
Effective Mobile Applications Testing Strategies

Haeng-Kon Kim1, Hyun Yeo2, Tai-Hoon Kim3, Ha Jin Hwang4, Carlos Ramos5

and Goreti Marreiros6

1Department of Computer Engineering, Catholic University of Daegu, Korea
2Department of Computer and Communications, Sun Cheon National University, Korea

3Department of Convergence Security, SungShin Women’s University, Seoul, Korea
4Department of Business Analytics, Sunway University Business School, Malaysia

5-6Institute of Engineering, Polytechnic of Porto, Porto, Portugal
1hangkon@cu.ac.kr, 2yhyun@sunchon.ac.kr, 3taihoonn@daum.net ,

4hjhwang@sunway.edu.my, 5csr@sc.ipp.pt, 6mgt@isep.ipp.pt

Abstract. In highly fragmented and competitive global market the mobile

development cycle is of short period. For the vendor’s equanimity and

overwhelming task to ensure long term success, the APP must be tested over

different combination of platforms, operating systems and networks before

launching to global. In addition to this, similar to Functional testing the non-

functional testing like Security testing, usability testing etc. also plays an

important role. The effective test planning in Mobile Application testing makes

helps to improve the quality of Mobile Apps. Due to increasing numbers of

smart phone applications and their advanced features, smart phone has become

a primary resource of communication for worldwide business owners,

industrialist, office workers, etc. In this paper we use UML diagrams

represented in the form of a tree to extract test cases to verify/validate the

behavior of mobile objects concerned. A new model based approach for

automated generation of test cases in object oriented systems has been

presented. The test cases are derived by analyzing the dynamic behavior of the

objects due to internal and external stimuli.

 Keywords: TDD(Test Driven Development), UML Test Case, Mobile Applications

Testing, Genetic Algorithm, Functional/Non Functional Testings

1 Introduction
Mobile applications code-based test generation has made tremendous progress in

the recent past: Today, modern systems are able to generate inputs that drive

execution to almost any point in the control flow. Automation, however, reaches its

limits when it comes to controlling the test’s environment: For example, if the tested

code accesses an external component such as a service or a database, then this

component needs to be controlled by the test as well in order to prevent unwanted

side-effects like data loss. A common solution in test generation is to create a stub

version of the component that is difficult to control. Such a stub object provides the

same interface as the component it represents, but returns predefined values on

method calls. In this paper, we propose an approach that automatically generates such

stub objects, helping to drive test generation towards its goal in cases where automatic

generation is difficult or impossible otherwise. The solution applied is to map the

stubbed behavior to the input space of the test generation problem: For each method

mailto:hangkon@cu.ac.kr
mailto:yhyun@sunchon.ac.kr
mailto:3taihoonn@daum.net
mailto:hjhwang@sunway.edu.my

call on the stub object in the test case we need to find an appropriate value that the

stub returns during execution. A main difficulty in this approach is that within the

scope of a test case the stubbed component should behave similarly to the real

component.

2 Related Works

2.1 Key Mobile Testing Challenges in Mobile App Test Automation [1]

The primary factor that determines an automation tool’s success is its ability to work

across platforms and technology stacks. The following challenges influence

automation success:

1) Planning of Quick Rollouts:

The companies are looking for the golden business opportunities in unique Mobile

apps and expecting rapid rollout of quality application or improvements and bug fixes

if application is already launched. They want to push the applications in the market as

quickly as possible to avail the benefits of market boom mobile sector. As a result the

QA testing cycle which generally takes two to three weeks depends on the complexity

and the size of the application is now reduce to half or one week. Due to clutch in the

timelines the QA it is very difficult to problems if mobile applications don’t meet the

customer expectations.

2) Multi-Platform Compatibility:

With the propagation of mobile devices like iPhone, iPad, Smartphones, Tablets,

Windows Mobile and wide range of Andriod devices etc, mobile application

providers have to provide the multi platform compatibility to reach their audience. In

the mobile industries there are no any industry standards for Operating Systems or

device hardware, so testing of apps over variety of devices is not a simple task. So

here we cannot 100 % say that test cases which passed for one device are also passing

for other devices, even if device from same family.

There are many combinations while testing mobile apps like Screen resolution,

memory sizes, battery, Operating System etc. The creation of separate test case and

execution on each device can be the most expensive and time consuming task.

The mobile application market is rapidly growing with a demand of quality product

with no any excuses on errors and security holes.

3) Dealing with a variety of connectivity modes:

One more important parameter to be considered in the mobile testing is the “Modes

of Connection” to access the application. This step can be ignored if the internet

connection does not required for application under test, however almost all

applications requires internet so this test case needs to run over different connections

like WiFi, 3G, 4G etc. Even you test the application you will face the wide range of

applications over different connectivity options. While planning you QA Automation

testing strategy you need to consider connectivity modes which are equally important.

4) Creating end-to-end tests:

The mobile market demand is to integrate the mobile applications with all

platforms and expected to flawlessly access the data on mobile and other platform like

Web site. The end to end test cases should be work as expected on mobiles. Consider

a example where order is placed from the mobile device and same can be from the log

in into Web site. These mobile apps are expected to work on front end and back-end

systems.

2.2 Types of Mobile App Testing [1]

1) Functional Testing:

Functional testing performs on the functional behavior of the application to ensures

that the application is working as per the requirements. Mostly, testing performs on

the user interface and call flows of the application. As like other UI applications

mobile applications also require lots of human consideration. If, functional testing

performs on mobile devices manually, not automatically, it is going to be extremely

complex, exhaustive and time-consuming task due to various mobile-specific

challenges like; various mobile devices, mobile operating systems, and functions &

applications involve with mobile devices. Functional testing automation process also

requires lots of human resources, money, and time then too testers are ready to

automate the testing process by using many tools due to its strong market value and

user demand. Teams can then combine automated tests with selected manual test

scenarios to balance the coverage and efficiency of the functional testing. To test

some functionalities of the application tester go for manual testing process, later on

tester combines manual testing and automation testing for better result.

2) Performance Testing:

The testing process is carried out by tester to test the performance and actions of

the applications that pass through various mobile device challenges like; low battery

power due to heavy battery uses, network out of coverage area/poor

bandwidth/changing internet connection mode (2G, 3G, or WiFi)/changing broadband

connection, transferring heavy file, less memory, concurrent approach to the

application’s server by various users, etc. Application’s server and client both

strongly affect the performance of the mobile application, so testers perform testing

on both side of the application.

3) Usability testing:

Usability testing is used to test the mobile applications in terms of usability,

flexibility, and friendliness. The testing process makes sure that the mobile app is now

easy to use and offers a suitable user experience to the customers.

4) Installation testing:

Mobile devices hold two types of applications; the one which automatically comes

with mobile OS (while installing OS, it automatically get installed), and another one

you have to install specially from the store to use the particular application.

Installation testing is used to test the particular application is installing,

uninstalling, and updating properly without any interruption (user is smoothly and

flexibly installing the application).

5) Operational Testing:

Any mobile OS and desktop OS provides in-built back-up and recovery operational

functions that save or recover all files or doc of mobile devices or applications that

had been lost due to some reason. Operational testing is used to test that the particular

back-up and recovery process is working properly and responding as per the

requirement

Fig. 1. Types of Mobile App Testing

3 Mobile Applications Automated Stubbing
3.1 UML Test Case Generation

In software development, use cases define system software requirements. Use case

development begins early on, so real use cases for key product functionality are

available fairly early in the project. A use case fully describes a sequence of actions

performed by a system to provide an observable result of value to a person or another

system. Use cases tell the customer what to expect, the developer what to code, the

technical writer what to document, and the tester what to test.

For software testing, creation of test cases is the first step. Then test scripts

(collections of test cases) are designed for these test cases, and finally, a test

suite/plan is created to implement everything.

Test case (TC) A set of test inputs, executions, and expected results developed for

a particular objective.

Test Script/Procedure. A document, providing detailed instructions for the

[manual] execution of one or more test cases.

Test suite. A collection of test scripts or test cases that is used for validating bug

fixes (or finding new bugs) within a logical or physical area of a product

Operator
Log Off

MyClient : Client MyServer :

SpecialServer

ThisOperation ()

Sequence Diagrams

SpecialServer

AnotherOperation()

Client

UserAction()

AnyServer

ThisOperation()

ThatOperation()

Class Diagrams

Scenarios

Software

Requirements

Code

Construction

Use Cases

Fig. 2. UML Test Case Generation

4 Conclusion
All above testing methodologies prove that users can trust on applications that

come with mobile devices, all applications are completely tested with many testing

methodologies. But, be careful before using applications on mobile devices, if mobile

applications involve internet connection then make sure that the device is already

carrying antivirus. If, you don’t have antivirus on your device then it won’t be a fault

of the applications installed on the mobile device; it is just a fault on you mobile

system.Mobile automation testing is not so easy task; it requires proper planning,

research, and practices to make the testing successful. Before to start the testing

process; tester should be having good knowledge of information technology skills, the

application on which you are going to perform the testing operation, and the tool that

you are going to use to test the application.

<Acknowledgement>

This research was Supported by the MSIP (Ministry of Science, ICT and Future

Planning), Korea, under the C-ITRC (Convergence Information Technology Research

Center) support program (IITP-2016-H8601-16-1007) supervised by the IITP

(Institute for Information & communication Technology Promotion).

This research was also supported by the International Research & Development

Pro-gram of the National Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (Grant number: K 2014075112).

This work was also supported Europe-Korea Research on Ubiquitous Computing

and Ambient Intelligence

References

1. http://www.softwaretestingclass.com/introduction-to-mobile-application-testing /

2. Tillmann, N., Schulte, W.: Stub-object generation with behavior. In Proceedings of the

21st IEEE/ACM international.

Conference on Automated Software Engineering, 2006 September 18–22.

Automated Software Engineering. IEEE Computer Society, Washington, DC, 2006:365-

368.

3. http://www.microsoft.com/windows/NetMeeting/Corp/reskit/Chapter11/default.asp

http://www.softwaretestingclass.com/introduction-to-mobile-application-testing%20/
http://www.microsoft.com/windows/NetMeeting/Corp/reskit/Chapter11/default.asp

