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Abstract  

The influence on supramolecular aggregation patterns exerted by a new synthon, main group 

element (M) lone-pair...π(arene) interactions, is surveyed based on data mining studies of main 

group element crystal structures.  Zero-, one-, and less commonly, two- and threedimensional 

architectures are identified based on M(lp)...π(arene) interactions acting in isolation of other 

obvious intermolecular interactions, e.g. hydrogen bonding.  Herein, an overview of the 

different aggregation patterns sustained by M(lp)...π(arene) interactions is given which, in the 

case of thallium(I), may occur in 13% of their crystal structures.  General considerations of the 

formation propensities of M(lp)...π(arene) interactions, theoretical considerations and their role 

in macromolecular structures are also included.   
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X.1  Introduction  

As “the chemistry of molecular assemblies and of the intermolecular bond”,1 supramolecular 

chemistry exploits a variety of non-covalent intermolecular forces to connect and organise 

chemical architectures constructed of molecules as building blocks (called “tectons”).2  The 

most common type of intermolecular interactions are hydrogen bonds,3 donor-acceptor or 

dative-coordinate bonds,4 secondary bonds or “soft-soft” interactions,5 halogen bonds,6 π…π 

stacking7 and metal π-bonds.8  Metal…π(arene) bonds are well documented for transition 

metals with complexes such as bis(benzene)chromium, Cr(C6H6)2, and benzenechromium 

tricarbonyl, C6H6Cr(CO)3, now being historical landmarks.  The bond between a transition 

metal atom and an arene ring is formed by donation of the π-electrons from the ring into the d-

orbitals of the metal.  This is not possible in the case of main group (post-transition) elements.  

However, compounds of the main group elements non-covalently bonded to benzene or other 

arenes have been discovered and structurally characterised by X-ray diffraction, challenging 

puzzled chemists for a rational explanation.  Examples are the socalled Menschutkin 

(Menšutkin) complexes of antimony and bismuth9 including C6H6.SbCl3, C6Me6.2SbX3 (with 

X = Cl, Br) and C6H6.BiCl3 or C6Me6.BiX3 (with X = Cl or Br).  Metalaryl interactions were 

also discovered in the dimeric tin(II) dithiophosphate, [Sn{S2P(OPh)2}2]2,
10 and in the dimeric 

lead(II) dithiophosphonate,  

[Pb{S2P(OPri)(C6H4OMe-4)}]2.
11  Tellurium…π(arene) interactions were suggested in two 

compounds and their formation proposed as involving the lone-pairs of electrons interacting 

with the ring.12  Thus, it was noted “We tentatively suggest that the lone-pair is located between 

the π-bonded phenyl ring and the central tellurium atom.  It is quite possible that similar weak 

π-interactions between tellurium atoms and aromatic groups are present in other 
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organotellurium compounds and passed unnoticed so far”.12  This prompted the first systematic 

search of the Cambridge Crystallographic Database (CSD),13 where lonepair…π(arene) 

interactions were proposed as being important in molecular packing.  This search revealed a 

significant number of tellurium compounds displaying such interactions in the solid-state, but 

not identified so in the original reports.14  More recently, a new search was undertaken and the 

stereochemical influence of the tellurium lone-pair interaction with the πsystems 

investigated.15  The data mining of the CSD13 was extended to practically all posttransition 

metals,16 i.e. gallium, indium and thallium,17 tin,18 lead,19 arsenic,20 antimony and bismuth,21 

and selenium.22  In related bibliographic studies, organometallic metal carbonyl compounds 

were also found to form M–CO…π(arene) complexes, with intermolecular bonds leading to 

supramolecular associations and recognisable supramolecular architectures;23 a more recent 

survey of DMSO-O(lp)…π(arene) interactions reinforces the importance of this type of contact 

in supramolecular chemistry.24  

  

The lone-pair…π(arene) interaction14 is now recognised as a valid bond type, both 

intramolecular and intermolecular, leading in the last case to supramolecular self-assembly.14- 

24   DFT calculations with an exchange hole dipole moment (XDM) dispersion correction on 

some arsenic(III) species showed these interactions may be described as lone pair(As)···π but, 

interestingly, in some examples these were best described as being of the type 

donor(π)−acceptor(As).25  Clearly, there is scope for further theoretical investigation in this 

area as proven highly informative in the cases of halogen26 and chalcogen bonding.27  This 

being stated, in the literature attention is mostly concentrated on anion…π(arene)28 and 

cation…π(arene)29 interactions rather than those involving main group elements, with the 

possible exception of alkali metal cations.30  Attention is also directed towards oxygen (e.g. 
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water) and halogen lone-pair…π(arene) interactions.31  In addition to the aromatic hydrocarbons 

(benzene, naphthalene, etc.), the π-system can be aromatic heterocycles (pyridine, triazene, 

etc.) and even some chelate rings32 or pseudo-chelates.33  Recently, inorganic rings, e.g. 

borazine, were also considered as potential candidates for lonepair…π(arene) ring interactions, 

and some theoretical calculations were performed on the assumption that the carbon-free 

heterocycles may display some aromatic character.34  

  

The intention here is to highlight the relevance of main group element lone-pair...π(arene) 

interactions, abbreviated hereafter as M(lp)…π(arene), as a new non-covalent bonding mode in 

supramolecular chemistry.  In so doing, the diversity the supramolecular aggregates sustained 

by these interactions will be revealed, most of which remained hidden until an appropriate 

analysis of the available information from the CSD13 was performed.  Most of the earlier 

literature reports only the molecular structures, but the analysis of their molecular packing often 

reveals supramolecular associations through M(lp)…π(arene) interactions.  

  

  

X.2  Methodology  

The Cambridge Structural Database (CSD)13 was employed as the primary resource in data 

mining studies searching for M(lp)…π(arene) interactions.  The CSD was searched using the 

program CONQUEST35 in accord with the structural protocols shown in Fig. X.1(a).  Thus, 

two key geometric restrictions were applied.  Firstly, d, the distance between the main group 

element atom (M) and the centroid (Cg) of the arene ring was based on the sum of the 

halfthickness of a phenyl ring, taken as 1.9 Å, being the upper value for half the centroid-

centroid distance in parallel arene rings,7a and the respective van der Waals radii of M,36 plus 
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10% to enable the capture of all putative contacts.37  The second criterion relates to the angle, 

α, which is defined as the angle between the normal to the plane through the arene ring (V1) 

and the vector passing through Cg to M (V2).  The α angle was restricted to be less than 30º to 

ensure that only delocalised M…π(arene) interactions were extracted.  Referring to Fig. 1(b), a 

delocalised interaction corresponds to the M atom sitting plumb or close to plumb over the ring 

centroid.38  By contrast, a localised interaction would see the lone-pair directed towards a 

specific atom of the ring and a semi-localised interaction would have the lone-pair directed 

towards one bond of the ring.  Preliminary screening was applied so that structures with 

disorder or unresolved errors were omitted along with those having other heavy metal atoms.  

Manual sorting of each individual “hit” ensued employing the programs PLATON39 and 

DIAMOND.40  

  

[Figure X.1 near here]  

  

The manual inspection of each structure enabled the confirmation that the M(lp)…π(arene) 

interaction was operating in isolation of other intermolecular interactions.  An example of this 

concept is illustrated in Fig. X.2.  Referring to this figure, in binuclear and centrosymmetric 

{Sn[S2P(OPh)2]2}2,
10 one phenyl ring of each bidentate bridging dithiophosphate ligand is 

directed over the centrosymmetrically-related tin atom enabling a putative Sn(lp)...π(arene) 

interaction.  Here, d = 3.66 Å and α = 19.6º, fulfilling the standard geometric restrictions 

mentioned above.  However, along with the Sn(lp)...π(arene) interaction, secondary 

interactions,5 of the type Sn…S [3.04 Å] also occur so that the Sn(lp)...π(arene) interactions are 

not “stand-alone”, but operate in concert with the Sn…S contacts, and therefore the structure 
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was not regarded as having independent Sn(lp)...π(arene) interactions and therefore, is not 

included herein.  On this basis, a good number of the initial “hits” from the CSD searches were 

excluded often owing to the presence of the aforementioned secondary interactions and to 

hydrogen bonding.  Finally, it should be noted that the putative Sn(lp)...π(arene) interaction in 

[Sn{S2P(OPh)2}2]2
10 is recognised, on geometric grounds, as a contact by the ubiquitous 

structure analysis program, PLATON.39  Despite this, it is still rare for M(lp)...π(arene) 

interactions to be commented upon in the primary literature.  

  

[Figure X.2 near here]  

In the ensuing sections, selected examples of M(lp)...π(arene) points of contact found in 

indium(I),17 thallium(I),17 tin(II),18 lead(II),19 arsenic(III),20 antimony(III),21 bismuth(III),21 

selenium(II and IV)22 and tellurium(II and IV)15 crystal structures are presented, in this order.  

Examples were selected on the basis of novelty and aesthetics: the interested reader is referred 

to the original exhaustive reviews for full details for each element.  Diagrams were 

drawn/redrawn with the aid of DIAMOND,40 with all hydrogen atoms omitted, and the 

accompanying chemical structure diagram only includes the species participating in the 

M(lp)...π(arene) interaction, i.e. typically counter-ions, solvents, etc. are not included.  

  

  

X.3  Overview of M(lp)…π(arene) interactions  

X.3.1 Indium(I)  

The chemistry of gallium and indium with the element in the +I oxidation state is not very well 

developed,41 there being relatively few examples, certainly when compared with the farranging 

chemistry of thallium(I).  There is in fact only one example of an indium(I) structure featuring 
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an In(lp)…π(arene) interaction, namely [In{OC6H2(CF3)3-2,4,6}]2, (2).42  The molecule is 

binuclear with each of the crystallographically independent indium atoms forming an 

In(lp)…π(arene) interaction [d = 3.87 Å and α = 7.6º; 4.22 Å, 18.0º].  The supramolecular 

aggregation sustained by these interactions is a zigzag chain as illustrated in Fig. X.3.  

  

[Figure X.3 near here]  

  

  

  

X.3.2 Thallium(I)  

The centrosymmetric binuclear aggregate illustrated in Fig. X.4(a) and found in the structure 

of [2-(2',6'-di-isopropylphenylamido)-4-(2',6'-di-isopropylphenylimino)-2-pentene] 

thallium(I),43. (3), and supported by a pair of Tl(lp)…π(arene) interactions [d = 3.92 Å and α =  

11.0º] is a common motif found for thallium(I) and indeed other main group elements.  Higher 

nuclearity, zero-dimensional aggregates are also known.  For example, in the crystal structure 

of Tl[N(SiMe3)C6H3(iPr)2-2,6],44.(4), centrosymmetric tetranuclear aggregates involving both 

crystallographically independent molecules are formed and feature four Tl(lp)…π(arene) 

interactions [d = 3.11 Å and α = 11.7º; 3.12 Å, 9.6º], Fig. X.4(b).  

  

[Figure X.4 near here]  

  

One-dimensional aggregation is found for {(η5-diphenylphosphanyl-

tetramethylcyclopentadienyl)thallium(I),45 (5), with each molecule accepting and donating a 
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Tl(lp)…π(arene) interaction [d = 3.60 Å and α = 19.6º].  The topology of the chain is zigzag, 

Fig. X.5.  

  

[Figure X.5 near here]  

  

X.3.3 Tin(II)  

The centrosymmetric dimeric motif features prominently among tin(II) compounds forming  

Sn(lp)…π(arene) interactions.18.  An example, [Sn{N(Ph)=C(Me)C(H)=C(Me)N(Ph)}Cl],46 (6), 

where the pyramidal N2Cl donor set is capped by an arene ring [d = 3.46 Å and α = 4.9º], is 

illustrated in Fig. X.6.  

  

[Figure X.6 near here]  

  

The mixed oxidation state tetranuclear compound, [{Sn(O2CMe)2}2O]2, crystallises as a mono-

benzene solvate (7) with the benzene located about a 2-fold axis of symmetry.47.  The exocyclic 

tin(II) atoms form Sn(lp)…π(arene) interactions [d = 3.32 Å and α = 6.1º] to  

generate a somewhat twisted supramolecular chain, Fig. X.7(a).  In (Me3Si)2NSn[OC6H2(tBu2)-

2,6-Me-4],48. (8), with two-coordinate tin(II) atoms, a supramolecular zigzag chain is formed 

as shown in Fig. X.7(b) [d = 3.76 Å and α = 1.2º].  Binuclear bis(µ2-N-(2-

oxidophenyl)salicylideneiminato)-di-tin(II),49 (9), has crystallographically imposed 2-fold 

symmetry and features a tetra-coordinated tin(II) centre within a NO3 donor set.  The flat 

portions of centrosymmetrically-related molecules face each other to facilitate the formation of 

Sn(lp)…π(arene) interactions [d = 3.53 Å and α = 5.6º], with the two donor and two acceptor 
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interactions per molecule leading to a supramolecular chain with a twisted topology, Fig. 

X.7(c).  

  

[Figure X.7 near here]  

  

X.3.4 Lead(II)  

As mentioned above in X.3.2, the zero-dimensional dimeric aggregate illustrated in X.4(a) is a 

common motif.  A variation on this motif is found for Pb(SC6H3Me2-2,6)2(NC5H4NMe24),50 

(10), where the dimeric aggregate sustained by two Pb(lp)…π(arene) interactions [d =  

3.52 Å and α = 12.7º] has 2-fold symmetry, Fig. X.8(a).  The asymmetric unit of 

Pb(C6H4Br4)2,
51 (11), contains two independent molecules and each is located on a 

crystallographic centre of inversion.  A linear supramolecular chain is formed as both 

independent lead(II) atoms form two apparent Pb(lp)…π(arene) interactions [d = 3.62 Å and α 

= 6.5º; d = 3.67 Å and α = 8.0º], Fig. X.8(b).  The formation of two Pb(lp)…π(arene) 

interactions is perhaps unexpected and the nature of these still unclear. It is possible that the 

lone-pair of electrons is arranged spherically around the lead(II) centre.  Another view is that 

one of the interactions is of the type Pb(lp)…π(arene) and the other being a transition metal-

like π(arene)…Pb  

interaction.  

[Figure X.8 near here]  

  

The two-coordinate lead(II) atom in (N,N'-di-neopentyl-1,2-phenylenediamino)lead(II),52  
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(12), lies on a crystallographic mirror plane.  Again, each lead(II) atom forms two apparent 

Pb(lp)…π(arene) interactions with one being significantly longer than the other [d = 3.18 Å and 

α = 6.1º; d = 3.97 Å and α = 10.1º].  The arene ring accepts both interactions and the result is 

a two-dimensional arrangement as illustrated in Fig. X.9.  The topology of the layer is flat with 

the neopentyl groups lying to either side.  

  

[Figure X.9 near here]  

  

X.3.5 Arsenic(III)  

One-dimensional supramolecular chains sustained by As(lp)…π(arene) interactions are often 

observed in the crystal structures arsenic(III) compounds.20.  An exception is found in the 

centrosymmetric dimeric aggregate in the structure of [(2,6-Me2C6H3N)AsCl]3,
53 (13), Fig. 

X.10(a) [d = 3.78 Å and α = 14.2º].  A truly remarkable supramolecular association is found in 

the structure of chloro-(toluene-3,4-dithiolato)arsenic(III),54 (14), Fig. X.10(b).  Here, the 

supramolecular chain, with a zigzag topology is stabilised by As(lp)…π(arene) interactions [d 

= 3.30 Å and α = 3.6º].  This occurs despite their being both chloride and sulphur in the 

compound, each capable of forming As…Cl and/or As…S secondary interactions;5 the closest 

As…Cl separation of 3.82 Å is beyond the sum of their respective van der Waals radii.36  A 

supramolecular chain is also found in the structure of (PhAsO)4,
55 (15).  Here, only one of the 

four arsenic(III) atoms of the eight-membered ring compound forms a As(lp)…π(arene) 

interactions [d = 3.52 Å and α = 11.8º]; the chain has a linear topology, Fig. X.10(c).  The three 
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examples mentioned here have the common feature of a pyramidal coordination geometry with 

a capping arene ring.  

  

[Figure X.10 near here]  

  

X.3.6 Antimony(III)  

A full range of supramolecular architectures sustained by Sb(lp)…π(arene) interactions exists.21  

Zero-dimensional aggregates are well-known and are exemplified by dimeric and 

centrosymmetric (p-tol)SbCl2,
56 (16), Fig. X.11(a) [d = 3.30 Å and α = 11.5º].  In dichloro(8-

(dimethylamino)naphthyl)antimony(III),57 (17), a supramolecular chain with an helical 

topology is formed as a result of Sb(lp)…π(arene) interactions [d = 3.88 Å and α = 15.7º],  

Fig. X.11(b).  A zigzag supramolecular chain is formed in the structure of Sb(SC6H3Me23,5),58 

(18), mediated by Sb(lp)…π(arene) interactions [d = 3.29 Å and α = 8.0º], Fig.  

X.11(c).  As with the arsenic(III) structures cited above, no secondary Sb…S contacts are 

formed in the crystal structure of 18.  

  

[Figure X.11 near here]  

  

A flat supramolecular layer having Sb(lp)…π(arene) interactions is found in the crystal structure 

of [(t-BuN)Sb(C6H3Me2-2,6)]2,
59 (19), Fig. X.12.  The four-membered cyclic molecule is 

disposed about a 2-fold axis of symmetry.  Each antimony(III) atom donates a lone-pair of 

electrons and each ring accepts an interaction, meaning four points of contact per molecule [d 

= 3.92 Å and α = 1.2º] contributing to the layer assembly.  
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[Figure X.12 near here]  

  

  

X.3.7 Bismuth(III)  

A wide range of zero-dimensional aggregates sustained by Bi(lp)…π(arene) interactions have 

been noted.21  Centrosymmetric dimeric units are found in the structure of bis-

[2(dimethylaminomethyl)phenyl]-iodido-bismuth(III), (20),60 Fig. X.13(a) [d = 3.92 Å and α 

= 18.4º].  A higher nuclearity aggregate is found in (2.2.2)paracyclophane 

tris[trichloridobismuth(III)],61 (21), in which each arene ring accepts a Bi(lp)…π(arene) 

interaction.  As the molecule lacks symmetry, there are three independent contacts [d = 2.98 Å 

and α = 10.5º;  

2.99 Å, α = 5.6º; d = 3.08 Å, α = 3.5º], Fig. X.13(b).  

  

[Figure X.13 near here]  

  

Examples of linear and helical supramolecular chains are found in the crystal structures of 

Ph3Bi,62 (22), and Bi(OC6H3Me2-2,6)3,
63 (23), respectively, Figs X.14(a) and (b).  Each 

molecule of each chain participates in an acceptor and donor Bi(lp)…π(arene) interaction [22: 

d = 3.76 Å and α = 11.0º; 23: d = 2.99 Å, α = 3.3º].  

  

[Figure X.14 near here]  

In a compound closely related to 19 (see Fig. X.12), i.e. [(t-BuN)BiPh]2,
64 (24), the 

centrosymmetric binuclear molecules participate in four Bi(lp)…π(arene) interactions [d =  
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3.92 Å and α = 10.1º] to form a supramolecular layer with a flat topology, Fig. X.15.  

  

[Figure X.15 near here]  

  

X.3.8 Selenium(II, IV)  

The familiar zero-dimensional dimeric aggregate is found in the structure of the 

[MeSeC(=CH2)CH2N
+(H)Me2] cation,65 (25), with the exception being there is no 

crystallographic symmetry relating the molecules so there are two independent 

Se(lp)…π(arene) interactions supporting the aggregate, Fig X. 16(a).  The parameters 

describing these interactions are equivalent, i.e. d = 3.82 Å and α = 26.5º, suggesting a pseudo 

centrosymmetric arrangement.  The selenium(II) atom may be embedded within a ring, as in 

5-phenyl-selenazolidine-2,4-dione,66 (26), and still form a Se(lp)…π(arene) interaction.  In the 

case of 26, this interaction [d = 3.53 Å and α = 4.6º] results in a supramolecular chain with a 

helical topology, Fig. X.16(b).  An example of an unusual aggregate results when the selenium 

atoms are directly connected as in the diselenide derivative [2-MeOC6H4C(=O)Se]2,
67 (27).  

There are two independent diselenide molecules in the crystallographic asymmetric unit.  One 

selenium(II) atom in each molecule forms a Se(lp)…π(arene) interaction [d = 3.90 Å and α = 

26.4º; d = 3.93 Å and α = 12.7º].  The shorter interactions occur between centrosymmetrically-

related molecules, and the resulting dimeric aggregate accepts two Se(lp)…π(arene) 

interactions from a second set of symmetryrelated independent molecules with the result that a 

four-molecular aggregate is formed, Fig. X.16(c).  Viewed in another perspective, both arene 

rings of one independent molecule participate in Se(lp)…π(arene) interactions while the arene 

rings of the second molecule participate in no such interactions.  
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[Figure X.16 near here]  

  

In binuclear molecules where the selenium atoms are well separated, if each participates in a 

Se(lp)…π(arene) interaction, higher aggregation patterns will ensue.  This is realised in the 

structure of [PhSe(Cl)C=C(Cl)SePh],68 (28).  Here, the molecule is centrosymmetric, and forms 

two interactions [d = 3.80 Å and α = 24.4º] resulting in a linear supramolecular chain, Fig. 

X.17(a).  A variation is found in the structure 1,2,4,5-tetrafluoro-

3,6bis(phenylseleno)benzene,69 (29), for which two independent molecules comprise the 

crystallographic asymmetric unit, each of which is disposed about a centre of inversion.  Only 

one of the molecules forms Se(lp)…π(arene) interactions [d = 3.99 Å and α = 27.2º] to lead to 

a supramolecular layer with a flat topology, Fig. X.17(b).   

  

[Figure X.17 near here]  

  

Selenium in the form of doubly-bonded selenide can also form Se(lp)…π(arene) interactions.   

An  example  of  this  is  found  in  the  structure  of  2-

phenyl-2,3-dihydro-1,3,2benzothiazaphosphole 2-selenide,70 (30), with the interactions [d = 

3.52 Å and α = 17.6º] leading to a zigzag supramolecular chain, Fig. X.18(a).  

Se(lp)…π(arene) interactions have been found to occur between charged species as for 

example in the bicyclic salt [Ph4P]2[As4Se6],
71 (31).  As shown in Fig. X.18(b), two 

selenium(II) atoms form Se(lp)…π(arene) interactions [d = 3.63 Å and α = 11.6º; 3.96 Å and 
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α = 22.6º], bridging one of the independent Ph4P
+ anions to form a linear supramolecular 

chain.  

  

[Figure X.18 near here]  

  

Selenium(IV), with one lone-pair of electrons, rather than two found in selenium(II) 

compounds, can also form Se(lp)…π(arene) interactions. This is illustrated for PhSe(=O)OH,72 

(32), where these interactions [d = 3.50 Å and α = 17.2º] lead to linear supramolecular chains, 

Fig. X. 18(c).  

  

The final compound to be discussed in this section is also a salt, namely 

[PhN+Me3][SeBr4]{2[Se2Br2]•2Br-},73 (33), bearing both selenium(II) and selenium(IV) 

centres.  The selenium(IV) atom, located on a crystallographic centre of inversion, is 

coordinatively saturated precluding its participation in Se(lp)…π(arene) interactions.  One of 

the selenium(II) atoms forms two independent Se(lp)…π(arene) interactions [d = 3.51 Å and α 

= 4.7º; 3.93 Å and 25.1º] with the same arene ring to form a flat supramolecular layer, Fig. 

X.19.  

  

[Figure X.19 near here]  

  

X.3.9 Tellurium(II, IV)  

Despite not being isomorphous, the supramolecular aggregation sustained by Te(lp)…π(arene) 

interactions in the crystal structure of [PhTeC(Cl)=C(Cl)TePh],74 (34), matches that of the 
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selenium(II) analogue, i.e. 28, Fig. X.17(a).  The Te(lp)…π(arene) interactions [d = 3.76 Å and 

α = 12.4º] lead to a linear supramolecular chain as shown in Fig. X.20.  

  

[Figure X.20 near here]  

  

A rare example of a three-dimensional architecture sustained by M(lp)…π(arene) interactions 

is found in the structure of [4-ClC6H4TeTeC6H4Cl4-4],75 (35), Fig. X.21.  The ditelluride 

molecule lacks symmetry but each tellurium(II) atoms forms a Te(lp)…π(arene) interaction [d 

= 3.67 Å and α = 9.5º; 3.81 Å and 19.6º].  The molecule has the approximate shape of the letter 

L with four points of contact involving Te(lp)…π(arene) interactions resulting in the 

stabilisation of a three-dimensional structure.  

  

[Figure X.21 near here]  

  

The final three structures to be described feature tellurium(IV) centres.  The centrosymmetric  

dimeric  aggregate  motif  is  found  in  the  crystal  structure  of  (4- 

MeOC6H4)Te[(Ph)C=C(H)SPh]Cl2,
76 (36), Fig. X.22(a), stabilised by Te(lp)…π(arene) 

interactions [d = 3.41 Å and α = 0.9º].  Another example of a supramolecular aggregate 

sustained by Te(lp)…π(arene) interactions is the zigzag chain in the crystal structure of 

[Ph(Cl)C=CH]2TeCl2,
77 (37), Fig. X.22(b); [d = 3.76 Å and α = 12.4º].  

  

[Figure X.22 near here]  
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The last structure to be described poses a dilemma in the assignment of the putative 

Te(lp)…π(arene) interactions akin to that noted in the structures of Pb(C6H4Br-4)2,
51 (11), Fig. 

X.8(b), and (N,N'-di-neopentyl-1,2-phenylenediamino)lead(II),52 (12), Fig. X.9.  The 

tellurium(IV) centre in bis(2,2'-biphenylylene)-tellurium(IV),78 (38), forms two almost 

identical interactions with two arene rings as illustrated in Fig. X.22(c).  The parameters 

associated with these interactions are d = 3.72 Å and α = 11.1º, and d = 3.72 Å and α = 11.6º.   

The resulting assembly is a supramolecular linear chain.  

  

  

X.4  Biological relevance  

While the recognition of M(lp)…π(arene) interactions in main group element systems is a 

relatively recent phenomenon, it is likely that the first report of such an interaction was in the 

macromolecular literature.79  Referring to Fig. X.23, the cytidine-sugar oxygen atom, O4ꞌ, 

interacts with the pyrimidine ring of a guanine residue, i.e. representing an 

O(lp)…π(pyrimidine) interaction similar to the M(lp)…π(arene) interactions described.  By 

contrast to many of the structural papers in molecular main group element chemistry, the 

original authors of this work highlighted the role of the O(lp)…π(pyridimidine) interactions as 

being important in stabilising the Z-DNA conformation.79  In several of the previous surveys 

of M(lp)…π(arene) interactions, analogous interactions operating in macromolecular systems  

were also noted.17,21,22  

  

[Figure X.23 near here]  
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While a comprehensive survey of M(lp)…π(arene) interactions in macromolecular structures is 

not appropriate here, one structure is particularly worthy of highlighting.  As shown in Fig. 

X.24, an interaction of a telluride atom incorporated within the five-membered ring of a 

guanidine residue occurs in a synthetic oligonucleotide.80  This Te(lp)…π(arene) [d = 3.56 Å 

and α = 12.7º] interaction does not have a precedent in the molecular chemistry of tellurium; 

selenium examples are known, however; see X.3.8.  

  

[Figure X.24 near here]  

  

X.5  Conclusions and Outlook  

The foregoing discussion indicates that M(lp)…π(arene) interactions exercise a very real role 

in the supramolecular chemistry of the main group elements, leading to well-defined zero-, 

one- and more rarely, two- and three-dimensional supramolecular assemblies.16-22  Thallium(I) 

compounds are the most likely to form these types of interactions, being found in nearly 14% 

of thallium(I)-containing structures.  This number is greater than the 9% probability for 

bismuth(III) to form Bi(lp)…π(arene) interactions which in turn is higher than 6% for 

antimony(III), selenium(II, IV) and tellurium(II, IV) compounds.  The least likely elements to 

form M(lp)…π(arene) interactions are arsenic(III) (4%), and tin(II) and lead(II) (2 ~ 3%) 

compounds.  As noted previously,16-22 no correlations exist between d and α.  In some 

bismuth(III) series of compounds, systematic variations in d were successfully correlated to 

differences in electronegativity of bismuth(III) centres as well as the π-systems.21.  

  

A complete theoretical understanding of M(lp)…π(arene) interactions is a work in progress.   
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However, there appears to be some consensus that the attributes leading to halogen bonding 

may be relevant in this context.  Thus, there is polarity in the electron distribution of the 

lonepair of electrons so that there is an electron deficiency at the tip of the lone-pair of electrons 

and a build-up of electron density around the girth.  The electron-rich π-system thereby  

interacts with the electropositive region at the tip of the lone-pair.81,82  However, as noted in 

the Introduction, dispersion-corrected DFT calculations reveal that these interactions may be 

sometimes described as donor(π)−acceptor(As) interactions,25 consistent with aforementioned 

“additional” contacts mentioned for (11)51, (12)52 and (38)78.  The latter observations indicate 

more theoretical work is required to fully appreciate the nature of these interactions.  

  

Clearly, M(lp)…π(arene) interactions may participate in the stabilisation of crystal structures 

and their presence should be identified during any crystal structure analysis.  Future work will 

be devoted to fully understanding the chemical nature of the bonding behind these interactions, 

investigation of the relative importance of semi-localised and localised M(lp)…π(arene) 

interactions, and expanding the range of aromatic systems that can participate in 

M(lp)…π(arene) interactions, perhaps being inspired by macromolecular  

structures.  
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Figure Captions  

  

Fig. X.1 (a) Search protocols for the identification of M(lp)…π(arene) interactions in structure 

included in the Cambridge Structural Database: d is the distance between the main group 

element (M) and the centroid (Cg) of the arene ring, and the angle, α, is defined as the angle 

between the normal to the plane through the arene ring (V1) and the vector passing through Cg 

to M (V2), and (b) A representation of a delocalised M(lp)…π(arene) interaction whereby the 

main group element (M) sits plumb to the plane of the arene ring or deviates from the vertical 

by no more than 30º.  

  

Figure X.2 Chemical diagram and molecular structure of supramolecular dimer 

[Sn{S2P(OPh)2}2]2, (1), being an example of a structure excluded from consideration as having 

an independent Sn(lp)…π(arene) interaction because the dimer is also sustained by Sn…S 

secondary bonding (black dashed lines).  Colour code: orange, main group element; yellow, 

sulphur; pink, phosphorous; red, oxygen; grey, carbon; purple, carbon of the interacting arene 

ring; purple dashed line, the M(lp)…π(arene) interaction.  
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Figure X.3 Chemical diagram of [In{OC6H2(CF3)3-2,4,6}]2, (2), and the supramolecular chain 

sustained by In(lp)…π(arene) interactions.  Additional colour code: aqua, fluoride or other 

halide.  

  

Figure X.4 Chemical diagrams of (a) [2-(2',6'-di-isopropylphenylamido)-4-(2',6'-

diisopropylphenylimino)-2-pentene]thallium(I), (3), and (b) Tl[N(SiMe3)C6H3(iPr)2-2,6], (4), 

and supramolecular aggregates sustained by Tl(lp)…π(arene) interactions.  Additional colour 

code: hunter green, silicon; blue, nitrogen.  

  

Figure  X.5  Chemical  diagram  of  {(η5-diphenylphosphanyl-tetramethyl- 

cyclopentadienyl)thallium(I), (5), and the supramolecular chain sustained by Tl(lp)…π(arene) 

interactions.  
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Figure X.6 Chemical diagram of [Sn{N(Ph)=C(Me)C(H)=C(Me)N(Ph)}Cl], (6), and the 

supramolecular dimer sustained by Sn(lp)…π(arene) interactions.  

  

Figure X.7 Chemical diagrams of (a) [{Sn(O2CMe)2}2O]2.C6H6, (7), (b) 

(Me3Si)2NSn[OC6H2(tBu2)-2,6-Me-4], (8), and (c) bis(µ2-N-(2- 

oxidophenyl)salicylideneiminato)-di-tin(II), (9), and supramolecular chains sustained by 

Sn(lp)…π(arene) interactions.  

  
Figure X.8 Chemical diagrams of (a) Pb(SC6H3Me2-2,6)2(NC5H4NMe2-4), (10), and (b) 

Pb(C6H4Br-4)2, (11), and supramolecular aggregates sustained by Pb(lp)…π(arene)  
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interactions.  

  

Figure X.9 Chemical diagram of (N,N'-di-neopentyl-1,2-phenylenediamino)lead(II), (12), and 

the supramolecular layer sustained by Pb(lp)…π(arene) interactions.  

  

Figure X.10 Chemical diagrams of (a) [(2,6-Me2C6H3N)AsCl]3, (13), (b) chloro-(toluene3,4-

dithiolato)arsenic(III), (14), and (c) (PhAsO)4, (15), and supramolecular aggregates sustained 

by As(lp)…π(arene) interactions.  
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Figure X.11. Chemical diagrams of (a) (p-tol)SbCl2, (16), (b) dichloro-

(8(dimethylamino)naphthyl)antimony(III), (17), and (c) Sb(SC6H3Me2-3,5)3, (18), and 

supramolecular aggregates sustained by Sb(lp)…π(arene) interactions  

  

Figure X.12 Chemical diagram of [(t-BuN)Sb(C6H3Me2-2,6)]2, (19), and the supramolecular 

layer sustained by Sb(lp)…π(arene) interactions.  

  
Figure X.13 Chemical diagrams of (a) bis-[2-(dimethylaminomethyl)phenyl]-iodido- 
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bismuth(III), (20), and (b) (2.2.2)paracyclophane tris[trichlorido-bismuth(III)], (21), and their 

supramolecular aggregates sustained by Bi(lp)…π(arene) interactions.  

  

Figure X.14 Chemical diagrams of (a) Ph3Bi, (22), and (b) Bi(OC6H3Me2-2,6)3, (23), and their 

supramolecular chains sustained by Bi(lp)…π(arene) interactions.  

  

Figure X.15 Chemical diagram of [(t-BuN)BiPh]2, (24), and the supramolecular layer sustained 

by Bi(lp)…π(arene) interactions.  

  

Figure X.16 Chemical diagrams of (a) [MeSeC(=CH2)CH2N
+(H)Me2], (25), (b) 5-

phenylselenazolidine-2,4-dione, (26), and (c) [2-MeOC6H4C(=O)Se]2, (27), and their  

supramolecular aggregates sustained by Se(lp)…π(arene) interactions.  
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Figure X.17 Chemical diagrams of (a) [PhSe(Cl)C=C(Cl)SePh], (28), and (b) 

1,2,4,5tetrafluoro-3,6-bis(phenylseleno)benzene, (29), and their supramolecular aggregates 

sustained by Se(lp)…π(arene) interactions.  

  

Figure X.18. Chemical diagrams of (a) 2-phenyl-2,3-dihydro-1,3,2-benzothiazaphosphole 

2selenide, (30), [Ph4P]2[As4Se6]  (31), and (c) PhSe(=O)OH, (32), and their supramolecular 

chains sustained by Se(lp)…π(arene) interactions.  

  

Figure X.19 Chemical diagram of [PhN+Me3][SeBr4]{2[Se2Br2].2Br-}, (33), and the 

supramolecular layer sustained by Se(lp)…π(arene) interactions.  
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Figure X.20 Chemical diagram of [PhTe(Cl)C=C(Cl)TePh], (34), and the supramolecular 

chain sustained by Te(lp)…π(arene) interactions.  

  

Figure X.21 Chemical diagram of [4-ClC6H4TeTeC6H4Cl4-4], (35), and a view of the 

threedimensional supramolecular architecture sustained by Te(lp)…π(arene) interactions.  

  

Figure X.22 Chemical diagrams of (a) (4-MeOC6H4)Te[(Ph)C=C(H)SPh]Cl2, (36), (b) 

[Ph(Cl)C=CH]2TeCl2, (37), and (c) bis(2,2'-biphenylylene)-tellurium(IV), (38), and their 

supramolecular aggregates sustained by Te(lp)…π(arene) interactions.  
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Figure X.23 Images highlighting the O(lp)…π(ring) interaction between the cytidine-

sugarO(lp) and the pyrimidine ring of a guanine residue in left-handed Z-DNA.  

  

Figure X.24 Images highlighting the Te(lp)…π(ring) interaction of a doubly-bonded telluride 

atom interacting with the five-membered ring of a guanidine ring.  


