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Abstract. The molecular structures of the halotelluroxetanes p-

MeOC6H4Te(X)[C(=C(H)Xꞌ)C(CH2)nO], X = Xꞌ = Cl and n = 6 (1) and X = 

Cl, Xꞌ = Br and n = 5 (4), show similar binuclear aggregates sustained by 

{…Te–O}2 cores comprising covalent Te–O and secondary Te⋯O interac-

tions.  The resulting C2ClO2(lone-pair) sets define pseudo-octahedral ge-

ometries.  In each structure, C–X⋯(arene) interactions lead to supramo-

lecular layers.  Literature studies have shown these and related compounds 

(i.e. 2: X = Xꞌ = Cl and n = 5; 3: X = Xꞌ = Br and n = 5) to inhibit Cathepsins 

B, K, L and S to varying extents.  Molecular docking calculations have 

been conducted on ligands (i.e. cations derived by removal of the tellurium-

bound X atoms) 1ꞌ-3ꞌ (note 3ꞌ = 4ꞌ) enabling correlations between affinity 

for sub-sites and inhibition.  The common feature of all docked complexes 

was the formation of a Te–S covalent bond with cysteine residues, the rel-

ative stability of the ligands with an E-configuration and the formation of 

a C–O…π interaction with the phenyl ring; for 1ꞌ the Te–S covalent bond 

was weak, a result correlating with its low inhibition profile.  At the next 

level differences are apparent, especially with respect to the interactions 

formed by the organic-ligand-bound halides.  While these atoms do not 
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form specific interactions in Cathepsins B and K, in Cathepsin L, these hal-

ides are involved in C–O…X halogen bonds. 
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(E.R.T.T.) 

‡ Present address: Computational Chemistry and Biology Group—CCBG, 

DETEMA, Facultad de Química-Universidad de la República, CC1157 Montevi-

deo Uruguay 

Introduction 

Since the discovery of selenium as a component of glutathione peroxidase 

[1, 2] and of the 21st amino acid, selenocysteine [3, 4], selenium compounds 

have been increasingly investigated as potential therapeutic agents against 

a range of diseases [5-10].  Due to the chemical similarities to tellurium, 

selenium’s heavier congener, tellurium compounds have also attracted in-

terest in the pharmaceutical context [11, 12].  Thus, tellurium compounds 

have shown promise since they are an immunomodulator in organisms [13] 

and display anti-oxidant [14-16], anti-parasitic [17, 18] and anti-inflamma-

tory [19] activities, are known to be neuroprotective [20, 21] and have po-

tential to be developed as anti-cancer agents [22-24]. The most notable tel-

lurium compound that exerts biological activity is found in the salt ammo-

nium trichlorido (dioxyethylene-O,Oꞌ)tellurate, known as AS-101 (Figure 

1a) [25].  This low-molecular weight organotellurate is a potent immuno-

modulator [26] that has been in clinical trials for psoriasis [27], topical 

treatment for human papillomavirus [28], prevention of infertility in chem-

otherapy patients [29] and for inhibition of angiogenesis [24, 30]. 

 

Fig. 1:  Chemical diagrams of (a) ammonium trichlorido (dioxoethylene-O,Oꞌ)tel-

lurate (AS-101) and (b) (3E)-2-chloro-3-(chloromethylidene)-2-(4-methoxy-

phenyl)-1-oxa-24-telluraspiro-[3.6]decane (1), (3E)-2-chloro-3-(chloromethyli-

dene)-2-(4-methoxyphenyl)-1-oxa-24-telluraspiro[3.5]nonane (2), and analogues 

of (2): the Te-bound bromido/methylidene-bromo species (3) and the mixed Te-

bound chlorido/methylidene-bromo species (4). 

Research on this non-toxic compound shows the cation to be a specific 

covalent inhibitor of cysteine proteases such as papain and Cathepsin B 

[26].  These observations have encouraged further studies of tellurium-
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based compounds as inhibitors of this class of enzyme.  In this context, 

Cunha and co-workers have presented series of organotellurium com-

pounds that show irreversible inhibitory activity greater than AS-101 

against Cathepsin B as well as being irreversible inhibitors against Cathep-

sins K, L and S [31, 32]. 

 

The inhibition of cysteine protease by tellurium compounds is due to a 

substitution reaction that follows the removal of a labile group bound to 

tellurium leading to the formation of a covalent Te–S bond with the thio-

late-S atom of a Cys29 residue, i.e. Te–SG [33, 34].  The difference in Ca-

thepsin inhibition values exhibited by the same compound arise owing to 

specific features of the various sub-sites in the enzyme which are responsi-

ble for the specificity of the protease [35, 36]. Thus, in order to design a 

powerful and specific Cathepsin inhibitor, it is of fundamental importance 

to have detailed knowledge of the features of each sub-site of each Cathep-

sin [37-39].  In addition, it is worth highlighting that this class of enzyme 

is related to several pathological processes such as osteoporosis (Cathepsin 

K) [40, 41], neurodegenerative disease (Cathepsin D)  [42] and metastasis 

in several types of cancer (Cathepsins B, K, L and S) [43-45].  Hence, Ca-

thepsins are promising targets for the treatment of such disorders [46]. 

 

With the aim to understand how potential therapeutic agents based on 

tellurium inhibit cysteine proteases, significant effort has been made to elu-

cidate their binding modes and correlate them with inhibitory data [47-51].  

Continuing this research, the present work targets to explain trends in pre-

vious published inhibitory data of a series of halotelluroxetanes, Figure 1, 

against Cathepsins B, K, L and S.  New crystallographic data are presented 

for 1 and 4, Figure 1, and docking studies of cationic ligands 1ꞌ-4ꞌ, i.e. spe-

cies corresponding to 1-4 but with a tellurium-bound halide removed, with 

the above-mentioned proteases.  Moreover, to more fully understand the 

structural relationships between Cathepsins B, K, L and S, a sequential and 

structural alignment of these has been made using a molecular visualisation 

program. 

Experimental 

Synthesis and crystal growth 

Compounds 1-4 were prepared as previously described [52].  In a typical 

reaction, a solution of the 3-hydroxy alkyne (11 mmol) in dry benzene (10 

mL) was added to a suspension of p-methoxyphenyltellurium trichlo-

ride/bromide (10 mmol) in dry benzene (40 mL).  The reaction mixture was 

refluxed for 8 h, during which the p-methoxyphenyltellurium trichloride 

was consumed, forming a clear, yellow solution.  The resulting solution 

was cooled to room temperature, diluted with ethyl acetate and washed with 

a saturated NH4Cl solution and brine.  The solvent was evaporated under 

reduced pressure and the residue was quickly chromatographed on SiO2, 

using CCl4 and CHCl3/MeOH (5:1) as eluents.  The resulting oils that were 

isolated after chromatography were recrystallised from CH2Cl2 for 1 and 

CHCl3/hexane for 2 and 4 to yield crystals suitable for X-ray analysis.  The 

structure of 2 has already been described [52]. 
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Crystal structure determination 

Intensity data for 1 and 4 were measured at 293 K on an Enraf Nonius Tur-

boCAD4 diffractometer using graphite-monochromatised MoK radiation 

( = 0.71073 Å).  Data processing and absorption corrections (-scans) 

were accomplished with CAD4 Express [53] and XCAD4 [54].  Unit cell 

data, X-ray data collection parameters, and details of the structure refine-

ment are given in Table 1.  The structures were solved by Direct Methods 

using SIR92 [55] and full-matrix least-squares [56] refinement was on F2 

(anisotropic displacement parameters and C-bound H atoms in their ideal-

ised positions).  A weighting scheme of the form w = 1/[2(Fo
2) + (aP)2 + 

bP] where P = (Fo
2 + 2Fc

2)/3 was introduced.  The programs WinGX [57], 

PLATON [58], ORTEP-3 for Windows [57] and DIAMOND [59] were 

also used in the study. 

 

Tab: 1.  Crystallographic data and refinement details for 1 and 4.1 

 1 4 

Formula C16H20Cl2O2Te C15H18BrClO2Te 

Formula weight 442.82 473.25 

Crystal colour, habit Colourless, prism Colourless, prism 

Crystal size/mm 0.15 x 0.20 x 0.30 0.10 x 0.10 x 0.20 

Crystal system monoclinic triclinic 

Space group P21/c P1̄ 

a/Å 9.4478(8) 9.2532(9) 

b/Å 21.0267(10) 9.9010(10) 

c/Å 9.3916(7) 10.1590(10) 

/° 90 96.080(10) 

/° 111.622(5) 92.621(9) 

/° 90 116.370(10) 

V/Å3 1734.4(2) 824.68(16) 

Z/Z′ 4/1 2/1 

Dc/g cm-3 1.696 1.906 

F(000) 872 456 

(MoK)/mm-1 2.024 4.386 

Measured data 5312 3503 

 range/° 2.3-30.0 2.5-26.3 

Unique data 5040 3299 

Rint 0.026 0.022 

Observed data (I  2.0(I)) 4036 2846 

R, obs. data; all data 0.027; 0.046 0.023; 0.034 

a, b in wghting scheme 0.032, 0.918 0.034, 0.418 

Rw, obs. data; all data 0.068, 0.072 0.058; 0.061 

max, min/e Å–3 0.43, 0.81 0.32, 0.50 

1 Supplementary Material: Crystallographic data for the structures reported in this 

paper have been deposited with the Cambridge Crystallographic Data Centre as 

supplementary publication no. CCDC-1552738 and 1552739. Copies of available 

material can be obtained free of charge, on application to CCDC, 12 Union Road, 

Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: de-

posit@ccdc.cam.ac.uk). 
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Generation of ligand structures 

To generate ligand structures for the docking studies, the experimentally 

determined structures of 1, 2 and 4 were used as the starting points.  The 

structures were made cationic by the removal of the tellurium-bound halide 

in each case, leading to 1ꞌ, 2ꞌ and 4ꞌ, respectively, meaning the cation de-

rived from 3 is equivalent to 4ꞌ. Although the experimental structures uni-

formly have an E configuration about the exocyclic double bond, each was 

isomerised to have a Z configuration for trialling in the docking calcula-

tions.  The HyperChem 8.0 program [60] was used for all manipulations 

with the Steepest Descent method and with a RMS gradient of 0.01 kcal / 

(Å mol). 

 

Docking studies 

The GOLD 5.0.1 program [61, 62] was used with the GoldScore fitness 

function that takes into account factors such as hydrogen-bonding energy, 

van der Waals energy and ligand torsion strain. 

The performed calculations were based on the formation of a covalent 

complex involving the cysteine residue of the catalytic sites of the Cathep-

sins and the tellurium atom of the telluroxetanes. 

Docking simulations were carried out considering the rigid enzyme and 

total ligand flexibility.  Only amino acid residues within a radius of 10.0 Å 

around the ligand cavity were considered.  All water molecules were re-

moved since there are none in the active sites of the structures of the origi-

nal Cathepsins and are therefore, not influential in the interactions. 

y do not participate in the interactions between the ligand and enzyme. 

The formation of a covalent bond between the sulphur atom of cyste-

ine-reactive site SG (Cys29 in Cathepsin B and Cys25 in other Cathepsins) 

and the tellurium atom of each ligand was imposed. The constraint param-

eter of the GOLD program was employed to establish a range for the bond 

length between the tellurium and sulphur atom.  The range used was 2.4 to 

3.5 Å where the ligand has the freedom to settle in the active site of the 

enzyme. 

 

Molecular visualization 

For molecular visualization of the poses and for the analysis of interactions 

and alignments, the DS Visualizer program 3.5 [63] was employed. 

Results 

Experimental molecular structures 

The molecular structure of 1 as determined by X-ray crystallography is 

shown in Figure 2 and selected geometric parameters are collated in Table 

2.  The immediate coordination geometry of the tellurium atom is defined 

by a chloride anion, an oxygen and two carbon atoms.  Molecules self-

assemble across a centre of inversion via secondary Te⋯O interactions to 

form dimeric aggregates.  Hence, the tellurium atom is five-coordinate 

within a C2ClO2 donor set.  The stereochemically active lone-pair of elec-

trons is projected to occupy a position approximately trans to the Te-bound 

aryl substituent.  The central {⋯Te–O}2 parallelogram has quite distinct 
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edge lengths of approximately 2.1 and 2.9 Å.  Within the ring, short 

O1⋯O1i contacts of 2.662(2) Å are noted; symmetry operation i: 1-x, -y, 

1-z.  The configuration about the C2=C3 double bond is E. 

 

 
 

Fig. 2:  Molecular structure of 1 showing atom labelling and displacement ellip-

soids at the 50% probability level.  Unlabelled atoms are related by the symmetry 

operation: 1-x, -y, 1-z. 

 

Tab. 2:  Summary of key geometric parameters (Å, º) for 1 and 41 

Parameter 1; n = 10 4; n = 9 

Te‒C11 2.5556(7) 2.5309(9) 

Te‒O1 2.0440(17) 2.0574(19) 

Te‒C2 2.110(2) 2.107(3) 

Te‒C(n) 2.128(3) 2.122(3) 

Te‒O1i 2.9039(17) 2.909(2) 

C2‒C3  1.314(3) 1.312(4) 

Cl1‒Te‒O1 156.52(5) 156.71(6) 

Cl1‒Te‒C2 90.11(7) 90.82(8) 

Cl1‒Te‒C(n) 91.20(7) 90.62(8) 

Cl1‒Te‒O1i 141.08(4) 139.45(5) 

O1‒Te‒C2 66.47(8) 66.04(10) 

O1‒Te‒C(n) 91.64(8) 91.02(10) 

O1‒Te‒O1i 62.26(7) 63.71(8) 

C2‒Te‒C(n) 100.43(9) 100.22(11) 

C2‒Te‒O1i 128.00(8) 128.41(9) 

C(n)‒Te‒O1i 89.26(7) 91.66(9) 

Te‒O1‒C1 99.38(13) 98.69(15) 

Te‒C2‒C1 94.66(14) 94.62(18) 

Te‒C2‒C3 127.1(2) 127.4(2) 

O1‒C1‒C2 99.35(18) 100.2(2) 

 
1 Symmetry operation i: 1 1-x, -y, 1-z and 4 1-x, 2-y, 2-z. 

 

The four-membered ring comprising the Te, O1, C1 and C2 atoms is 

essentially planar [r.m.s. deviation = 0.0201 Å] with the deviations from 
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the least-squares plane being 0.0141(8), -0.0205(11), 0.0253(14) and -

0.0189(10) Å, respectively.  The seven-membered ring adopts a twisted 

chair conformation with the central C1, C4, C6, C7 and C9 atoms [r.m.s. 

deviation = 0.0820 Å; deviations = -0.030(2), 0.083(2), -0.114(3), 0.104(3) 

and -0.043(2) Å, respectively] defining the base with the C5 and C8 atoms 

lying 0.780(5) and 0.794(5) Å to either side of the base.  The cycloheptane 

ring is twisted with respect to the 1,2-oxatelluretane ring with the dihedral 

angle between the best planes through each ring being 72.67(10)°, indicat-

ing an almost orthogonal arrangement.  Indeed, the C1 atom lies in the 

plane of the oxatelluretane ring and the C6–C7 bond is bisected by the 

plane.  The methyoxyphenyl ring lies perpendicular to the oxatelluretane 

ring as seen in the dihedral angle of 78.64(8)°. 

 

In the molecular packing of 1, the only specific contacts between mol-

ecules within the standard distance criteria in PLATON [58] is a C–

Cl⋯(arene) contact, i.e. C3–Cl2⋯Cg(C10-C15)ii = 3.7069(15) Å, 

C3⋯Cg(C10-C15)ii = 5.199(3) Å with the angle at Cl2 being 142.66(10)° 

for symmetry operation ii: 2-x, -y, 2-z.  These interactions lead to supramo-

lecular layers in the ac-plane, Figure 3a.  Within the layers, very weak 

Te⋯Cl2iii contacts are noted with the separation of 3.8505(10) Å being 

about 0.04 Å greater than the sum of their van der Waals radii [58]; sym-

metry operation iii: 2-x, -y, 1-z.  The Cl2iii atom approaches the tellurium 

centre from the unoccupied face and therefore, might be considered a weak 

chalcogen (secondary) bonding interaction [64].  The layers stack along the 

b-axis without directional interactions between them, Figure 3b. 

 

 

Fig. 3:  Molecular packing in 1: (a) view in projection down the b-axis of the unit 

cell showing the supramolecular layer sustained by C–H…Cl interactions and (b) 
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view of the unit cell contents down the a-axis highlighting the stacking of layers 

along the b-axis.  The C–H…Cl interactions are represented as purple dashed lines. 

 

The molecular structure of 4, Figure 4, presents essentially the same 

features as just described for 1, despite the presence of a six- rather than a 

seven-membered ring, and bromide at the C2=C3 double bond.  Thus, the 

formation of a centrosymmetric, dimeric aggregate mediated by secondary 

Te⋯O interactions, the immediate tellurium atom coordination geometry 

and the E configuration of the double bond all persist.  In terms of bond 

lengths, Table 2, there is a slight reduction in the Te–Cl bond length in 4, 

by about 0.025 Å which appears to be compensated by a small elongation, 

i.e. 0.013 Å, in the Te–O bond.  In the same way, variations in key bond 

angles are limited to about 2° and all involve the centrosymmetrically-re-

lated O1 atom with the maximum difference seen in the C(n)‒Te‒O1i an-

gles, i.e. 89.26(7) and 91.66(9)° for 1 and 4, respectively.  It is noted that 

the magnitude of the secondary Te⋯O interactions in both structures are 

equal within experimental error. 

 

 

Fig. 4:  Molecular structure of 4 showing atom labelling and displacement ellip-

soids at the 50% probability level.  Unlabelled atoms are related by the symmetry 

operation: 1-x, 2-y, 2-z. 

 

The conformational relationships within the molecule of 4 match those 

for 1.  Thus, the oxatelluretane ring is planar [r.m.s. deviation = 0.0352 Å, 

with the deviations from the least-squares plane being -0.0242(8), 

0.0357(12), -0.0446(15) and 0.0331(12) for Te, O1, C1 and C2 atoms, re-

spectively].  The cyclohexyl ring has a chair conformation and the best-

plane through this ring forms a dihedral angle of 87.98(12)° with the ox-

atelluretane ring indicating a twisted relationship analogous to that de-

scribed for 1.  Finally, the oxatelluretane and methyoxyphenyl rings are 

perpendicular with the dihedral angle being 80.14(9)°. 

 

The molecular packing of 4 exhibits C–Br⋯(arene) contacts, i.e. C3–

Br1⋯Cg(C9-C14)ii = 3.7686(15) Å, C3⋯Cg(C9-C14)ii = 5.275(4) Å with 

the angle at Br1 being 135.18(12)° for symmetry operation ii: -x, 1-y, 2-z.  

As shown in Figure 5a, these interactions lead to supramolecular layers in 

the ac-plane.  Analogous to 1, weak Te⋯Br1iii chalcogen (secondary) bond-

ing interactions within the layers are evident with the separation being 

3.9179(6) Å, i.e. about 0.01 Å greater than the sum of their van der Waals 

radii [58]; symmetry operation iii: -x, 2-y, 2-z.  The layers stack along the 
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c-axis without directional interactions between them.  While not isomor-

phous, 1 and 4 are close to being isostructural having very similar molecu-

lar packing. 

 

 

Fig. 5:  Molecular packing in 4: (a) view in projection down the c-axis of the unit 

cell showing the supramolecular layer sustained by C–H…Br interactions and (b) 

view of the unit cell contents down the a-axis highlighting the stacking of layers 

along the c-axis.  The C–H…Br interactions are represented as purple dashed lines. 

 

Docking studies 

The enzymes used as molecular targets in the docking calculations were 

human Cathepsins B, K, L and S.  Their three-dimensional structures were 

retrieved from the Protein Data Bank (PDB) [65] and PDBSum [66].  Their 

pdb codes and the resolution of their X-ray crystal structures are shown in 

Table 3. 

 

Tab. 3: Three-dimensional features of the Cathepsins (Cat.) em-

ployed in the present study. 

Enzyme PDB code Resolution Reference 

Cat. B 1GMY 1.9 Å [67] 

Cat. K 1U9V 2.2 Å [68] 

Cat. L 2XU3 0.9 Å [69] 

Cat. S 1MS6 1.9 Å [70] 

 

According to Schechter and Berger [71], the protease active sites of the 

papain family comprises sub-sites that are distinct in each protease and are 

crucial for their inhibition [37].  Since there is a lack of a complete descrip-

tion in the literature of the Cathepsin K, L and S sub-sites, it was necessary 

to perform a sequential and structural alignment of Cathepsins K, L and S 

with the aim of determining the residues comprising their sub-sites; Ca-

thepsin B is well understood in this regard.  The alignments were related to 
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the Cathepsin B residues, since this has the best description of sub-sites, as 

well as the classical catalytic triad residues of Cathepsins: cysteine, histi-

dine and asparagine. 

 

Experimental observations showed that tellurium(IV) compounds are 

irreversible inhibitors of cysteine proteases [28, 31, 72, 73].  The inhibition 

occurs due to the formation of a Te(IV)-SG covalent bond between the 

electrophilic tellurium(IV) centre and the nucleophilic thiol group of the 

catalytic cysteine via the loss of a leaving group bound to the tellurium 

atom [31, 32, 47, 48].  According to previous work [47, 48], to create an 

environment to satisfy the covalent complex hypothesis, the tellurium-

bound halide, considered the best leaving group in each of 1-4, was re-

moved giving the corresponding cations 1ꞌ, 2ꞌ, 3ꞌ and 4ꞌ, respectively and 

these were used to simulate the formation of the Cathepsin-telluroxetane 

complexes in the enzymes listed in Table 3.  It should be noted that after 

removing the tellurium-bonded halide 3ꞌ is equivalent to 4ꞌ so only 3ꞌ was 

used for the final stages of the docking studies, i.e. when the Te–SG cova-

lent bond is formed.  Docking simulations were performed for each Ca-

thepsin based on the formation of a covalent complex involving the E- and 

Z-isomers of each telluroxetane with the sulphur of the catalytic cysteine 

residue. 

Structural and sequence alignments 

It is well established that a potent and specific inhibitor against Cathepsins 

will have structural features that, besides interacting with the catalytic triad, 

will interact with regions called sub-sites that are responsible of the prote-

ase specificity [74] contributing to its stabilisation in that position.  Table 

4 summarises some sub-sites that according to the literature should be oc-

cupied for an efficient and specific inhibition.  Herein, a brief overview of 

the relevant sub-sites in each studied Cathepsin is presented.  It is important 

to highlight that in all cases the occupation of the S1 sub-site is required 

for inhibition, as this is the place where the catalytic thiol is located. 

 

Tab. 4: Sub-sites that should be occupied to achieve the most effi-

cient inhibition of the studied Cathepsins (Cat.). 

Enzyme Sub-sites References 

Cat. B S1, S1ꞌ, S2ꞌ [75] 

Cat. K S1, S2, S3, S1ꞌ [76] 

Cat. L S1, S2, S3, S1ꞌ [77] 

Cat. S S1, S2, S3 [78-80] 

 

From the structural and sequential alignment, it was possible to observe a 

significant structural similarity between the studied Cathepsins.  As can be 

seen in Figure 6, there is a good overlap of α-helices and β-sheets, the dif-

ference being mainly in the loops of different conformations and sizes.  

Moreover, the amino acids sub-sites composition of Cathepsins B, K, L and 

S were determined, as shown in Table 5. 
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Fig. 6:  Diagram showing the overlap, using the backbone trace line, of the three-

dimensional structures of Cathepsins B (blue), K (pink), L (green) and S (orange) 

The Cathepsin B occluding loop is shown as this region gives exopeptidase activity 

to this protease, which is the only one that acts as an endo-/exo-peptidase [81-83]. 

Tab. 5:  A summary of the residues that comprise the studied Ca-

thepsin (Cat.) sub-sites and colour code for the sub-sites 

 

Sub-

site 

Cat. B Cat. K Cat. L Cat. S 

 

 

S3 

Tyr75 Tyr67 

Glu59 

Asp61 

Gly61 

Glu63 

Asn66 

Gly67 

Leu69 

 

Gly62 

Lys64 

Phe70 

 

 

 

S2 

Pro76 

Ala173 

Ala200 

Glu245 

Met68 

Ala134 

Ala163 

Leu209 

Met70 

Ala135 

Asp160 

Met161 

Gly164 

Ala214 

 

Met71 

Gly137 

Val162 

Asn163 

Gly165 

Phe211 

 

 

 

S1 

Gln23 

Gly27 

Cys29 

Gly74 

Gly198 

Gly23 

Ser24 

Cys25 

Gly64 

Gly65 

Gly66 

Asn161 

 

Gln19 

Gly23 

Ser24 

Cys25 

Gly68 

 

Gln19 

Cys22 

Gly23 

Cys25 

Cys66 

Asn67 

Gly68 

Gly69 

 

 

 

S1ꞌ 

Val176 

Phe180 

Leu181 

Met196 

His199 

 

Ala137 

Gln143 

Phe142 

His162 

 

Ala138 

Gly139 

Ser142 

Leu144 

His163 

Trp189 

 

Ala140 

Arg141 

Phe145 

Phe146 

His164 

Trp186 
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S2ꞌ 

   Gly24 

His110 

His111 

Gly121 

Trp221 

Gln19 

Gly20 

Trp184 

Gln19 

Gly20 

Asp162 

Gln19 

Gly20 

Trp186 

 

Analyses of the Cathepsin-ligand complexes 

Ligands 1ꞌ, 2ꞌ and 4ꞌ were evaluated in both their E- and Z-configurations 

with all Cathepsins.  The ligands with the six-membered alkane ring 

showed the best results for covalent bond formation rather than 1ꞌ that has 

a seven-membered alkane ring, a result indicating steric hindrance associ-

ated with the increasing size of the ring. 

 

For each study, docking results were first analysed by clustering similar 

poses.  Within each group, the pose with the highest score and the shortest 

Te–SG distance was chosen, Table 6, then the interactions of the ligand-

enzyme complex were analysed. 

 
 

 

 

The analysis of the docking calculations indicates more favourable re-

sults for ligands having an E-configuration rather than Z (Table 6).  For 

distances Te–SG > 3.2 Å, there is no covalent bond formation, which is in 

agreement with the very poor activity of 1 in Cathepsin B, Table 7. Further, 

as seen from the Supplementary Materials, the docked structures of 1ꞌ-3ꞌ 

resemble very closely those observed in the molecular crystals structures 

with the obvious exception of the missing halide.  This vindicates the as-

sertion that GOLD [61, 62] indeed takes into account stereochemically-ac-

tive lone-pairs of electrons as found in 1ꞌ-3ꞌ. 

 
Tab. 7:  Second-order rate constant values (103 M-1s-1) for the inhibition of the 

studies Cathepsins (Cat.) by the telluroxetanes 1-3 [31, 32]. 

 

Tab. 6:  Docking results for E- and Z-configurations of 1ꞌ, 2ꞌ and 4ꞌ with the studied Cathepsins (Cat.).  The most favourable 

distances and scores are highlighted in yellow. 

E Cat. S Cat. K Cat. L Cat. B 

Ligand 
Te–SG 

(Å) 

score 

(kcal/mol) 

Te–SG 

(Å) 

score 

(kcal/mol) 

Te–SG  

(Å) 

score 

(kcal/mol) 

Te–SG 

(Å) 

score 

(kcal/mol) 

1ꞌ 3.5 41.1 3.4 42.9 3.5 41.1 3.5 42.6 

2ꞌ 3.0 48.0 3.0 43.1 2.9 42.4 3.0 40.0 

3ꞌ 2.9 47.5 3.1 43.5 3.1 42.2 3.0 43.2 

Z Cat. S Cat. K Cat. L Cat. B 

Ligand 

Te–

SG 

(Å) 

score 

(kcal/mol) 

Te–SG 

(Å) 

score 

(kcal/mol) 

Te–SG  

(Å) 

score 

(kcal/mol) 

Te–SG  

(Å) 

score 

(kcal/mol) 

1ꞌ 3.6 41.6 2.9 33.0 3.8 34.6 3.7 31.5 

2ꞌ 3.4 42.3 5.4 40.7 2.9 38.2 4.3 36.1 

3ꞌ 3.4 34.4 3.2 42.1 3.5 32.8 4.1 32.2 
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Compound Cat. S Cat. K Cat. L Cat. B 

1 - - - 1.6 ± 0.1 

2 196 ± 17 1200 ± 320 170 ± 12 36.0 ± 3.2 

3 8940 ± 470 420 ± 31 650 ± 51 7.7 ± 0.9 

 

The docking results for 2ꞌ and 3ꞌ (= 4ꞌ) exhibit relatively small differ-

ences indicating that the halide has little influence on the activity.  In Figure 

7, the main amino acids residues interacting with the ligand molecules are 

indicated with further details given in the captions to Figs 8-11. 

 

 
Fig. 7:  A summary of the main interactions of ligands 2ꞌ and 3ꞌ in the studied 

Cathepsins.  Colours follow that of Table 5, those not coloured refer to interactions 

not involving any specific subsite. 

 

In the following, the surface representation of the best pose together 

with some interactions for ligands 2ꞌ and 3ꞌ in the four Cathepsins will be 

presented.  The sub-sites colours for Figures 8-11 are defined as in Table 

5. 

 

In Figure 8a, the surface representation of the best pose of ligands 2ꞌ 

and 3ꞌ in Cathepsin B and in Figure 8b highlights the C–O⋯π interaction 

with Gly74 of sub-site S1 and the C–O⋯Te interaction with Gly27. 
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Fig. 8:  (a) Surface representation of ligands 2ꞌ and 3ꞌ in the E-configuration in 

Cathepsin B and (b) two interactions of 3ꞌ with residues of sub-site S1. 

 

As indicated in Table 4, a good and specific Cathepsin B inhibitor 

should occupy the S1' and S2' sub-sites, especially the S2' sub-site which 

comprises the occluding loop that was shown to be very important for in-

hibition activity [48, 75].  The docking results, shown in Figure 7 for 2ꞌ and 

3ꞌ in Cathepsin B indicate that these do not occupy the S2' sub-site and this 

may explain the fact of their very low binding affinity values for this pro-

tease, as indicated in Table 7. 
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Fig. 9:  (a) Surface representation of ligands 2ꞌ and 3ꞌ in the E-configuration in 

Cathepsin K and (b) two interactions of 3ꞌ with residues of sub-sites S1 and S1ꞌ. 

 

The docking studies in Cathepsin K shows that the telluroxetanes are 

positioned in the active site and occupy the S1, S1' and S2 sub-sites (Fig-

ures 7 and 9).  These results explain the good Cathepsin K inhibition values 

of 2 and 3 (Table 7).  Figure 9a shows the surface representation of the best 

poses of ligands 2ꞌ and 3ꞌ in Cathepsin K and in Figure 9b are shown two 

of the interactions involving 3ꞌ: a C–H⋯π interaction with His162 from the 

S1ꞌ sub-site and a Te⋯O contact with Gly23 of the S1 sub-site. 
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Fig. 10:  (a) Surface representation of ligands 2ꞌ and 3ꞌ in the E-configuration in 

Cathepsin L and (b) the C–O⋯π interaction of 3ꞌ with a residue of sub-site S2. 

 

In Cathepsin L, the telluroxetane ligands occupy the S1, S1', S2 and S3 

sub-sites (Figures 7 and 10), which can explain their relative good inhibi-

tion activity (Table 7).  In this case, the shortest distance to the tellu-

rium(IV) atom involves the oxygen of Gly68, i.e. at 3.92 Å. 

 

 
Fig. 11:  Surface representation of ligands 2ꞌ and 3ꞌ in the E-configuration in Ca-

thepsin S and (b) C–O⋯π interaction of 3ꞌ with a residue of sub-site S2. 
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As seen in Figures 7 and 11a for Cathepsin S, ligands 2ꞌ and 3ꞌ are po-

sitioned in the S1, S1', S2 and S3 sub-sites, with the cyclohexane moiety 

located in the S2 sub-site.  In this case, the shortest Te⋯O distance is from 

Gly69 at 3.93 Å.  Furthermore, the occupation of the S2 and S3 sub-sites 

are described as crucial for Cathepsin S selectivity with respect to the other 

Cathepsins, especially Cathepsin K [78].  These results are in good agree-

ment with the inhibitory activity observed for 2 and 3 as shown in Table 7. 

 

Overview 

The analysis of the docking calculations indicates more favourable results 

for ligands having an E-configuration rather than Z. 

 

In each Cathepsin, ligands 2ꞌ and 3ꞌ have very similar binding modes, 

i.e. they form a Te–SG covalent bond and the phenyl ring makes a C–O…π 

interaction.  The other interactions with other residues of different sub-sites 

are specific for each Cathepsin. 

 

It is worth pointing out the different behaviour of the organic-ligand-

bound halides.  In Cathepsins B and K, these halides are not involved in 

any kind of interaction, whereas in Cathepsin L the Gly68 residue is in-

volved in C–O…Cl halogen bond (2.65 Å) to the chloride atom of ligand 2ꞌ, 

and with the bromide atom of ligand 3ꞌ, at 3.50 Å, Figure 12.  In Cathepsin 

S, the halides are involved in interactions with the phenyl ring of Phe70, 

the chloride forming a delocalised interaction and the bromine forming a 

localised interaction; see Figure 13. 

 

 
Fig. 12:  (a) An image of the Cl…O halogen-bond formed by ligand 2ꞌ and the Gly68 

residue in Cathepsin L and (b) an analogous Br…O interaction between 3ꞌ and 

Gly68. 
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Another interesting observation is the fact that when the halides are not 

involved in interactions as is the case with Cathepsins B and K, the second-

order rate constant for inhibition for each complex is greater for the chlo-

ride-containing compound.  Whereas with Cathepsins S and L, where the 

halides are involved in the interactions, shown in Figures 12 and 13, the 

relationship between the second-order rate constants is the opposite. 
 

 
Fig. 13:  (a) An image of the delocalised Cl…π interaction formed by ligand 2ꞌ with 

the ring in Phe70 in Cathepsin S and (b) an analogous but localised Br…π interaction 

between 3ꞌ and Phe70. 

 

Conclusions 
Biologically active tellurium/organotellurium compounds such as AS-101 

and 1-4 are known to inhibit biologically important substrates such as Ca-

thepsins.  For 1-4, there is loss of the tellurium-bound halide which enables 

the formation of covalent Te–SG bonds in most cases; the lack of a strong 

bond in the case of 1ꞌ correlates with its relative lack of activity.  Detailed 

docking studies confirms the relative importance of an E- over a Z- config-

uration in all cases.  All Cathepsins studied feature a C–O…π interaction 

involving a phenyl ring for ligands 2ꞌ and 3ꞌ (= 4ꞌ).  Interestingly, the nature 

of organic residue-bound halide has no influence on the binding mode in 

Cathepsins B and K.  By contrast, in Cathepsin L these atoms are involved 

in C–O…X halogen bonds, whereas in Cathepsin S, these halides form de-

localised (chloride) and localised (bromide) interactions.  This differential 

behaviour provides hope for the rational design of molecules to target spe-

cific receptor sites in Cathepsins. 

In terms of future work, this study demonstrates the efficacy of E- over Z-

configurations for the investigated tellurooxetanes, at least for Cathepsins 

B, K, L and S.  Thus, the search for more promising inhibitors suggests the 

need of diastereoselective synthesis.  Also, structural modifications are re-

quired so that metabolites of new test compounds can occupy subsite S3 of 

the active site of Cathepsin K, and should occupy all extensions of the ac-

tive site of cathepsin L.  Moreover, the poor inhibition activity and the 

docking results in Cathepsin B shows the need for chemical modifications 
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that will enable interaction with the S1' and S2' sites in the receptor site of 

Cathepsin B.  Finally, for Cathepsin S, it seems important that more inter-

actions are required with subsites S2 and S3. 
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