hg . . . S bonds in (b–e) represent secondary bonding interactions.

Supramolecular aggregation via intermolecular Hg . . . S secondary bonding interactions is also
found in each of Hg[S2CN(n-Bu)CH2(1H-pyrrol-2-yl)] (161) [152] and Hg{S2CN[CH2(4-py)]CH2(1H-
pyrrol-2-yl)} (162) [146]. In 161, relatively small differences in the Hg-S bond lengths, that is,
2.48 to 2.65 Å, are noted in the distorted tetrahedral geometry, with the widest angle being 138◦.
The sulphur atoms forming the shorter Hg-S bonds form bridging interactions (Hg···S = 3.48 and
3.61 Å) to symmetry-related molecules to sustain a weakly associated chain with a twisted topology,
Figure 14d. The molecule in 162 has the mercury atom located on a 2-fold axis of symmetry, with the
dithiocarbamate chelating with similar Hg-S bond lengths of 2.50 and 2.64 Å and the widest angle
being 142◦. Molecules also self-associate via very weak Hg···S interactions of 3.82 Å to form a twisted
one-dimensional aggregation pattern, as shown in Figure 14e. Each of the independent supramolecular
synthons in 161 is symmetric, four-membered {···S-Hg}2, and with a rectangular appearance. By
contrast, in 162, the synthon is non-symmetric {···S-Hg-S···Hg} and has the appearance of a distorted
diamond. With these differences, the structures found in 161 and 162 are assigned as motifs Y and
Z, respectively.

The familiar binuclear motif seen in the zinc and cadmium dithiocarbamates is adopted by
16 mercury dithiocarbamate structures, 163–178 [109,143,149,153–163]. Being 2-fold symmetric,
{Hg[S2CN(n-Bu)2]2}2 (165) [143] is assigned motif N, with the rest of the molecules being motif O.
With two exceptions, the molecules adopting motif O are centrosymmetric; in {Hg[S2CN(Benzyl)
CH2(2-furyl)}2 (175) [158], two independent centrosymmetric molecules comprise the asymmetric unit,
and in {Hg[S2CN(Me)CH2Ph]2}2 (171) [160], the molecule crystallises across a non-crystallographic



Crystals 2018, 8, 292 21 of 32

centre. The mercury containing structures resemble the zinc analogues more than the cadmium
structures, as the transannular Hg . . . S interaction is generally long, at least when compared to the
sum of the van der Waals radii of 3.35 Å [20]. Hence, the coordination geometry is best described
as being based on an S4 + 1 arrangement. The values calculated for τ [50] indicate geometries
tending towards square-pyramidal (τ = 0.0), with the minimum value of 0.01 being found for
{Hg[S2CN(i-Pr)CH2CH2OH]2}2 (174) [162], and with all other structures, but one, having t < 0.32.
The exceptional structure, [Hg{S2CN[CH2(3-py)]CH2(2-ferrocenyl)}2]2 (178) [109], has a τ value of 0.52.
{Hg[S2CN(n-Bu)2]2}2 (165) [143], having motif L, had a value of τ = 0.48. There are non-systematic
variations in the Hg-S bond lengths although the range of the Hg-S bond lengths is relatively narrow,
as exemplified by the aforementioned {Hg[S2CN(Benzyl)CH2(2-furyl)]2}2 (175) [158] structure, with two
independent molecules, where the range of Hg-S bond lengths of 2.46 to 2.73 Å encompasses most of
the Hg-S separations in the other structures, with two exceptions. Before discussing these, it is relevant
to note the range of transannular interactions within the eight-membered {-HgSCS}2 ring, that is,
3.03 Å in [Hg{S2CN[CH2(2-furyl)]2}2]2 (169) [158] to 3.25 Å for one of the independent molecules in
175. The exceptional structures are {Hg[S2CN(Et)Ph]2}2 (173) [161] and {Hg[S2CN(i-Pr)CH2CH2OH]2}2

(174) [162], whereby the transannular interactions are shorter than the bridging Hg-S bond to the
symmetry-related mercury atom. Under these circumstances, these structures represent a transition
from motif M to motif O, but are assigned to the latter as all Hg-S separations are less than the sum of
the respective van der Waals radii.

The capricious behaviour relating to coordination geometries, Hg-S bond lengths, and supramolecular
association via Hg···S secondary bonding interactions is no better illustrated than for the pair of structures,
mononuclear and square-planar Hg(S2CNEt2)2 (157) [149], which self-associates into a supramolecular
chain via Hg···S contacts, Figure 14c, and binuclear {Hg(S2CNEt2)]2 (163) [149,153], Figure 15a; that
is, the same compound can adopt either motif X or O, respectively. Similarly, strictly mononuclear
Hg[S2CN(i-Pr)2]2 (142) [149], motif M, in one polymorph can also adopt binuclear motif O in another, as in
164 [154].
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have precedents in their lower congenors. The centrosymmetric binuclear compound, 
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Figure 15. Molecular structures of (a) binuclear [Hg(S2CNEt2)2]2 (163); (b) binuclear [Hg{S2CN
[CH2(3-py)]CH2(1-naphthyl)}2]2 (179); and (c) trinuclear [Hg(S2CNR2)2]3 (180), where NR2 is 1,2,3,4-
tetrahydroquinoline. The dashed Hg . . . S bonds represent weak interactions.
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The two remaining zero-dimensional aggregates among the binary mercury dithiocarbamates
have precedents in their lower congenors. The centrosymmetric binuclear compound, [Hg{S2CN
[CH2(3-py)]CH2(1-naphthyl)}2]2 (179) [39], Figure 15b, has one chelating dithiocarbamate ligand
and one bridging ligand, whereby one end chelates a mercury atom and bridges another via the
pyridyl-nitrogen atom; this structure conforms to motif Q. The NS4 coordination geometry is almost
intermediate between the ideal square-pyramidal (τ = 0.0) and trigonal-bipyramidal (τ = 1.0) as
the value of τ is calculated to be 0.48. The molecule of [Hg(S2CNR2)2]3 (180) [145] is trinuclear,
Figure 15c, and allowing for differences in M-S separations, closely resembles motif S; NR2 is
1,2,3,4-tetrahydroquinoline. The central mercury atom in 180 is located on a centre of inversion,
is coordinated asymmetrically (2.37 and 2.95 Å) by two dithiocarbamate ligands, and is connected
to the two outer Hg(S2CNR2)2 residues by Hg···S contacts of 3.05 and 3.37 Å, that is, within and just
outside the sum of the van der Waals radii value of 3.35 Å [20]. Thus, the coordination geometry for
the central mercury atom resembles that seen in motif X, which is best described as S4 + S2 with the
weakly bound sulphur atoms in trans positions. The outer mercury atoms adopt heavily distorted
five-coordinate geometries, as seen in the value of τ = 0.33, resembling the geometries found for the
majority of structures adopting motif O.

There are five binary mercury dithiocarbamate structures that adopt one- or two-dimensional
aggregation patterns in their crystals. The first of these, {Hg[S2CN(Me)CH2(4-py)]2}n (181) [72],
features an S,S-chelating dithiocarbamate ligand and another which chelates the same mercury atom
while at the same time bridging a symmetry-related ligand to form a linear one-dimensional polymer,
Figure 16a. The resulting NS4 donor set is based on a square-pyramidal geometry, with the calculated
value of τ being 0.07 compared to the ideal value for a square-pyramid of τ = 0.0 [50]. In this description,
the nitrogen atom occupies an apical position. This linear aggregation does not have a precedent herein,
so is assigned motif Z. In [Hg{S2CN[CH2(4-py)]CH2(1,3-benzodioxo-5-yl)}2]n (182) [72], which has only
one pyridyl-nitrogen donor atom per repeat unit, compared with two in 181, a different aggregation
pattern is found, Figure 16b. The modes of coordination of the dithiocarbamate ligands in 182 are as
for 181 but, in the former, these generate zig-zag chains being propagated by glide-symmetry. The NS4

donor set is also as for 181 but, the distortion is greater from the ideal geometry, with τ being 0.20.
This coordination polymer, with precedents, is assigned as motif P.
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In {Hg[S2CN[CH2(4-py)]CH2(2-furyl)]2}n (183) [72], both pyridyl-nitrogen atoms are involved in
the coordination to mercury, Figure 17, in contrast to the situation in each of 181 and 182. The extra
participation of the pyridyl-nitrogen atoms results in a trans-N2S4 donor set, a distorted octahedral
geometry, and a two-dimensional array with a flat topology, that is, an aggregation pattern conforming
to motif R.Crystals 2018, 8, x FOR PEER REVIEW  23 of 32 
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Figure 17. Two-dimensional aggregation in {Hg[S2CN[CH2(4-py)]CH2(2-furyl)]2}n (183).

A distinct motif, motif AA, is found in the crystal of [Hg{S2CN[(CH2)2Ph]CH2(3-py)}2]n (184) [72].
There are two independent Hg{S2CN[(CH2)2Ph]CH2(3-py)}2 units in the asymmetric unit and these
are connected into a supramolecular polymer. As viewed from Figure 18a, the coordination geometry
for each is very similar, with the independent bridging Hg-S distances being 2.90 and 2.92 Å.
The relationship to motif O is apparent in that each repeat unit participates in one accepting and one
donating Hg-S interaction, but in motif AA, these occur on either side of the molecule to generate
a chain rather than a dimer, as in O. The values of τ for each of the independent mercury atoms are
equal at 0.57, consistent with highly distorted S5 coordination geometries. The last structure to be
described, that is, [Hg{S2CN[(CH2)2Ph]CH2(1H-pyrrol-2-yl)}2]n (185) [152], conforms to motif V, being
a linear coordination polymer, Figure 18b, as each dithiocarbamate ligand is tri-connective, chelating
one mercury atom while simultaneously bridging another; the mercury atom lies on a 2-fold axis.
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Figure 18. One-dimensional aggregation in (a) [Hg{S2CN[(CH2)2Ph]CH2(3-py)}2]n (184) and (b)
[Hg{S2CN[(CH2)2Ph]CH2(1H-pyrrol-2-yl)}2]n (185).

4. Overview and Conclusions

The foregoing bibliographic overview highlights the diverse structural chemistry exhibited by the
binary zinc-triad 1,1-dithiolates, with 27 distinct structural motifs documented. The observed diversity
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in their crystals is correlated, in part, with the different bonding requirements of the zinc, cadmium,
and mercury centres. The nature of the 1,1-dithiolate ligand also plays a determining role, with bridging
propensities being the greatest for xanthate and dithiophosphate ligands. Dithiocarbamates, by virtue
of the significant contribution (40%) of the 2−S2C=N+RR’ anion to the overall electronic structure,
are very effective chelators for metal centres and tend to be less likely to be engaged in extensive
bridging interactions. In the context of the design of extended networks, this shortcoming can be
overcome by incorporating other potential donor atoms in the organic substituents in the ligands, most
notably pyridyl-nitrogen donors, to promote supramolecular aggregation. Steric effects exerted by the
organic substituents can influence the supramolecular aggregation, in particular by militating weaker
M-S bonds/M . . . S secondary bonding interactions. The above notwithstanding, very significant
differences are evident among the 27 identified structural motifs, that is, between closely related
compounds or even between polymorphs, and the challenge remains to rationalise the appearance of
these and ultimately to use this information to predict structures based on chemical composition.
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