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Abstract: The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly
reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome
(AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render
off-target toxicity and more importantly results in drug-resistant escape mutants. These have been
the main challenges for HAART and refinement of this therapeutic strategy is urgently needed.
Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most
therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for
targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic
antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral
targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence,
the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach.
Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies
to comprehensively target both extra- and intra-cellular proteins in various infections and diseases.
This review aims to update on the current progress in the development of antibody-based treatment
against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and
limitations in the development of antibody-based therapeutic modalities against HIV-1.
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1. Introduction

The development of HAART has significantly reduced AIDS-related death cases [1]. This strategy
targets multiple viral proteins or processes (e.g., viral entry, reverse transcription, integration,
transcription, and virus assembly and production) that are superior to monotherapy which targets
a single protein (e.g., glycoprotein, reverse transcriptase, protease, etc.) at a time [2]. HAART has
successfully reduced the viral load to <50 copies and replenished the number of CD4+ T-cells, thereby
improving survival while reducing HIV infectivity [3]. Despite success seen in HAART, HIV infection
has now turned into a chronic condition due to long-term use of HAART. A number of conditions
has been reported with long-term exposure to HAART such as lipid metabolism disturbance that can
predispose the patient to a number of cardiovascular problems [4]. In short, there are several challenges
that limit HAART such as: (a) low specificity; (b) high toxicity; (c) high cost; and (d) promoting the
development of escape mutants [5]. Furthermore, HAART drugs are unable to address the problem
with HIV reservoir. Latently infected resting T cells provide a stable reservoir for HIV-1 despite strict
adherence to HAART [6–8]. The risk of reactivation of these latent reservoirs are high when there is
immune stimulation [7] and interruption of the HAART treatment [8]. Although the ultimate focus of
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HIV research is to achieve a sterilizing cure for HIV, we are still far from it. Thus, current research focus
should be on maximizing the functional cure for HIV, without compromising the patient’s quality of
life with debilitating burden of chronic illnesses.

Antibody-mediated therapy has emerged as a promising therapeutic strategy against various
infectious diseases and cancers to counteract the abovementioned limitations. In the past 15 years,
considerable attention has been drawn to the development of monoclonal antibodies (mAbs) against
cancers [9,10]. Similarly, several studies have demonstrated the potential antiviral activities of
antibodies against HIV-1 [11–13] while most of them are yet to be approved by FDA. Since full-length
antibodies typically have the approximate size of 150 kDa, they have restricted access to the inner
compartments of the cells for intracellular proteins, resulting in the confined therapeutic targeting
against surface or extracellular protein [14,15]. Cumulative findings have shown essential roles of
several intracellular proteins in the viral replication and infectivity such as p24/capsid protein [16,17],
and other accessory proteins (e.g., Nef, Tat, and Rev) [18]. HIV-1 Nef and p24 capsid proteins
have gained interest as promising targets for potential anti-HIV treatment in recent years [19–21].
The debut of heterologous expression of a biologically active recombinant HIV-1 p24 [22] and
Nef [23] has propelled the development of potent cell-penetrating antibodies to inhibit HIV-1 infected
T-lymphocytic cells line and PBMCs [24,25]. Similarly, HIV-1 Tat and Rev have also been targeted
by cell-penetrating antibodies and promising antiviral effects have been observed [26–29]. Hence,
blocking the biological activities of these proteins could be promising antiviral strategies. Several
modifications/engineering have permitted the antibodies to gain access into the cells and specially
target the intracellular protein of interest. These modifications are mainly performed through
two methods, chemical or genetic/molecular [14,15]. This review aims to provide insights into
the application of therapeutic cell-penetrating antibodies in combating HIV-1. We also attempt to
discuss the potential limitations and challenges during the development of cell-penetrating therapeutic
antibodies against HIV-1.

2. Targeting HIV-1 Intracellular Proteins as Therapeutic Targets

This section describes the important functions of viral proteins essential for viral replication and
the accessory proteins that play roles in virus dissemination, which make them ideal targets for the
development of various antiviral treatments. The therapeutic antibodies targeting these intracellular
proteins will be discussed individually in Section 3.

2.1. Capsid Proteins (CA), p24

HIV-1 Gag precursor (Pr55Gag) is composed of N-terminal matrix (MA/p17), capsid (CA/p24),
nucleocapsid (NC/p7), C-terminal p6, and spacer peptides Sp1 and Sp2 [30]. Following a sequential
proteolytic process, Gag is cleaved by a protease into CA and NC, which subsequently assemble to
form the central core containing the viral RNA genome [31]. The presence of these proteins is abundant;
a mature HIV-1 core has approximately 1500 CA monomers and up to 5000 Gag molecules in the
immature core [32]. HIV-1 CA plays essential roles in early and late stages of viral replication [20].
During assembly, the cone-shaped capsids encapsulate the viral genome and upon membrane fusion,
the capsids disassemble to release the genetic materials for replication in the cells [33]. In the late stage,
p24 molecules assemble and re-package the viral genome to form viral particles [34]. These virions are
released from the infected cells for dissemination (Figure 1). Targeting and sequestering the CA protein
during these important steps can efficiently block the completion of viral life cycle. The potential
of developing CA into a therapeutic target for HIV therapy has been recently reviewed [20,21,35].
Various therapeutic compounds have been found to target the CA and inhibit HIV-1 replication
and/or infectivity. These include C1 [20], Ebselen [36], benzodiazepines (BD3) and benzimidazoles
(BM4) [37], I-XW-053 [38], PF74 [39], Bevirimat (BVM) [40,41], CAP-1 [42], CAI [43], NYAD-1 and
NYAD-13 [44], and BI-1 [45]. Among these molecules, Ebselen and I-XW-053 targeted HIV-1 early
pre-integration or capsid uncoating process, while PF74, C1, CAP-1, CAI, BVM, NYAD-1, NYAD-13,
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BD3, and BM4 targeted HIV-1 maturation to prevent capsid assembly and virus release to new cells.
Cumulative findings demonstrate that the majority of current CA-targeting compounds target the
virus maturation step at its late-stage of the replication cycle involving the capsid assembly and mature
virus formation [20,30,46]. Furthermore, antibodies targeting CA in HIV-1-infected cells are potent
enough to exhibit a promising antiviral effect [24]. Development of an anti-HIV single-chain antibody
(scFvs/sFvs) format that has higher cell-permeating capacity may also improve the HIV-1 targeting
capabilities thereby enhance the antiviral action.
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Figure 1. HIV-1 replication cycle and the antiviral targets for antibody-mediated treatment which
have been previously reported. (1) The virus attaches to the cell by engaging the receptor CD4 and
co-receptor CC-chemokine receptor 5 (CCR5); (2) This leads to the fusion of virus and cell membrane;
(3) The capsid protein uncoats and releases the viral materials; (4) This allows reverse transcription
that involves reverse transcriptase (RT) to take place; (5) This also yields pre-integration complex (PIC)
which is then imported into the nucleus; (6) Integrated provirus is formed by integrase (IN) (can be
targeted by SFv-IN and Vpr-SFv-IN); (7) Proviral transcription mediated by host RNA polymerase,
takes place in the nucleus; (8) The mRNA is exported out from the nucleus; (9) Viral proteins are
produced in the cytoplasm (i.e., Nef, Tat, Vpu, Vpr, Vif, Rev, and p24); The proteins that can be targeted
by therapeutic antibodies are depicted in the diagram; (10) The viral RNA and proteins assemble on the
cell membrane and repackage into a viral particle. This step is facilitated by p24 that can be targeted
by murine mAb 1 and 2, and kFGF-MTS-mAb; (11 & 12) The viral particle buds and releases from the
cells; (13) The virus then matures into an infectious viral particle mediated by proteases (PR).

2.2. Nef

HIV-1 Nef is a viral accessory protein. Nef proteins are not directly involved in the viral replication,
but they play essential roles in viral pathogenesis at both early and late phases. The functions of
Nef in disease progression has been extensively reviewed [47–50]. Nef is a pathogenic factor that
is expressed early in the viral life cycle [48]. The primary roles of Nef in the viral pathogenesis
include CD4 downregulation, MHC class-I downregulation, CD28 downregulation, T-cell activation,
and CD8αβ downregulation [51]. Nef proteins perpetuate the HIV-1-derived exosome secretion and
contribute to the exosome-mediated disease pathogenesis [52,53]. In animal models, Nef-deleted
mutants exhibited up to 40% reduction of infection rates and did not progress to AIDS compared to
wild-type HIV-1, has paved a potential target for therapeutics [47]. In the early phase, Nef regulates
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the fusion properties of the cells [54] while in the late phase, Nef is responsible in stimulating viral
reverse transcription, hence increasing the number of infectious virions and enhancing the infection of
new cells [55]. The therapeutic blocking of Nef-mediated pathogenesis is expected to inhibit HIV-1
replication, infectivity, and viral spreading. Bouchet and co-workers have demonstrated that the
phage display-derived antibodies targeting HIV-1 Nef are able to inhibit a cascade of Nef-mediated
pathogenic effects (Table 1) [56,57]. Other Nef-targeting molecules such as diphenylpyrazolo or
B9 [58], batzelladine and crambescidin analogs [59], and dihydrobenzo-1,4-dioxin-substituted analog
of 2-quinoxalinyl-3-aminobenzene-sulfonamide (DQBS) [60] have also shown promising inhibition
against Nef-dependent HIV-1 activities.

Table 1. Development of therapeutic antibodies against HIV-1 intracellular targets.

Target Antibody Conjugation/Engineering Antiviral Effect

Integrase
(IN)/p32 SFv-IN SV40 as delivery system Inhibition of HIV-1 replication and syncytium formation in human T-lymphoid

cell, SupT1 [61]

Vpr-SFv-IN Phage-display and
fusion to Vpr protein

Inhibition of HIV-1 replication in human T-lymphoid cell, SupT1 and reduction
of virion infectivity [62]

Capsid
(CA)/ p24

Murine
anti-p24 Mabs Native Inhibition of active virus particles in up to 60% in HIV-1 infected cell lines or IL-2

stimulated T-cells [63]

Murine
anti-p24 Mabs Native Delay of HIV-1 spread for 6 days in in vitro cell culture [64]

κFGF-MTS-anti-
p24-mAbs

κFGF-MTS peptide
chemical conjugation

Inhibition of HIV-1 replication up to 73% and 49% in T-cells and PBMCs
respectively [24,25]

Nef sdAb19 Phage-display

Inhibition of Nef-mediated CD4 down-regulation [56,57]
Inhibition of p21-activated kinase 2 interaction and actin remodeling [57]
Inhibition of viral infectivity and replication in PBMCs [57]
Prevention of Nef-mediated thymic CD4 T-cell maturation and peripheral CD4
T-cell activation in vivo [57]

Neffins
Phage-display and

fusion to modified SH3
domains

Inhibition of CD4 and MHC-1 cell surface downregulation [56,65]
Inhibition of all functions of Nef in both T-cells and macrophages [65]

Rev Anti-Rev SFv Phage-display Inhibition of replication of various laboratory and primary clinical HIV-1 strains
in long-term human T-cell lines for several months [66,67]

SFv D8 Phage-display Inhibition of HIV-1 production in human T-cell lines and PBMCs [68]

Anti-Rev SFv Phage-display Inhibition of HIV-1 replication in chronically infected U1 promonocytic cell line,
ACH-2 T-cell, and primary monocyte cultures [69]

Nb(190) sdAb Phage-display Inhibition of replication of wide range of different HIV-1 subtypes [29,70]

FabRev1-Tat Phage-display and Tat
peptide conjugation Inhibition of viral replication of CCR5-tropic HIV-1 isolates in PBMCs [28]

Tat Anti-Tat sFvs Phage-display Resistance of antibody-expressing lymphocytes to HIV-1 infection [71]

Lipidated
anti-Tat

antibody

Lipidation chemical
modification Inhibition of HIV-1 replication of several HIV-1 isolates by 85% [72]

Anti-Tat sFv
with NF-κB
antagonists

Phage-display Longer inhibition of HIV-1 replication up to 45 days [26]

sFvhutat2 Phage-display Inhibition of HIV-1 replication in HxB2- and two syncytium-inducing (SI)
primary isolates- challenged PBMCs [27]

Vif Vif scFv Phage-display Inhibition of HIV-1 replication in HIV-1 infected primary cells and cell lines [73]
Inhibition of completed reverse transcripts formation [73]

2.3. Tat

HIV-1 Tat is known to play a pivotal role in HIV-1 replication and infectivity by mainly
activating the transcription from the viral long terminal repeat (LTR) promoter by binding to the
transactivation-responsive region (TAR) hairpin in the viral RNA transcript [74]. Das and colleagues
showed that Tat inactivation inhibited the HIV-1 replication, however, the viruses were able to replicate
without Tat in SupT1 T cells when the U3 sequences were substituted with nonrelated promoter
elements [75]. It has also been shown that the DDX3 interacts with HIV-1 Tat to facilitate HIV-1
mRNA translation, and knockdown of DDX3 inhibited Tat-dependent HIV-1 production [76]. As HIV-1
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Tat and the Tat-binding TAR RNA play important roles in HIV-1 transcription, they are potential
therapeutic targets for antiviral treatment [75,77,78]. Hamy and colleagues showed that the stilbene
derivative CGA137053 inhibited HIV-1 by binding to Tat protein [79]. Mhashilkar and coworkers have
developed several phage-display-derived anti-Tat antibodies that efficiently inhibited HIV-1 replication
and infectivity (Table 1) [26,27,71]. Plant-derived compounds such as triptolide and curcumin have
also been shown to reduced Tat-mediated LTR promoter transactivation and HIV-1 production by
promoting the degradation of Tat protein. Of note, triptolide targeted Tat at the stage of viral gene
transcription while curcumin does not affect Tat gene transcription [80,81]. Lacombe and colleagues
also showed that spironolactone (SP), an aldosterone antagonist targeted Tat-dependent transcription
and resulted in potential inhibition of HIV-1 and HIV-2 infections [82]. On the other hand, TAR RNA
has been targeted by cyclic peptidomimetic L50 which subsequently blocked Tat-TAR interactions
followed by the inhibition of HIV-1 transcription and replication [83]. Generally, Tat is known as an
intracellular protein mainly due its transduction domain that has been previously shown to transport
a variety of cargos across the cells [84,85]. On the other hand, there are also pieces of evidence showing
that this protein could be released extracellularly and play important roles in viral infection [86,87].
Since the localization of this protein determines the efficiency of Tat-specific antiviral treatment,
particularly in anti-Tat antibody-mediated treatment, further investigations are worthwhile to study
the mechanism of Tat localization, followed by their effects on the antiviral treatment.

2.4. Rev

HIV-1 Rev is also one of the accessory proteins and has been known to be essential for both
early and late phases of virus replication cycles. Rev is a transactivating protein that interacts
with Rev response element (RRE) which is encoded by env gene [88]. In the early phase, HIV-1
Rev regulates the integration frequency to prevent cellular superinfection while in the late phase,
it enhances the expression of viral proteins [89,90]. Blocking the activities of Rev and the interaction
between Rev and RRE, have resulted in marked reduction of HIV-1 replication and infectivity.
For instances, phage display-generated anti-Rev antibodies have shown potent antiviral effects against
various HIV-1 strains (Table 1) [28,29,70]. Other Rev-targeting molecules that possess therapeutic
activities against HIV-1 include PKF050-638 [91], SUMO-1 heptapeptide protein transduction domain
for binding Rev (SHPR) [92], 3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide
and 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile (termed as 103833 and
104366) [93], 8-azaguanine and 2-(2-(5-nitro-2-thienyl)vinyl)quinoline (termed as 5350150) [94], and
pyrimidin-7-amine, biphenylcarboxamide, and benzohydrazide, (designated as 791, 833 and 892) [95].

2.5. Other Proteins

In addition to the abovementioned target proteins, other intracellular proteins such as HIV-1
reverse transcriptase (RT)/p66, integrase (IN)/p32, protease (PR)/p11, nucleocapsid (NC)/p7, and
matrix protein (MA)/p17 are among the promising candidate targets for antiviral treatment as reported
in previous reviews [2,96]. Limited studies have also shown antiviral effects by targeting other
accessory proteins such as Vif, Vpr, and Vpu [97–99]. While targeting these HIV-1 proteins resulted
in marked HIV-1 inhibition, the viruses have a tendency to resist or escape the drug or inhibitor
treatments, including HAART targets such as RT, IN, PR, etc. and other non-HAART target proteins
such as Nef, p24, and so on [100–102]. For examples, Zhou and coworkers reported the development
of a mutant virus that was resistant to the capsid-targeting PF74 inhibitor treatment and resulted
in impaired viral replication in target cells [103]. Similarly, Shuck-Lee and colleagues demonstrated
resistant viral variants towards HIV-1 Rev inhibitors-103833 and 104366 that possess two single-point
mutations in the RRE [104]. Furthermore, the mutations in HIV-1 Vpu and Env have resulted in HIV-1
escape from interferon-induced transmembrane (IFITM1) protein inhibition [105]. Nef has also been
shown to evade the restricted HIV-1 replication of both multipass transmembrane proteins serine
incorporator 3 (SERINC3) and SERINC5 [106,107]. These findings highlight the importance of targeting
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viral proteins that evade the HIV-1 restrictions such as Vpu, Env, and Nef. Due to limited data available,
the risk of emergence of escape mutants from intracellular viral protein-targeting antibodies is yet to
be confirmed. Further investigations are needed to evaluate the risk of emerging viral resistance posed
by this strategy. In the following section, we will focus and discuss the intracellular proteins HIV-1
p24, Nef, Tat, Rev, and IN in which antibody-mediated antiviral therapies targeting these proteins
have previously shown excellent therapeutic values.

3. Development of Cell-Penetrating Antiviral Antibodies

HIV intracellular proteins have garnered tremendous interest as important targets for
development of anti-HIV-1 treatment. Several compounds targeting these proteins have shown
promising results in inhibiting the viral replication and infectivity and are currently undergoing
clinical trials [108–110]. A HIV capsid inhibitor, GS-CA1, has shown promising antiviral action against
various HIV-1 strains in early laboratory and animal studies with minimal toxicity. This compound is
expected to enter Phase I clinical trials in 2018 [111]. Continuous efforts are in progress in development
of new inhibitors targeting HIV PR, RT, and IN [109]. Similarly, antibody-based therapies against HIV-1
intracellular proteins have recently drawn attention since the discovery of potent broad-neutralizing
antibodies (bNAbs) in combating various viral infections such as Dengue virus (DV) [112], Hepatitis
C [113], and HIV-1 [114]. Furthermore, antibody-mediated therapy possesses certain advantages over
the chemical- or molecule-based therapies including well-tolerated safety and pharmacokinetics [115],
longer half-lives [115,116], ability to opsonize viral particles [116], and virus killing by immune
cells [116]. In this section, we will discuss the current progress of antibody-mediated treatment that
are targeting intracellular HIV-1 proteins, both structural and accessory proteins. The therapeutic
potentials of targeting these proteins are shown in Figures 1 and 2.
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antibody fragments with promising therapeutic activities.

3.1. Targeting the Viral Proteins Essential for Replication

So far, HIV-1 p24 and IN are the only intracellular proteins targeted by antibody-mediated
therapy due to their direct involvement in viral replication (See Table 1). In 1992, Franke and
colleagues developed a therapeutic full-length anti-p24 murine antibody that inhibited the release of
reverse-transcriptase (RT)-active virus particles from HIV-1-infected cell lines and primary T-cells up
to 60% [64]. They also successfully demonstrated the magnitude of the HIV-1 inhibition by delaying
the viral spread for six days in in vitro cultures [64]. Since full-length conventional mAbs were
used, it is presumed that the antiviral activities are merely implicated by the small percentage of
antibodies that have successfully gained access into cells. Another explanation is that the anti-p24
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mAbs targeted the extracellular p24 on the cell surface to exert the antiviral effect, which is unlikely.
If the former speculation is true, the antiviral activity can be improved by enhancing the antibody’s
cellular penetrance.

Ali et al. tested this idea by chemically conjugating the native anti-p24 mAbs with a
cell-penetrating peptide, κFGF-MTS, to improve the cell-internalizing capacity of mAbs [24].
The conjugated κFGF-MTS-mAbs showed inhibition of the HIV-1 replication by 73% and 49% in
T-cells and PBMCs, respectively, compared to the parallel native or unconjugated mAbs treatment
which exhibited minimal to non-existent reduction in the viral replication. Furthermore, the conjugated
antibody has also shown a modest antiviral effect (20–40%) in vitro against monocytes or macrophages
in vitro [25]. The modest HIV-1 antiviral effects exhibited by the internalized antibody compared to
the antiviral compounds showed that more rigorous work needed to be done to improve the efficacy of
internalized antibody into a therapy. Nevertheless, the potential of adopting these antibodies into an
adjunct therapy with current HAART treatment may prove beneficial [117]. This increasing attention
has been drawn against p24 due to its indispensable role in viral replication and spreading [16,20,21].

Meanwhile, continuous efforts are in progress to explore the potential of antibody therapy
development against other essential viral proteins such as MA, RT, IN, and PR [2,96,109]. There are
several publications on the HIV-1 IN by intracellular antibodies for the past two decades over its role
in mitigating the HIV-1 viral replication and infectivity [61,62]. However, none described the other
issues such as in vivo HIV-1 inhibition, toxicity, stability, and bioavailability in blood.

3.2. Targeting the Accessory Proteins

A relatively higher number of publications described the cell-penetrating antibodies targeting
HIV-1 accessory proteins compared to other viral components because they are mostly intracellular
proteins (Table 1). Although these proteins are not directly involved in HIV-1 replication, their roles in
viral spreading are nonetheless indispensable.

One of the earliest intracellular proteins that were targeted for antiviral therapy development was
Tat protein. The Tat protein has a cell-internalizing capacity as presented in various cell types [118]
as well as tissues [119]. Since the discovery of this unique characteristic, it is useful in various
applications such as intracellular delivery of molecule or drug [120], photodynamic therapy [121], and
molecular imaging of intracellular proteins [122]. Tat protein is also used as a cell-penetrating peptides
(CPPs) or protein transduction domains (PTDs), which also can be used to construct cell-penetrating
antibodies [24,28]. In HIV-1 pathogenesis, the Tat protein is also one of the virulence factor for HIV-1
spreading despite not directly involved in the viral replication [123,124]. Mhashilkar and colleagues
have developed therapeutic intracellular single-chain (sFvs/scFvs) format antibodies against Tat
using phage-display method. The antibody-expressing non-infected T-lymphocytes have shown
resistance and protection from the HIV-1 infection [71]. The antibody was then modified with an
addition of NF-κB antagonists in which the conjugate has successfully prolonged HIV-1 inhibition up
to 45 days [26]. To evaluate its clinical use, the humanized version of anti-Tat antibody (sFvhutat2) was
constructed and its antiviral effect has been shown in primary HIV-1 isolate-challenged PBMCs [27].
Meanwhile, another group has chemically modified the anti-Tat antibody by lipidation and these
modified antibodies inhibited various HIV-1 isolates up to 85% [72].

The pathogenic roles of HIV-1 Nef protein in the viral replication and spreading are well
described [125,126]. Bouchet and co-workers developed a single-domain antibody fragment, sdAb19
that has a high binding affinity towards intracellular Nef. The antibody–antigen interaction
capable of blocking several Nef-mediated effects in the responder cells including inhibition of CD4
down-modulation, inhibition of p21-activated kinase 2 interaction and actin remodeling, inhibition
of viral infectivity and replication in PBMCs, and prevention of thymic CD4 T-cell maturation
and peripheral CD4 T-cell activation in vivo [57]. The same group then conjugated the sdAb19
with modified SH3 domains (also termed Neffin) which resulted in more enhanced anti-Nef
activities including inhibition of both CD4 and MHC-I down-modulation, and inhibition of Nef
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pathogenic effects in both T-cells and macrophages, inhibition of virus infectivity and replication [65].
The crystal structure and structure–function relationship of antibody binding has also been previously
determined [56]. Collective findings suggest that Nef is a promising target for the development of
HIV-1 inhibitors.

In addition to HIV-1 Tat and Nef, targeting Rev protein by intracellular antibodies has also
shown promises in antiviral therapy development. About twenty years ago, Duan and colleagues
developed an anti-Rev single-chain antibody [66,67]. When expressed intracellularly in human T-cells,
long-term inhibition of HIV-1 replication was observed for up to several months. Similarly, potent
antiviral activities by the phage-display-derived anti-Rev SFvs were also respectively demonstrated in
PBMCs [68] and primary monocytes [69]. On the other hand, Vercruysse and group developed
an anti-Rev single-domain intrabody, Nb190, which potently interrupted the assembly of Rev
multimers [70]. The blockade of assembly implicated in the suppressed HIV-1 RNA expression
was followed by the inhibited viral replication when tested in HIV-1-infected cell lines. Further studies
also demonstrated that Nb190 was able to inhibit a wide range of HIV-1 subtypes and groups due
to the conserved targeting epitope of the antibody [29]. The binding site and interaction interface of
Nb190-Rev have also been mapped to enhance the understanding of epitope-function studies [70,127].
Interestingly, Zhuang et al showed the improved antiviral effect of anti-Rev Fab in PBMCs when the
antibody was conjugated to HIV-1 Tat [28]. This may be due to the improved cell internalization of
the antibody by the cell-permeating Tat peptide, which resulted in enhanced interaction and antiviral
action. HIV-1 Vif has also been targeted by intracellular antibodies generated from rabbit immunization
(Table 1) [73]. The Vif scFvs were shown to accumulate in the cytoplasm and efficiently inhibited
viral reverse transcription and replication in various HIV-1-challenged cell lines such as Jurkat, SupT1,
CEM, H9, U38, and primary PBMCs.

4. Challenges and Future Directions

4.1. Technologies in Cell-Penetrating Antibody Development

The full potential of a conventional antibodies as therapeutic molecules is hampered by its
relatively larger size compared to other smaller formats which has limited their targets to extracellular
only. Strategies have been employed to improve their cell permeability and to subsequently allow
the complete targeting and blocking of intracellular proteins. Currently, the phage display library
technique is the most commonly used molecular method in constructing cell-penetrating versions
of antibodies. The end products are either in Fabs, sFvs or sdAbs formats which have approximate
sizes of 50, 25 and 15 kDa, respectively (Table 1). The Fc region of these antibodies is removed which
contributes to the significant reduction of total size [128,129] although its removal may lead to the
loss of antiviral activity [129]. Hence, several methods have been developed to make the antibodies
cell-penetrable while conserving the Fc region that possesses functional activities [24,130]. These
methods primarily require site-specific chemical or biological modifications that permit linkage with
molecules that assist in cell permeability such as cell-penetrating peptides, polymers, nucleotides, and
so on [131]. Although these techniques are cheaper, they are relatively laborious, less consistent, and
the cell-penetrating potency largely varies depending on multiple factors such as temperature, pH,
and chemical concentration [24,130]. In addition, the chemical linkage of conjugated antibodies is less
stable during storage compared to genetically constructed antibodies [25].

With the advent of phage-display technology, high-affinity antibodies can be generated with only
a specific set of primers thereby allowing versatility of the construction of small antibody fragments
with desired genetic modifications (e.g., conjugation with fusion partner, simian virus 40 (SV40),
adaptation into SV40 delivery system, and modification with other function domains) (Table 2) [128].
For instance, the anti-Rev SFv was cloned into a SV40 expression vector forming SV(Aw) to improve the
efficiency of intracellular delivery. Another novel method, the engineering of an anti-IN scFv gene in an
armed SV40 viral vector has bypassed the need for laborious and other limitations of delivery of actual
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antibody into the target cell cytoplasm. Such a gene therapy method represents a useful new class of
anti-retroviral agents [61]. The same group also genetically fused the anti-integrase SFv (SFv-IN) with
HIV-1 Vpr by molecular cloning in which the end-product Vpr-SFv-IN resulted in a marked decrease
of virion infectivity [62]. Another successful example was the development of Neffins, a fusion of
anti-Nef sdAb with SH3 domain which has inhibited a cascade of Nef-mediated pathogenic effects in
HIV-1-infected cells [65]. Despite its excellent cell permeability, the main challenge of adopting these
antibodies for therapeutic use is the questionable stability and bioavailability compared to full-length
antibodies [129]. The antibody bioavailability is expected to deteriorate when the antibodies are
administered in vivo in the animal studies even before entering clinical trials [132,133]. To this, several
strategies have been employed to extend the half-life of these antibodies, including the fusion to
immunoglobin-binding domains [134], albumin binding [135], polymer [136] and so on.

Table 2. Technologies of cell-penetrating antiviral antibodies development in the past twenty years.

Method Details Therapeutic Antibody

Genetic

Phage display sFv [27]
Cloning of SFv into SV40 expression vector SV(Aw) [61]
Phage display and fusion to Vpr by cloning Vpr-SFv-IN [62]

Ilama immunization and phage display sdAb [57]
Phage display and fusion to SH3 by cloning sdAb-SH3 (Neffins) [65]

Chemical
Lipidation chemical modification Lipidated antibody [72]

Conjugation to κFGF-MTS cell-penetrating peptide κFGF-MTS-mAbs [24,25]

Genetic & chemical Phage display and conjugation to Tat cell-penetrating peptide Fab-Tat [28]

Moreover, other arising issues of application of small-fragment antibodies as an antiviral therapy
include the production cost and potential cytotoxicity [129]. The high production cost of therapeutic
antibodies is notorious due to the need of generating them in a host system by animal immunization.
The advances in molecular methods have emerged and the antibodies can now be generated using
bacteriophage by phage display. This technique does not only reduce the production cost but
also allows other genetic manipulations and versatility such as affinity selection and maturation,
antibody binding region sequencing, and fusion with various genes [128]. Apparently, this method has
several advantages over the conventional method of antibody production. Although the toxicity
of antibody-mediated treatment is less critical than the molecule- and chemical-based inhibitor
treatment, several reports have demonstrated the toxicity of therapeutic antibodies by the target
host immune system [137,138]. This has given rise to the development of humanized therapeutic
antibodies to remove the non-human regions as much as possible, to minimize the unnecessary
immunogenicity [139]. While current the molecular method allows the conjugation of various fusion
partners to the therapeutic antibodies, attention should be drawn towards antibody engineering so that
the end-products do not trigger an immune response, hence resulting in unnecessary cytotoxic effects.

4.2. Viral Resistance and Escape Mutants

The rise of HIV-1 resistance towards HAART is a global issue [140]. Current antibody strategies
focus on the HIV-1 extracellular targets and often fail to provide sufficient viral load suppression
in vivo due to rapid viral mechanisms, thereby limiting its potential to be developed into an
effective therapy [119]. With proper modifications to the antibody, antibody treatment against HIV-1
intracellular targets are now made available. However, due to limited data available, more work is
needed to be carried out to evaluate the risk of emerging viral resistance posed by the internalized
antiviral antibodies. Interestingly, it has been reported that the antibodies are effective against various
resistant HIV-1 variants [11,141,142]. Recently, efficient broadly neutralizing antibodies (bnAbs)
against a wide range of HIV-1 strains have shown promising potentials in HIV-1 therapy and the
clinical trials are in progress [114,143,144]. Although the development of escape mutants against
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antibody-mediated therapy is believed to be less common than the antiviral drug-resistant variants,
continuous efforts are required to prevent the development of antibody-resistant HIV-1 mutants.
In fact, there have been several studies suggesting viral resistance against antibody-mediated therapies.
For instances, Manrique and colleagues have shown the viral escape from membrane-proximal
external region (MPER)-specific MAbs in vitro, particularly in 2G12, but in general, the threshold of
resistance evolution is extremely high which showed promises in targeting MPER by antibody-based
treatment [143]. On the other hand, Wibmer and group showed the development of HIV-1 variants
which escaped from gp120 V2- and CD4 binding site-targeting bnAbs in the patient plasmas, however,
the patient immune system was able to generate multiple bnAbs in response to the emerging evolution
of HIV-1 variants to combat the infection [141]. Interestingly, a mathematical framework termed as
mutant selection window (MSW) has been recently developed to determine efficacy of anti-HIV-1
bnAbs in both free-virus infection and cell–cell transmission, and to prevent mutant selection [144].
More importantly, the outcome of the study highlighted the importance of combination therapy that
involves multiple antibodies targeting different epitopes in the efforts of reducing the incidence of viral
resistance and to use antibodies for long-term treatment. In fact, there have been several efficacious
combination therapies against HIV-1 that have shown promises in the past [145,146].

4.3. Future Directions

Although HAART remains the standard therapeutic intervention to control HIV-1 infection, the
treatment is unable to clear the virus and requires life-long administration which may eventually lead
to drug resistance [58]. Antibody-mediated therapies minimize viral resistance in addition to their
downstream functional properties that can trigger the immune system to collectively combat HIV-1
infection. For example, enhanced clearance of intracellular viruses and/or viral proteins can be made
by directing the cytosolic antibody-bound viral particles to proteosomal degradation via cytosolic
IgG receptor, tripartite motif-containing 21 (TRIM21) [147]. The cytosolic antibody-bound viruses or
viral particles are bound by the TRIM21 via its terminal PRYSPRY domain at sub-nanomolar binding
affinity, and leads to valosin-containing protein (VCP)-dependent degradation in a process known as
antibody-dependent intracellular neutralization (ADIN) [148,149]. Moreover, TRIM21 also activates
three immune pathways (NF-κB, AP-1 and IRF family) which support pro-inflammatory cytokine
production, modulation of cell-surface ligands, and adoption of an antiviral state [149,150]. TRIM21 is
anticipated to boost the potency of antibodies targeting intra-cellular proteins in HIV/AIDS treatment,
however, further investigations are warranted.

In addition, current advancement in antibody engineering also allows the development of single
antibody molecules that can target more than one viral antigen known as bi-, tri-, multi-specific
antibodies, these may contribute to future antibody therapy compared to the use of multiple
single-target antibodies [142,151,152]. These attributes of targeting intracellular HIV proteins by
cell-penetrating antibodies could comprehensively target and clear both extra- and intra-cellular
proteins and overcome the limitation that was previously confined to targeting cell surface proteins.
This may have high potential in shifting the current paradigm of inhibitor-based HIV-1 treatment.
Current findings highlight that targeting multiple viral targets (e.g., combination treatment) is the
most efficacious strategy to control viral resistance and spreading [144–146]. Hence, the future of HIV
therapy may adopt multiple therapeutic antibodies to provide a full-range of antiviral effects as an
adjunct therapy to conventional HAART drugs [153].

While HIV-1 infection is still prevalent in developing countries, the advancement of technology
plays an important role in addressing these problems to bring affordable therapy into primary care in
the most remote settings. Other limitations of antibody-mediated therapies include off-target toxicities,
poor bioavailability and stability, high renal clearance rate, and high individual-to-individual variation
as mentioned above. Continuous efforts in discovering novel and robust viral targets must be continued
to counter-act newly emerging viral resistance.
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5. Conclusions

HIV-specific cell-penetrating antibodies are more effective than small molecule inhibitors. These
therapeutic modalities can simultaneously target both extra- and intra-cellular targets, and efficiently
block and neutralize HIV-1 activities, hence, resulting in a more comprehensive antiviral action.
As highlighted in this review, several challenges remain to be addressed and advanced technologies
are anticipated to kick in to improve the current antiviral strategies. Continuous efforts are needed in
seeking novel antibody-based therapies against HIV-1 and combination therapy is one of the promising
approaches based on the current findings to control the emerging resistant HIV-1 variants and to
prolong the feasibility of antibody-mediated HIV treatment.
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Abbreviations

ADIN antibody-dependent intracellular neutralization
AIDS acquired immunodeficiency syndrome
bnAb broad-neutralizing antibody
CA capsid
CD cluster of differentiation
CPP cell-penetrating peptide
Fabs antibody fragment
Env envelope
Fc fragment crystallizable fragment
FDA Food and Drug Administration
gp glycoprotein
HAART highly active antiretroviral therapy
HIV-1 Human immunodeficiency virus type-I
IFITM1 interferon-induced transmembrane
IN Integrase
kDa kilodalton
LTR long terminal repeat
MA Matrix protein
mAbs monoclonal antibodies
MHC major histocompatibility complex
MPER membrane-proximal external region
MSW mutant selection window
NC nucleocapsid
NF-κB Nuclear factor kappa B
PBMC peripheral blood mononuclear cell
PR protease
PTD protein transduction domain
RNA ribonucleic acid
RRE Rev response element
RT reverse transcriptase
scFvs/sFvs Single-chain variable fragments
sdAb single-domain antibody
SHPR SUMO-1 heptapeptide protein transduction domain for binding Rev
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SH3 Src homology-3
SP spironolactone
SV40 Simian virus 40
TAR transactivation-responsive region
TRIM21 tripartite motif-containing 21
VCP valosin-containing protein
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