

Received 3 January 2018 Accepted 5 January 2018

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

‡ Additional correspondence author, e-msil: tanmy@acd.tarc.edu.my.

Keywords: crystal structure; zinc; hydrogen bonding; thiosemicarbazone; Hirshfeld surface analysis.

CCDC reference: 1814817

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN d ACCESS

Bis(4-methoxychalcone 4-ethylthiosemicarbazonato- $\kappa^2 N^1$,S)zinc(II): crystal structure and Hirshfeld surface analysis

Ming Yueh Tan,^a[‡] Karen A. Crouse,^{b,c} Thahira B. S. A. Ravoof,^b Mukesh M. Jotani^d and Edward R. T. Tiekink^e*

^aDepartment of Physical Sciences, Faculty of Applied Sciences and Computing, Tunku Abdul Rahman, University College, 50932 Setapak, Kuala Lumpur, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia, ^cDepartment of Chemistry, St. Francis Xavier University, PO Box 5000, Antigonish, NS B2G 2W5, Canada, ^dDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380001, India, and ^eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. *Correspondence e-mail: edwardt@sunway.edu.my

The title Zn^{II} complex, $[Zn(C_{19}H_{20}N_3OS)_2]$ {systematic name: bis[(*N*-ethyl-*N'*-{(*Z*)-[(2*E*)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-ylidene]amino}carbamimidoyl)sulfanido]zinc(II)}, features a tetrahedrally coordinated Zn^{II} ion within an N₂S₂ donor set provided by two *N*,*S*-chelating thiosemicarbazone anions. The resulting five-membered Zn,C,N₂,S chelate rings adopt different conformations, *i.e.* almost planar and an envelope with the Zn atom being the flap atom. The configuration about the imine bond within the chelate ring is *Z* but those about the exocyclic imine and ethylene bonds are *E*. In the crystal, supramolecular [100] chains mediated by thioamide-N-H···S(thione) hydrogen bonds and eight-membered thioamide {···HNCS}₂ synthons are observed. A range of interactions, including C-H···O, C-H··· π , C-H··· π (chelate ring) and π (methoxybenzene)- π (chelate ring) consolidate the packing. The Hirshfeld surface analysis performed on the title complex also indicates the influence of the interactions involving the chelate rings upon the packing along with the more conventional contacts.

1. Chemical context

With potentially five different substituents, thiosemicarbazone derivatives, $R^{1}R^{2}C = N - N(R^{3}) - C(=S)NR^{4}R^{5}$ for $R^{1-5} =$ H/alkyl/aryl, are numerous and multi-functional. Their preparation is often facile, being formed from the condensation reaction between an aldehyde (or a ketone) with the amine group of a thiosemicarbazide precursor. In the same way, the diversity in ligand construction ensures a rich coordination chemistry (Lobana et al., 2009). A primary motivation for investigating metal complexes of thiosemicarbazones and related derivatives rests with their putative biological activity (Espíndola et al., 2015; Pelivan, et al., 2016; Low et al., 2016; Bisceglie et al., 2018). Thus, promising activity has been exhibited by various metal complexes against a range of diseases (Dilworth & Hueting, 2012). In the context of the present report, it is noteworthy that Zn^{II} thiosemicarbazone complexes have been explored as therapeutics for the treatment of cancer (Afrasiabi et al., 2003), viral diseases (Garoufis et al., 2009) and bacterial infections (Quiroga & Ranninger, 2004). Such considerations motivate our interest in this class of compound (Yusof et al., 2015). Herein, in

continuation of our structural studies of Zn^{II} thiosemicarbazones (Tan *et al.*, 2017), the X-ray crystal structure of the title compound, (I), is described along with an analysis of its Hirshfeld surfaces in order to gain more information on the mode of association between molecules in the molecular packing.

2. Structural commentary

The molecular structure of (I), Fig. 1, sees the Zn^{II} atom coordinated by two chelating thiosemicarbazone anions, each *via* the thiolate-S and imine-N atoms, Table 1. The resulting N_2S_2 donor set defines a distorted tetrahedral geometry, with the range of angles subtended at the zinc atom being an acute

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

Table 1			
Selected	bond	lengths	(Å).

Zn-N3	2.041 (3)	C4-N3	1.310 (5)
Zn-N6	2.071 (3)	C5-C6	1.349 (5)
Zn-S1	2.2879 (11)	C20-N5	1.307 (5)
Zn-S2	2.2757 (11)	C23-N6	1.319 (5)
C1-N2	1.314 (5)	C24-C25	1.344 (5)
01 102	1.514 (5)	024 025	1.

Table 2

Hydrogen-bond geometry (Å, °).

Cg1-Cg4 are the centroids of the (C33-C38), (Zn,S2,C20,N5,N6), (C26-C31) and (Zn,S1,C1,N2,N3) rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1N \cdot \cdot \cdot S1^{i}$	0.85 (5)	2.66 (5)	3.506 (4)	171 (3)
$N4-H4N\cdots S2^{ii}$	0.84 (5)	2.82 (5)	3.477 (5)	137 (4)
C36−H36···O1 ⁱⁱⁱ	0.95	2.57	3.428 (6)	151
$C16-H16\cdots Cg1^{iv}$	0.95	2.85	3.747 (4)	157
$C18 - H18 \cdot \cdot \cdot Cg2^v$	0.95	2.69	3.485 (5)	141
$C34 - H34 \cdots Cg3^{iv}$	0.95	2.72	3.555 (6)	148
$C5-H5\cdots Cg2$	0.95	2.67	3.462 (5)	142
$C24 - H24 \cdots Cg4$	0.95	2.55	3.421 (5)	153

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 1, -y, -z + 1; (iv) -x + 1, -y, -z; (v) x + 1, y, z.

87.29 (9)° for the S1–Zn–N3 chelate angle to 127.92 (4)° for S1–Zn–S2. The assignment of four-coordinate geometries can be quantified by comparing the calculated value of τ_4 , in this case 0.74, with the ideal values for an ideal tetrahedron, *i.e.* 1.00, and perfect square-planar geometry, *i.e.* 0.00 (Yang *et al.*, 2007), indicating a distorted tetrahedral geometry in (I). The configuration about each of the endocyclic imine bonds is Z, because of the dictates of chelation. By contrast, each of the exocyclic imine C=N bonds is *E*, as are the configurations about the ethylene bonds, Table 1.

The mode of the coordination of the thiosemicarbazone ligands leads to the formation of five-membered ZnSCN₂ chelate rings, and these adopt different conformations. Whereas, the (Zn,S1,C1,N2,N3) ring is almost planar (r.m.s. deviation = 0.0325 Å), the (Zn,S2,C20,N5,N6) chelate ring is best described as an envelope with the Zn atom lying 0.205 (5) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0011 Å). The dihedral angle between the mean planes through the chelate rings is 79.68 (8) $^{\circ}$. To a first approximation, the thiosemicarbazone ligands comprise two planar regions. Thus, the non-hydrogen, non-phenyl atoms of the atoms of the S1-ligand define one plane (r.m.s. deviation = 0.1910 Å), which forms a dihedral angle of 54.53 (8) $^{\circ}$ with the (C14-C19) ring, consistent with a near perpendicular relationship. The comparable values for the S2-ligand are 0.2800 Å and 75.09 (11)°, respectively.

3. Supramolecular features

The most prominent feature of the molecular packing is the formation of supramolecular chains along the *c*-axis direction sustained by eight-membered thioamide $\{\cdots \text{HNCS}\}_2$ synthons, Fig. 2*a* and Table 2. When the array is viewed down the axis of propagation, Fig. 2*b*, it is evident that two rows of

Figure 2

Molecular packing in (I): (a) a view of the linear supramolecular chain sustained by thioamide-N-H···S(thiolate) hydrogen bonds shown as orange dashed lines, (b) a view of the supramolecular chain down the axis of propagation, (c) a side-on view of the centrosymmetric supramolecular tube stabilized by C-H···O (pink dashed lines) and C-H··· π (purple dashed lines) interactions and (d) a view of the unit-cell contents shown in projection down the c axis showing C-H···(chelate ring) and π (chelate ring) $-\pi$ (arene) interactions as as purple and black dashed lines, respectively.

molecules, each with a right-angle topology, are connected by $N-H\cdots S(\text{thione})$ hydrogen bonds. Centrosymmetrically related right angles are connected into a supramolecular tube, Fig. 2c, via imine-phenyl-C $-H\cdots O(\text{methoxy})$, imine-phenyl-C $-H\cdots \pi(\text{imine-phenyl})$ and imine-phenyl-C $-H\cdots \pi(\text{meth-}(\text{methoxybenzene})$ interactions, Table 2. The connections between the tubes over and above the hydrogen bonding involve chelate rings, which are more and more being recognized as being important in consolidating crystal structures

(Tiekink, 2017). The first kind of interaction is of the type imine-phenyl-C—H···(chelate ring) where the chelate ring is defined by the five-membered (Zn,S2,C20,N5,N6) grouping which, as mentioned above, is non-planar, indicating that aromaticity is not the sole criterion for the formation of C—H···(chelate ring) interactions (Palusiak & Krygowski, 2007; Yeo *et al.*, 2014; Zukerman-Schpector *et al.*, 2016). The second contact between tubes involving chelate rings is of the type π (Zn,S1,C1,N2,N3)– π (C7–C12)^v with a ring centroid–ring

research communications

centroid separation of 3.778 (2) Å and angle of inclination = 15.04 (17)° for symmetry operation (v): 2 - x, 1 - y, 1 - z. A review has appeared very recently on the topic of π (chelate ring)– π (arene) and π (chelate ring)– π (chelate ring) interactions where it was suggested that interactions of the former type provide comparable energies of stabilization to molecular packing as do weak conventional hydrogen bonds (Malenov *et al.*, 2017). A view of the unit-cell contents is shown in Fig. 2*d*.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surfaces calculated for (I) were performed in accord with recent work on a related complex (Tan *et al.*, 2017) and provide more insight into the intermolecular interactions occurring in the crystal. The donors and acceptors of the intermolecular $N-H\cdots$ S hydrogen bonds are viewed as bright-red spots, labelled as '1' and '2' in Fig. 3*a*, and the intermolecular $C-H\cdots$ O contacts appear as tiny red spots

Figure 3 Two views of Hirshfeld surface mapped over d_{norm} for (I) in the range -0.152 to +1.534 au.

Table 3	
Summary of short inter-atomic contacts (Å) in (I).	

Contact	Distance	Symmetry operation
H3 <i>B</i> ···H11	2.11	x, y, -1 + z
$Zn \cdot \cdot \cdot H18$	2.93	-1 + x, y, z
Zn···C18	3.871 (8)	-1 + x, y, z
O2· · · H22 <i>B</i>	2.56	x, y, -1 + z
C6···H28	2.74	1 - x, -y, -z
C7···H28	2.85	1 - x, -y, -z
C15···H27	2.80	1 - x, -y, -z
C17···H38	2.79	1 + x, y, z
C24···H17	2.78	-1 + x, y, z
C26···H34	2.81	1 - x, -y, -z
C30···H35	2.84	1 - x, -y, -z
C31···H34	2.80	1 - x, -y, -z
C36···H16	2.85	1 - x, -y, -z
C37···H16	2.83	1-x,-y,-z

with label '3' in Fig. 3b on the Hirshfeld surface mapped over d_{norm} . The faint-red spots near the H3B, H11, H28 and C6 sites represent significant short interatomic H···H and C···H/H···C contacts, Fig. 3 and Table 3. The structure features two intramolecular C-H··· π (chelate) contacts, *i.e.* between ethylene-C5-H and the (Zn,S2,C20,N5,N6) ring and between ethylene-C24-H and the (Zn,S1,C1,N2,N3) ring, Table 2,

Figure 4

Two views of Hirshfeld surface mapped over the electrostatic potential for (I) in the range \pm 0.051 au highlighting intramolecular C-H $\cdot\cdot \pi$ (chelate) interactions as black dotted lines.

which are viewed as blue and red regions assigned to positive and negative potentials, respectively, on the Hirshfeld surfaces mapped over electrostatic potential and are highlighted in Fig. 4*a*. The donors and acceptors of the intermolecular N— $H \cdots S$ and C— $H \cdots O$ interactions are also viewed as blue and red regions about respective atoms in the images of Fig. 4. The C— $H \cdots \pi$ interactions involving imine-phenyl and methoxybenzene rings are evident in short interatomic C···H/H···C contacts, Table 3. The views of Hirshfeld surfaces about a reference molecule mapped over the electrostatic potential highlighting short interatomic H···H and C···H/H···C contacts and that mapped within the shape-index property highlighting C— $H \cdots \pi/\pi \cdots H$ —C contacts are illustrated in Fig. 5*a* and *b*, respectively.

The overall two dimensional fingerprint plot for (I), Fig. 6*a*, and those delineated into $H \cdots H$, $C \cdots H/H \cdots C$, $S \cdots H/H \cdots S$ and $O \cdots H/H \cdots O$ contacts (McKinnon *et al.*, 2007) are shown

Figure 5

Views of Hirshfeld surface about reference molecule of (I) mapped (*a*) over the electrostatic potential highlighting short interatomic $H \cdots H$ and $C \cdots H/H \cdots C$ contacts by red and yellow dashed lines, respectively, and (*b*) with the shape-index property highlighting $C - H \cdots \pi/\pi \cdots H - C$ contacts involving imine-phenyl and methoxy-benzene rings by red and black dashed lines, respectively.

Table 4
Percentage contributions of inter-atomic contacts to the Hirshfeld surface
for (I).

Contact	Percentage contribution		
$H \cdot \cdot \cdot H$	56.1		
$C \cdots H/H \cdots C$	23.1		
$S \cdot \cdot \cdot H/H \cdot \cdot \cdot S$	9.0		
$O \cdot \cdot \cdot H/H \cdot \cdot \cdot O$	5.4		
$N \cdots H/H \cdots N$	1.6		
$C \cdot \cdot \cdot S/S \cdot \cdot \cdot C$	1.3		
$C \cdots N/N \cdots C$	1.1		
$Zn \cdot \cdot \cdot H/H \cdot \cdot \cdot Zn$	0.6		
$Zn \cdot \cdot \cdot C/C \cdot \cdot \cdot Zn$	0.6		
$C \cdots C$	0.6		
$C \cdots O / O \cdots C$	0.3		
$N \cdots O / O \cdots N$	0.3		

in Fig. 6b-e and illustrate the influence of various intermolecular interactions instrumental in the crystal of (I). The percentage contributions from the different interatomic contacts to the Hirshfeld surface are summarized in Table 4. The single spike in the centre at $d_e + d_i \sim 2.1$ Å in Fig. 6a is

Figure 6

(a) The full two-dimensional fingerprint plot and fingerprint plots delineated into (b) $H \cdots H$, (c) $C \cdots H/H \cdots C$, (d) $S \cdots H/H \cdots S$ and (e) $O \cdots H/H \cdots O$ contacts for (I).

due to a short interatomic $H \cdot \cdot \cdot H$ contact (Table 3) and the two pairs of spikes about this central spike, at $d_e + d_i \sim 2.6$ Å, indicate the intermolecular $C-H\cdots O$ and $N-H\cdots S$ interactions, Fig. 6c,d. The points related to short interatomic $O \cdots H/H \cdots O$ contacts listed in Table 3 are merged within the respective plot of Fig. 6e. The $C \cdots H/H \cdots C$ contacts provide the second greatest contribution to the Hirshfeld surface, Table 4. This is due to the combined effect of short interatomic $C \cdots H/H \cdots C$ contacts (Table 3) in addition to $C - H \cdots \pi$ contacts, summarized in Table 2. The most significant short atomic C6 \cdot ··H28 contact is evident from a pair of short peaks at $d_{\rm e} + d_{\rm i} \sim 2.7$ Å in the fingerprint plot delineated into C···H/ $H \cdot \cdot \cdot C$ contacts, Fig. 6c. The short interatomic contact between the Zn^{II} atom and imine-phenyl-C18 and H18 atoms, Table 3, and the contribution of 0.6% from $Zn \cdots H/H \cdots Zn$ and $Zn \cdots C/C \cdots Zn$ contacts to the Hirshfeld surface, Table 4, reflect the presence of intermolecular $C-H \cdots \pi$ (chelate) interactions in the crystal. The π (chelate)- π (benzene) contacts described in the Supramolecular features section (§3) are also reflected from the small but important contribution from $C \cdots N/N \cdots C$ and $C \cdots S/S \cdots C$ contacts, Table 4, to the Hirshfeld surface of (I).

5. Database survey

The most relevant structure available for comparison is that of the recently described $bis(N'-\{(E)-[(2E)-1,3-diphenylprop 2-en-1-ylidene]-amino}-N-ethylcarbamimidothioato-<math>\kappa^2 N', S$)zinc(II) molecule, which differs from (I) in that there are no additional substituents in the phenyl ring appended at the ethylene bond (Tan *et al.*, 2017). Similar tetrahedral N₂S₂ coordination geometries are found with values of τ_4 of 0.70 and 0.74 for the two independent molecules comprising the asymmetric unit. Indeed, in the publication describing this structure (Tan *et al.*, 2017), it was mentioned there are nine structures in the literature conforming to the general formula Zn[SC(NHR)=NN=CR'R'']₂ and all structures adopt the same basic structural motif as described herein for (I).

6. Synthesis and crystallization

Analytical grade reagents were used as procured and without further purification. 4-Ethyl-3-thiosemicarbazide (1.1919 g, 0.01 mol) and 4-methoxychalcone (2.3828 g, 0.01 mol) were dissolved separately in hot absolute ethanol (30 ml) and mixed while stirring. About five drops of concentrated hydrochloric acid were added to the mixture to catalyse the reaction. The reaction mixture was heated and stirred for about 20 min, and stirring was continued for another 30 min at room temperature. The resulting vellow precipitate, 4-methoxychalcone-4ethyl-3-thiosemicarbazone, was filtered off, washed with cold absolute ethanol and dried in vacuo after which it was used without further purification. 4-Methoxychalcone-4-ethyl-3thiosemicarbazone (0.3395 g, 0.01 mol) was dissolved in hot absolute ethanol (30 ml), which was added to a solution of $Zn(CH_3COO)_2 \cdot 2H_2O$ (0.1098 g, 0.50 mmol) in hot absolute ethanol (40 ml). The mixture was heated and stirred for about

Lable 5 Experimental details	
Crystal data	
Chemical formula	$[Zn(C_{10}H_{20}N_3OS)_2]$
м.	742.25
Crystal system, space group	Triclinic, $P\overline{1}$
Temperature (K)	100
<i>a</i> , <i>b</i> , <i>c</i> (Å)	10.5013 (6), 14.2836 (8), 14.8282 (9)
$lpha,eta,\gamma$ (°)	107.173 (5), 108.152 (5), 106.259 (5)
$V(Å^3)$	1842.0 (2)
Z	2
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.82
Crystal size (mm)	$0.25 \times 0.15 \times 0.05$
Data collection	
Diffractometer	Agilent Technologies SuperNova Dual diffractometer with Atlas
A beaution connection	Multi agan (Cruc Alia DBO)
Absorption correction	Agilent, 2013)
T_{\min}, T_{\max}	0.887, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	19299, 8464, 5619
R _{int}	0.071
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.650
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.065, 0.171, 1.01
No. of reflections	8464
No. of parameters	452
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text{max}} \Delta \rho_{\text{min}} (e \text{\AA}^{-3})$	1.10 - 0.59

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

10 min, followed by stirring for 1 h at room temperature. The yellow precipitate obtained was filtered, washed with cold ethanol and dried *in vacuo*. Single crystals were grown at room temperature from the slow evaporation of the title compound in a mixed solvent system containing dimethylformamide and acetonitrile (1:1; v/v 20 ml). IR (cm⁻¹): 3351 v(N–H), 1597 v(C=N), 1009 v(N–N), 420 v(M–N), 362 v(M–S).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. The carbon-bound H atoms were placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with $U_{iso}(H)$ set to $1.2-1.5U_{eq}(C)$. The nitrogen-bound H atoms were located in a difference-Fourier map but were refined with a distance restraint of N–H = 0.88 ± 0.01 Å, and with $U_{iso}(H)$ set to $1.2U_{eq}(N)$. The maximum and minimum residual electron density peaks of 1.10 and 0.59 e Å⁻³, respectively, are located 1.04 and 0.71 Å from the Zn atom.

Acknowledgements

We thank the staff of the University of Malaya's X-ray diffraction laboratory for the data collection.

Funding information

The authors are grateful to the Universiti Putra Malaysia's UPM Research University Grant Scheme (RUGS No. 9419400) and Sunway University (INT-RRO-2017-096) for supporting this research.

References

- Afrasiabi, Z., Sinn, E., Padhye, S., Dutta, S., Padhye, S., Newton, C., Anson, C. E. & Powell, A. K. (2003). J. Inorg. Biochem. 95, 306– 314.
- Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Bisceglie, F., Tavone, M., Mussi, F., Azzoni, S., Montalbano, S., Franzoni, S., Tarasconi, P., Buschini, A. & Pelosi, G. (2018). J. Inorg. Biochem. 179, 60–70.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Dilworth, J. R. & Hueting, R. (2012). Inorg. Chim. Acta, 389, 3-15.

- Espíndola, J. W. P., Cardoso, M. V. de O., Filho, G. B. de O., Silva, D. A. O e, Moreira, D. R. M., Bastos, T. M., de Simone, C. A., Soares, M. B. P., Villela, F. S., Ferreira, R. S., de Castro, M. C. A. B., Pereira, V. R. A., Murta, S. M. F., Sales Junior, P. A., Romanha, A. J. & Leite, A. C. L. (2015). *Eur. J. Med. Chem.* **101**, 818–835.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). *Coord. Chem. Rev.* **253**, 1384–1397.
- Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.

- Low, M. L., Maigre, L. M., Tahir, M. I. M. T., Tiekink, E. R. T., Dorlet, P., Guillot, R., Ravoof, T. B., Rosli, R., Pagès, J.-M., Policar, C., Delsuc, N. & Crouse, K. A. (2016). *Eur. J. Med. Chem.* **120**, 1– 12.
- Malenov, D. P., Janjić, G. V., Medaković, V. B., Hall, M. B. & Zarić, S. D. (2017). Coord. Chem. Rev. 345, 318–341.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.
- Palusiak, M. & Krygowski, T. M. (2007). Chem. Eur. J. 13, 7996–8006.
- Pelivan, K., Miklos, W., van Schoonhoven, S., Koellensperger, G., Gille, L., Berger, W., Heffeter, P., Kowol, C. R. & Keppler, B. K. (2016). J. Inorg. Biochem. 160, 61–69.
- Quiroga, A. G. & Ranninger, C. N. (2004). Coord. Chem. Rev. 248, 119–133.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Tan, M. Y., Crouse, K. A., Ravoof, T. B. S. A., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, o1001–01008.
- Tiekink, E. R. T. (2017). Coord. Chem. Rev. 345, 209-228.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.
- Yeo, C. I., Halim, S. N. A., Ng, S. W., Tan, S. L., Zukerman-Schpector, J., Ferreira, M. A. B. & Tiekink, E. R. T. (2014). *Chem. Commun.* 50, 5984–5986.
- Yusof, E. N. M., Ravoof, T. B. S. A., Tiekink, E. R. T., Veerakumarasivam, A., Crouse, K. A., Tahir, M. I. M. & Ahmad, H. (2015). *Int. J. Mol. Sci.* 16, 11034–11054.
- Zukerman-Schpector, J., Yeo, C. I. & Tiekink, E. R. T. (2016). Z. *Kristallogr.* 231, 55–64.

Acta Cryst. (2018). E74, 151-157 [https://doi.org/10.1107/S2056989018000282]

Bis(4-methoxychalcone 4-ethylthiosemicarbazonato- $\kappa^2 N^1$,S)zinc(II): crystal structure and Hirshfeld surface analysis

Ming Yueh Tan, Karen A. Crouse, Thahira B. S. A. Ravoof, Mukesh M. Jotani and Edward R. T. Tiekink

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2013); cell refinement: *CrysAlis PRO* (Agilent, 2013); data reduction: *CrysAlis PRO* (Agilent, 2013); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $Bis[(N-ethyl-N'-\{(Z)-[(2E)-3-(4-methoxyphenyl)-1-phenylprop-2-en-1-ylidene]amino\} carbamimidoyl) sulfanido]zinc(II)$

Crystal data [Zn(C₁₉H₂₀N₃OS)₂] $M_r = 742.25$ Triclinic, *P*I a = 10.5013 (6) Å b = 14.2836 (8) Å c = 14.8282 (9) Å a = 107.173 (5)° $\beta = 108.152$ (5)° $\gamma = 106.259$ (5)° V = 1842.0 (2) Å³

Data collection

Agilent Technologies SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source Mirror monochromator Detector resolution: 10.4041 pixels mm⁻¹ ω scan Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.171$ S = 1.01 Z = 2 F(000) = 776 $D_x = 1.338 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4004 reflections $\theta = 2.8-27.5^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 100 KPrism, yellow $0.25 \times 0.15 \times 0.05 \text{ mm}$ $T_{\text{min}} = 0.887, T_{\text{max}} = 1.000$

 $T_{\min} = 0.887$, $T_{\max} = 1.000$ 19299 measured reflections 8464 independent reflections 5619 reflections with $I > 2\sigma(I)$ $R_{int} = 0.071$ $\theta_{max} = 27.5^{\circ}$, $\theta_{min} = 2.9^{\circ}$ $h = -13 \rightarrow 13$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$

8464 reflections452 parameters0 restraintsH atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.066P)^2 + 1.1328P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$ $\Delta \rho_{\rm max} = 1.10 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.59 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The maximum and minimum residual electron density peaks of 1.10 and 0.59 eÅ⁻³, respectively, were located 1.04 Å and 0.71 Å from the Zn atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn	0.61283 (5)	0.39864 (3)	0.26017 (3)	0.01731 (14)	
S1	0.53424 (11)	0.44366 (8)	0.12335 (8)	0.0199 (2)	
S2	0.63421 (11)	0.47815 (8)	0.42482 (7)	0.0209 (2)	
01	1.0784 (3)	0.3417 (2)	0.8198 (2)	0.0285 (7)	
O2	0.2660 (4)	0.0652 (2)	-0.4057 (2)	0.0383 (8)	
N1	0.6593 (4)	0.4265 (3)	-0.0084 (2)	0.0211 (8)	
H1N	0.615 (5)	0.463 (3)	-0.029 (3)	0.025*	
N2	0.7664 (4)	0.3874 (2)	0.1248 (2)	0.0192 (7)	
N3	0.7733 (3)	0.3790 (2)	0.2167 (2)	0.0162 (7)	
N4	0.5490 (4)	0.3597 (3)	0.5203 (2)	0.0221 (8)	
H4N	0.556 (5)	0.420 (3)	0.556 (3)	0.027*	
N5	0.4901 (4)	0.2575 (3)	0.3512 (2)	0.0201 (7)	
N6	0.4944 (4)	0.2545 (2)	0.2579 (2)	0.0186 (7)	
C1	0.6656 (4)	0.4179 (3)	0.0811 (3)	0.0163 (8)	
C2	0.7722 (5)	0.4190 (4)	-0.0435 (3)	0.0346 (11)	
H2A	0.7767	0.3485	-0.0534	0.042*	
H2B	0.8689	0.4758	0.0106	0.042*	
C3	0.7415 (7)	0.4310 (5)	-0.1443 (4)	0.0499 (14)	
H3A	0.6472	0.3735	-0.1986	0.075*	
H3B	0.8198	0.4266	-0.1657	0.075*	
H3C	0.7373	0.5008	-0.1347	0.075*	
C4	0.8760 (4)	0.3507 (3)	0.2610 (3)	0.0160 (8)	
C5	0.8940 (4)	0.3512 (3)	0.3620 (3)	0.0188 (8)	
H5	0.8345	0.3757	0.3913	0.023*	
C6	0.9879 (4)	0.3199 (3)	0.4181 (3)	0.0183 (8)	
H6	1.0445	0.2925	0.3877	0.022*	
C7	1.0097 (4)	0.3247 (3)	0.5222 (3)	0.0203 (9)	
C8	1.1094 (5)	0.2881 (3)	0.5709 (3)	0.0246 (9)	
H8	1.1610	0.2602	0.5355	0.030*	
C9	1.1352 (4)	0.2915 (3)	0.6701 (3)	0.0241 (9)	
H9	1.2025	0.2653	0.7015	0.029*	
C10	1.0617 (5)	0.3334 (3)	0.7223 (3)	0.0233 (9)	
C11	0.9624 (5)	0.3715 (3)	0.6745 (3)	0.0238 (9)	
H11	0.9126	0.4012	0.7105	0.029*	

C12	0.9368 (4)	0.3663 (3)	0.5766 (3)	0.0223 (9)
H12	0.8681	0.3915	0.5450	0.027*
C13	1.1781 (5)	0.3025 (3)	0.8702 (3)	0.0309 (11)
H13A	1.1450	0.2258	0.8276	0.046*
H13B	1.1807	0.3128	0.9392	0.046*
H13C	1 2766	0 3420	0.8782	0.046*
C14	0.9722(4)	0.3227(3)	0.2124(3)	0.0186 (8)
C15	0.9722(1) 0.9112(5)	0.3227(3) 0.2427(3)	0.2121(3) 0.1112(3)	0.0228(9)
H15	0.8075	0.2064	0.0726	0.0228 (5)
C16	1.0016 (5)	0.2162 (3)	0.0720	0.027
U16	0.0505	0.2102 (5)	-0.0011	0.0200 (10)
C17	0.9393	0.1000	0.0011 0.1217 (3)	0.032°
U17	1.1324(3)	0.2098 (5)	0.1217(3)	0.0273 (10)
П1/ С18	1.2137	0.2323	0.0902	0.033°
	1.2141 (5)	0.3488 (3)	0.2223 (3)	0.0280 (10)
HI8	1.31/9	0.3849	0.2603	0.034*
C19	1.1250 (4)	0.3755 (3)	0.2677(3)	0.0224 (9)
H19	1.1679	0.4299	0.3368	0.027*
C20	0.5495 (4)	0.3535 (3)	0.4270 (3)	0.0184 (8)
C21	0.4684 (5)	0.2645 (3)	0.5309 (3)	0.0299 (10)
H21A	0.3728	0.2218	0.4686	0.036*
H21B	0.4480	0.2881	0.5928	0.036*
C22	0.5510 (6)	0.1933 (4)	0.5426 (4)	0.0411 (12)
H22A	0.5634	0.1641	0.4788	0.062*
H22B	0.4950	0.1342	0.5543	0.062*
H22C	0.6477	0.2359	0.6023	0.062*
C23	0.4179 (4)	0.1593 (3)	0.1782 (3)	0.0200 (9)
C24	0.4155 (4)	0.1516 (3)	0.0785 (3)	0.0216 (9)
H24	0.4833	0.2114	0.0780	0.026*
C25	0.3253 (5)	0.0669 (3)	-0.0139 (3)	0.0248 (9)
H25	0.2647	0.0039	-0.0132	0.030*
C26	0.3140 (5)	0.0651 (3)	-0.1153 (3)	0.0249 (10)
C27	0.2184 (5)	-0.0286(3)	-0.2070(3)	0.0295 (10)
H27	0.1651	-0.0911	-0.2018	0.035*
C28	0.1998 (5)	-0.0322(3)	-0.3052(3)	0.0318 (11)
H28	0.1346	-0.0966	-0.3661	0.038*
C29	0.2763 (5)	0.0582(3)	-0.3139(3)	0.0299 (10)
C30	0.3721 (5)	0.1522 (3)	-0.2241(3)	0.0282(10)
H30	0 4247	0.2148	-0.2295	0.034*
C31	0.3900(5)	0.1540(3)	-0.1278(3)	0.0259(10)
H31	0.4567	0.2184	-0.0673	0.031*
C32	0.1792(7)	-0.0321(4)	-0.5000(3)	0.0525 (16)
H32A	0.1792 (7)	-0.0877	-0.4931	0.0323 (10)
H32R	0.1885	-0.0185	-0.5591	0.079*
H32C	0.1005	-0.0563	-0 5120	0.079*
C22	0.0737	0.0505	0.5120 0.1017 (2)	0.073
C34	0.3334 (3)	-0.0154(3)	0.1917(3)	0.0210(9)
U34 1124	0.3028 (3)	-0.0134(3)	0.1910 (4)	0.0319(11)
П34 С25	0.4008	-0.0129	0.1790	0.038*
035	0.3087(5)	-0.0999 (4)	0.2103 (4)	0.0385 (12)

1125	0.0406	0.1544	0.0110	0.046*
H35	0.3436	-0.1544	0.2112	0.046*
C36	0.1864 (5)	-0.1056 (3)	0.2271 (3)	0.0327 (11)
H36	0.1371	-0.1633	0.2401	0.039*
C37	0.1351 (5)	-0.0266 (3)	0.2251 (3)	0.0317 (11)
H37	0.0494	-0.0306	0.2357	0.038*
C38	0.2088 (5)	0.0584 (3)	0.2076 (3)	0.0274 (10)
H38	0.1733	0.1125	0.2065	0.033*

Atomic displacement parameters (A^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn	0.0161 (2)	0.0230 (2)	0.0138 (2)	0.00749 (18)	0.00647 (18)	0.00934 (18)
S 1	0.0182 (5)	0.0282 (5)	0.0191 (5)	0.0120 (4)	0.0084 (4)	0.0146 (4)
S2	0.0217 (5)	0.0230 (5)	0.0160 (5)	0.0072 (4)	0.0089 (4)	0.0068 (4)
01	0.0313 (17)	0.0351 (16)	0.0156 (14)	0.0077 (13)	0.0071 (13)	0.0147 (13)
O2	0.050 (2)	0.0385 (17)	0.0188 (16)	0.0078 (16)	0.0142 (15)	0.0127 (14)
N1	0.0229 (19)	0.0325 (19)	0.0167 (17)	0.0154 (15)	0.0089 (14)	0.0173 (15)
N2	0.0205 (18)	0.0293 (17)	0.0120 (16)	0.0113 (14)	0.0083 (13)	0.0117 (14)
N3	0.0156 (16)	0.0206 (16)	0.0112 (15)	0.0069 (13)	0.0046 (13)	0.0068 (13)
N4	0.0245 (19)	0.0297 (18)	0.0118 (16)	0.0102 (16)	0.0098 (14)	0.0070 (14)
N5	0.0214 (18)	0.0260 (17)	0.0140 (16)	0.0093 (14)	0.0083 (14)	0.0095 (14)
N6	0.0195 (17)	0.0263 (17)	0.0159 (16)	0.0117 (14)	0.0096 (13)	0.0121 (14)
C1	0.018 (2)	0.0170 (18)	0.0117 (18)	0.0046 (15)	0.0047 (15)	0.0066 (15)
C2	0.039 (3)	0.054 (3)	0.024 (2)	0.027 (2)	0.018 (2)	0.024 (2)
C3	0.055 (4)	0.076 (4)	0.040 (3)	0.032 (3)	0.032 (3)	0.035 (3)
C4	0.0141 (19)	0.0165 (17)	0.0130 (18)	0.0033 (15)	0.0031 (15)	0.0064 (15)
C5	0.017 (2)	0.027 (2)	0.0177 (19)	0.0095 (16)	0.0106 (16)	0.0125 (16)
C6	0.020 (2)	0.0224 (19)	0.0132 (18)	0.0077 (16)	0.0076 (15)	0.0081 (16)
C7	0.021 (2)	0.0204 (19)	0.0145 (19)	0.0067 (16)	0.0039 (16)	0.0062 (16)
C8	0.026 (2)	0.032 (2)	0.019 (2)	0.0132 (18)	0.0099 (17)	0.0130 (18)
C9	0.021 (2)	0.033 (2)	0.020 (2)	0.0128 (18)	0.0040 (17)	0.0171 (18)
C10	0.025 (2)	0.023 (2)	0.0137 (19)	0.0021 (17)	0.0042 (17)	0.0087 (16)
C11	0.026 (2)	0.027 (2)	0.018 (2)	0.0089 (18)	0.0097 (17)	0.0090 (17)
C12	0.023 (2)	0.025 (2)	0.016 (2)	0.0109 (17)	0.0050 (16)	0.0077 (16)
C13	0.034 (3)	0.037 (2)	0.017 (2)	0.009 (2)	0.0023 (18)	0.0198 (19)
C14	0.020 (2)	0.0241 (19)	0.0157 (19)	0.0098 (16)	0.0079 (16)	0.0120 (16)
C15	0.029 (2)	0.026 (2)	0.0137 (19)	0.0125 (18)	0.0060 (17)	0.0097 (16)
C16	0.036 (3)	0.032 (2)	0.017 (2)	0.023 (2)	0.0105 (18)	0.0102 (18)
C17	0.036 (3)	0.042 (2)	0.022 (2)	0.026 (2)	0.0203 (19)	0.0186 (19)
C18	0.021 (2)	0.039 (2)	0.025 (2)	0.0130 (19)	0.0080 (18)	0.018 (2)
C19	0.024 (2)	0.028 (2)	0.0142 (19)	0.0108 (17)	0.0063 (16)	0.0094 (17)
C20	0.0149 (19)	0.027 (2)	0.0157 (19)	0.0104 (16)	0.0064 (15)	0.0104 (16)
C21	0.026 (2)	0.042 (3)	0.022 (2)	0.008 (2)	0.0134 (18)	0.016 (2)
C22	0.036 (3)	0.047 (3)	0.046 (3)	0.013 (2)	0.019 (2)	0.030 (2)
C23	0.021 (2)	0.025 (2)	0.0168 (19)	0.0100 (17)	0.0095 (16)	0.0090 (16)
C24	0.025 (2)	0.0185 (18)	0.022 (2)	0.0072 (16)	0.0106 (17)	0.0106 (16)
C25	0.032 (2)	0.021 (2)	0.019 (2)	0.0095 (18)	0.0115 (18)	0.0070 (17)
C26	0.028 (2)	0.022 (2)	0.016 (2)	0.0072 (18)	0.0065 (17)	0.0037 (17)

C27	0.032 (3)	0.029 (2)	0.020 (2)	0.0041 (19)	0.0109 (19)	0.0103 (18)
C28	0.042 (3)	0.027 (2)	0.014 (2)	0.006 (2)	0.0066 (19)	0.0063 (17)
C29	0.037 (3)	0.036 (2)	0.019 (2)	0.015 (2)	0.0140 (19)	0.0139 (19)
C30	0.036 (3)	0.026 (2)	0.023 (2)	0.0109 (19)	0.0135 (19)	0.0120 (18)
C31	0.032 (2)	0.025 (2)	0.018 (2)	0.0076 (18)	0.0114 (18)	0.0096 (17)
C32	0.073 (4)	0.047 (3)	0.015 (2)	0.004 (3)	0.014 (2)	0.008 (2)
C33	0.025 (2)	0.024 (2)	0.0129 (19)	0.0068 (17)	0.0072 (16)	0.0075 (16)
C34	0.030 (3)	0.032 (2)	0.037 (3)	0.012 (2)	0.016 (2)	0.017 (2)
C35	0.037 (3)	0.033 (2)	0.046 (3)	0.014 (2)	0.010(2)	0.025 (2)
C36	0.036 (3)	0.027 (2)	0.027 (2)	0.0022 (19)	0.009 (2)	0.0163 (19)
C37	0.030(3)	0.034 (2)	0.026 (2)	0.005 (2)	0.012 (2)	0.013 (2)
C38	0.031 (3)	0.026 (2)	0.028 (2)	0.0095 (18)	0.0146 (19)	0.0142 (18)

Geometric parameters (Å, °)

Zn—N3	2.041 (3)	C14—C15	1.395 (5)
Zn—N6	2.071 (3)	C14—C19	1.397 (5)
Zn—S1	2.2879 (11)	C15—C16	1.382 (6)
Zn—S2	2.2757 (11)	C15—H15	0.9500
C1—N2	1.314 (5)	C16—C17	1.381 (6)
C4—N3	1.310 (5)	C16—H16	0.9500
C5—C6	1.349 (5)	C17—C18	1.383 (6)
C20—N5	1.307 (5)	C17—H17	0.9500
C23—N6	1.319 (5)	C18—C19	1.384 (6)
C24—C25	1.344 (5)	C18—H18	0.9500
S2—C20	1.768 (4)	C19—H19	0.9500
O1—C10	1.365 (5)	C21—C22	1.524 (6)
O1—C13	1.433 (5)	C21—H21A	0.9900
O2—C29	1.366 (5)	C21—H21B	0.9900
O2—C32	1.438 (5)	C22—H22A	0.9800
N1—C1	1.352 (5)	C22—H22B	0.9800
N1—C2	1.453 (6)	C22—H22C	0.9800
N1—H1N	0.85 (4)	C23—C24	1.441 (6)
N2—N3	1.385 (4)	C23—C33	1.499 (6)
N4—C20	1.361 (5)	C24—H24	0.9500
N4—C21	1.467 (6)	C25—C26	1.463 (6)
N4—H4N	0.83 (4)	С25—Н25	0.9500
N5—N6	1.386 (5)	C26—C31	1.396 (6)
C2—C3	1.500 (7)	C26—C27	1.403 (5)
C2—H2A	0.9900	C27—C28	1.391 (6)
C2—H2B	0.9900	C27—H27	0.9500
С3—НЗА	0.9800	C28—C29	1.382 (6)
С3—Н3В	0.9800	C28—H28	0.9500
С3—Н3С	0.9800	C29—C30	1.394 (6)
C4—C5	1.449 (5)	C30—C31	1.373 (6)
C4—C14	1.486 (5)	С30—Н30	0.9500
С5—Н5	0.9500	C31—H31	0.9500
C6—C7	1.465 (5)	C32—H32A	0.9800

Сб. Цб	0.0500	C32 H32B	0.0800
C_{7}	1 206 (6)	C32 H32C	0.9800
C7 - C12	1.390 (0)	C_{32} C_{32} C_{38}	1 292 (6)
C^{2}	1.390 (0)	$C_{22} = C_{24}$	1.305(0)
C_{8}	1.394 (0)	$C_{33} = C_{34}$	1.385 (0)
	0.9500	C34—C35	1.394 (7)
C9—C10	1.382 (6)	C34—H34	0.9500
C9—H9	0.9500	C35—C36	1.368 (7)
C10—C11	1.404 (6)	С35—Н35	0.9500
C11—C12	1.367 (6)	C36—C37	1.382 (6)
C11—H11	0.9500	С36—Н36	0.9500
C12—H12	0.9500	C37—C38	1.388 (6)
C13—H13A	0.9800	С37—Н37	0.9500
C13—H13B	0.9800	C38—H38	0.9500
C13—H13C	0.9800		
N3—Zn—N6	107.16 (12)	C15—C16—C17	120.6 (4)
N3—Zn—S2	127.83 (9)	C15—C16—H16	119.7
N6-Zn-S2	86 73 (9)	C17—C16—H16	119.7
$N_3 = Z_1 = S_1$	87 29 (9)	C_{16} C_{17} C_{18}	119.8 (4)
$N_6 Z_n S_1$	121 90 (9)	C_{16} C_{17} H_{17}	120.1
S_{2}^{n}	121.90(9) 127.92(4)	C18 - C17 - H17	120.1
$C_1 = S_1 = Z_n$	127.52(4) 02.45(13)	C_{17} C_{18} C_{19}	120.1 120.2(4)
$C_1 = S_1 = Z_1$	92.45(13)	$C_{17} = C_{18} = C_{19}$	120.2 (4)
$C_{20} = S_{2} = Z_{11}$	32.00(13)	$C_{1} = C_{18} = H_{18}$	119.9
C10-01-C13	117.1(3)	С19—С18—П18	119.9
$C_{29} = 0_{2} = C_{32}$	117.1 (4)	C18 - C19 - C14	120.3 (4)
CI-NI-C2	121.0 (3)	C18—C19—H19	119.9
CI—NI—HIN	118 (3)	C14—C19—H19	119.9
C2—NI—HIN	115 (3)	N5—C20—N4	116.9 (4)
C1—N2—N3	115.8 (3)	N5—C20—S2	128.0 (3)
C4—N3—N2	115.4 (3)	N4—C20—S2	115.1 (3)
C4—N3—Zn	127.7 (3)	N4—C21—C22	113.3 (4)
N2—N3—Zn	116.7 (2)	N4—C21—H21A	108.9
C20—N4—C21	121.3 (3)	С22—С21—Н21А	108.9
C20—N4—H4N	111 (3)	N4—C21—H21B	108.9
C21—N4—H4N	120 (3)	C22—C21—H21B	108.9
C20—N5—N6	115.2 (3)	H21A—C21—H21B	107.7
C23—N6—N5	114.8 (3)	C21—C22—H22A	109.5
C23—N6—Zn	128.6 (3)	C21—C22—H22B	109.5
N5—N6—Zn	116.6 (2)	H22A—C22—H22B	109.5
N2-C1-N1	115.8 (4)	C21—C22—H22C	109.5
N2—C1—S1	127.4 (3)	H22A—C22—H22C	109.5
N1—C1—S1	116.8 (3)	H22B—C22—H22C	109.5
N1—C2—C3	111.2 (4)	N6-C23-C24	117.3 (4)
N1—C2—H2A	109.4	N6-C23-C33	120.4 (3)
С3—С2—Н2А	109.4	C24—C23—C33	122.3 (3)
N1—C2—H2B	109.4	C25—C24—C23	125.5 (4)
С3—С2—Н2В	109.4	C25—C24—H24	117.3
H2A—C2—H2B	108.0	C23—C24—H24	117.3

С2—С3—НЗА	109.5	C24—C25—C26	124.5 (4)
С2—С3—Н3В	109.5	C24—C25—H25	117.7
НЗА—СЗ—НЗВ	109.5	C26—C25—H25	117.7
С2—С3—Н3С	109.5	C31—C26—C27	116.6 (4)
НЗА—СЗ—НЗС	109.5	C31—C26—C25	123.6 (3)
НЗВ—СЗ—НЗС	109.5	C27—C26—C25	119.8 (4)
N3—C4—C5	116.2 (3)	C28—C27—C26	121.6 (4)
N3—C4—C14	122.3 (3)	С28—С27—Н27	119.2
C5—C4—C14	121.4 (3)	С26—С27—Н27	119.2
C6—C5—C4	125.7 (4)	C29—C28—C27	119.9 (4)
С6—С5—Н5	117.2	C29—C28—H28	120.1
C4—C5—H5	117.2	C27—C28—H28	120.1
C5—C6—C7	125.3 (4)	02-C29-C28	125.4 (4)
C5—C6—H6	117.4	02-C29-C30	114.9 (4)
C7—C6—H6	117.4	$C_{28} - C_{29} - C_{30}$	119.7 (4)
C8-C7-C12	117.8 (4)	$C_{31} - C_{30} - C_{29}$	119.6 (4)
C8-C7-C6	119 3 (4)	$C_{31} - C_{30} - H_{30}$	120.2
C12-C7-C6	122.9 (4)	C29—C30—H30	120.2
C7 - C8 - C9	122.3(1) 121.7(4)	C_{30} C_{31} C_{26}	120.2 122.7(4)
C7—C8—H8	119.1	C30—C31—H31	118 7
C9-C8-H8	119.1	C26—C31—H31	118.7
C10-C9-C8	119.2 (4)	Ω^2	109.5
C10—C9—H9	120.4	$02 - C_{32} - H_{32}B$	109.5
C8-C9-H9	120.4	H32A-C32-H32B	109.5
01-C10-C9	124.7 (4)	02-C32-H32C	109.5
01	115.8 (4)	H32A—C32—H32C	109.5
C9-C10-C11	119.5 (4)	H32B-C32-H32C	109.5
C12—C11—C10	120.6 (4)	C38—C33—C34	119.4 (4)
C12—C11—H11	119.7	C38—C33—C23	120.9 (4)
C10—C11—H11	119.7	C34—C33—C23	119.7 (4)
C11—C12—C7	121.1 (4)	C33—C34—C35	119.6 (5)
C11—C12—H12	119.4	С33—С34—Н34	120.2
C7—C12—H12	119.4	C35—C34—H34	120.2
O1—C13—H13A	109.5	C36—C35—C34	121.0 (4)
O1—C13—H13B	109.5	С36—С35—Н35	119.5
H13A—C13—H13B	109.5	С34—С35—Н35	119.5
O1—C13—H13C	109.5	C35—C36—C37	119.5 (4)
H13A—C13—H13C	109.5	С35—С36—Н36	120.2
H13B—C13—H13C	109.5	С37—С36—Н36	120.2
C15—C14—C19	119.1 (4)	C38—C37—C36	120.0 (4)
C15—C14—C4	120.4 (3)	С38—С37—Н37	120.0
C19—C14—C4	120.5 (3)	С36—С37—Н37	120.0
C16—C15—C14	120.0 (4)	C33—C38—C37	120.5 (4)
C16—C15—H15	120.0	С33—С38—Н38	119.7
C14—C15—H15	120.0	С37—С38—Н38	119.7
C1—N2—N3—C4	-178.6 (3)	C15—C14—C19—C18	0.3 (6)
C1—N2—N3—Zn	6.6 (4)	C4—C14—C19—C18	179.8 (4)

C20—N5—N6—C23	-171.6 (3)	N6—N5—C20—N4	-179.2 (3)
C20—N5—N6—Zn	6.6 (4)	N6—N5—C20—S2	-0.3 (5)
N3—N2—C1—N1	179.8 (3)	C21—N4—C20—N5	-7.9 (5)
N3—N2—C1—S1	-2.8 (5)	C21—N4—C20—S2	173.0 (3)
C2—N1—C1—N2	-9.3 (5)	Zn—S2—C20—N5	-4.9 (4)
C2—N1—C1—S1	173.0 (3)	Zn—S2—C20—N4	174.0 (3)
Zn—S1—C1—N2	-1.7 (3)	C20—N4—C21—C22	80.6 (5)
Zn—S1—C1—N1	175.7 (3)	N5-N6-C23-C24	178.6 (3)
C1—N1—C2—C3	-180.0 (4)	Zn—N6—C23—C24	0.7 (5)
N2—N3—C4—C5	174.4 (3)	N5—N6—C23—C33	0.8 (5)
Zn—N3—C4—C5	-11.5 (5)	Zn—N6—C23—C33	-177.1 (3)
N2—N3—C4—C14	-3.8 (5)	N6-C23-C24-C25	-168.2 (4)
Zn-N3-C4-C14	170.3 (2)	C33—C23—C24—C25	9.6 (6)
N3—C4—C5—C6	176.5 (4)	C23—C24—C25—C26	173.3 (4)
C14—C4—C5—C6	-5.2 (6)	C24—C25—C26—C31	-4.0 (7)
C4—C5—C6—C7	177.4 (4)	C24—C25—C26—C27	178.6 (4)
C5—C6—C7—C8	179.1 (4)	C31—C26—C27—C28	-0.4 (7)
C5—C6—C7—C12	-2.0 (6)	C25—C26—C27—C28	177.2 (4)
C12—C7—C8—C9	0.7 (6)	C26—C27—C28—C29	-0.2 (7)
C6—C7—C8—C9	179.6 (4)	C32—O2—C29—C28	-6.2 (7)
C7—C8—C9—C10	-0.9 (6)	C32—O2—C29—C30	174.5 (4)
C13—O1—C10—C9	-0.9 (6)	C27—C28—C29—O2	-179.1 (4)
C13—O1—C10—C11	179.5 (3)	C27—C28—C29—C30	0.2 (7)
C8—C9—C10—O1	-179.5 (4)	O2—C29—C30—C31	179.7 (4)
C8—C9—C10—C11	0.1 (6)	C28—C29—C30—C31	0.3 (7)
O1—C10—C11—C12	-179.6 (4)	C29—C30—C31—C26	-0.9 (7)
C9—C10—C11—C12	0.8 (6)	C27—C26—C31—C30	1.0 (7)
C10—C11—C12—C7	-1.0 (6)	C25—C26—C31—C30	-176.5 (4)
C8—C7—C12—C11	0.3 (6)	N6-C23-C33-C38	70.3 (5)
C6—C7—C12—C11	-178.6 (4)	C24—C23—C33—C38	-107.4 (5)
N3—C4—C14—C15	-55.3 (5)	N6-C23-C33-C34	-107.7 (4)
C5-C4-C14-C15	126.6 (4)	C24—C23—C33—C34	74.6 (5)
N3—C4—C14—C19	125.3 (4)	C38—C33—C34—C35	-1.7 (6)
C5—C4—C14—C19	-52.9 (5)	C23—C33—C34—C35	176.4 (4)
C19—C14—C15—C16	0.3 (6)	C33—C34—C35—C36	1.0 (7)
C4—C14—C15—C16	-179.1 (4)	C34—C35—C36—C37	0.4 (7)
C14—C15—C16—C17	-1.3 (6)	C35—C36—C37—C38	-1.0 (7)
C15—C16—C17—C18	1.7 (7)	C34—C33—C38—C37	1.1 (6)
C16—C17—C18—C19	-1.1 (7)	C23—C33—C38—C37	-176.9 (4)
C17—C18—C19—C14	0.1 (6)	C36—C37—C38—C33	0.2 (6)

Hydrogen-bond geometry (Å, °)

Cg1—Cg4 are the centroids of the (C33–C38), (Zn,S2,C20,N5,N6), (C26–C31) and (Zn,S1,C1,N2,N3) rings, respectively.

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1N····S1 ⁱ	0.85 (5)	2.66 (5)	3.506 (4)	171 (3)
N4—H4 <i>N</i> ···S2 ⁱⁱ	0.84 (5)	2.82 (5)	3.477 (5)	137 (4)
C36—H36…O1 ⁱⁱⁱ	0.95	2.57	3.428 (6)	151

C16—H16…Cg1 ^{iv}	0.95	2.85	3.747 (4)	157
C18—H18····Cg2 ^{v}	0.95	2.69	3.485 (5)	141
C34—H34… <i>Cg</i> 3 ^{iv}	0.95	2.72	3.555 (6)	148
C5—H5…Cg2	0.95	2.67	3.462 (5)	142
C24—H24…Cg4	0.95	2.55	3.421 (5)	153

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+1, -*y*, -*z*+1; (iv) -*x*+1, -*y*, -*z*; (v) *x*+1, *y*, *z*.