Persistence of C–H⋯π(chelate ring) interactions in the crystal structures of Pd(S2COR)2. The utility of Pd(S2COR)2 as precursors for palladium sulphide materials

Tan, Yee Seng * and Siti Nadiah Abdul Halim, and Molloy, Kieran C. and Sudlow, Anna L. and Otero-de-la-Roza, Alberto and Tiekink, Edward R. T. * (2016) Persistence of C–H⋯π(chelate ring) interactions in the crystal structures of Pd(S2COR)2. The utility of Pd(S2COR)2 as precursors for palladium sulphide materials. CrystEngComm, 18 (7). pp. 1105-1117. ISSN 1466-8033

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1039/c5ce02126j

Abstract

The crystallographic structures of 12 palladium xanthates, PdIJS2COR)2 (R = alkyl) show a uniform adoption of square-planar PdS4 geometries. Supramolecular aggregation in 1 (R = Me), 2 (Et) and 3 (n-Pr) is based on secondary Pd⋯S interactions, which are “turned off” when the bulk of R increases. In 4 (i-Pr), C–H⋯S hydrogen bonding is present. In each of 2–4, C–H⋯π(PdS2C) interactions are incorporated within the architecture, stabilised by Pd⋯S secondary- or C–H⋯S hydrogen-bonding. In 5–12 (R = n-Bu, i-Bu, n-Pent, i- Pent, neoPent, n-Hex, i-Hex, neoHex), varying numbers of stand-alone C–H⋯π(PdS2C) interactions involving different hydrogen donors uniformly stabilise supramolecular chains in their crystal structures. In order to determine the relative importance of the various intermolecular interactions and packing effects, a computational study using dispersion-corrected density-functional theory was performed on 3 (R = n-Pr). The results showed that the most significant contributors to the stability of the crystal structure are Pd⋯S interactions followed closely by C–H⋯π(PdS2C) interactions. Two non-specific hydrophobic interactions also contribute to the overall packing to a lesser extent. The utility of PdIJS2COR)2 to function as synthetic precursors for PdS nanoparticles and thin films was also investigated. Aerosol-assisted-CVD on representative examples generated PdS films with either matted, needle-like or granular morphologies depending on temperature and substrate. Solvothermal (ethylene glycol) decomposition generated sulphur-rich PdS nanoparticles with diameters 120 nm (7 and 10)–400 nm (8). When dodecanethiol was employed as a capping agent, PdS1.75 nanoparticles <10 nm were generated from 1.

Item Type: Article
Additional Information: First and 2nd authors are with Department of Chemistry, University of Malaya; 3rd and 4th authors are with Department of Chemistry, University of Bath; 5th author is with National Institute for Nanotechnology, National Research Council of Canada; 6th author is with Centre for Crystalline Materials, Faculty of Science and Technology, Sunway University
Subjects: Q Science > QD Chemistry
Divisions: Others > Non Sunway Academics
Sunway University > School of Science and Technology > Research Centre for Crystalline Materials
Depositing User: Ms. Molly Chuah
Related URLs:
Date Deposited: 24 Oct 2017 09:07
Last Modified: 02 May 2019 07:03
URI: http://eprints.sunway.edu.my/id/eprint/615

Actions (login required)

View Item View Item