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Abstract: The crystal structure analysis of the biologically-
relevant title compound (1) shows the carbonyl-O2 and 
amide-H atoms to be anti, and perpendicular relationships 
between the carbamate residue and the pyridyl ring [dihe-
dral angle = 84.60(10)°] and between the carbamate and 
aryl ring [74.84(11)°]; the rings are approximately co-planar 
[12.07(17)°]. An intramolecular hydroxyl-O–H···N(pyridyl) 
hydrogen bond that closes a S(7) loop is noted. Of interest 
is the observation that this hydrogen bond is not found in 
the structure of the pyrimidinyl analogue (2) which was 
characterised as a monohydrate, i.e. 2·H2O, in an earlier 
study. Density-functional theory calculations show the 

observed conformation in 1 is 2.0 kcal/mol more stable 
than the conformation where the intramolecular hydro-
gen bond is absent. This energy difference reduces to ca 
0.5 kcal/mol in the case of 2. The differences in molecular 
conformations found for 1 and 2 are therefore ascribed to 
the dictates of overall molecular packing, in particular 
due to the influence of lattice water in 2·H2O.

Keywords: conformation; crystal structure analysis; DFT; 
2-Hydroxyethylamine cores; X-ray diffraction.

Introduction
Compounds having 2-hydroxyethylamine cores have useful 
biological activities as aspartyl protease enzymes inhibi-
tors, [1, 2], as inhibitors of BACE-1 to combat Alzheimer’s 
disease [3], as anti-malarial agents [4–8], as anti-bacterial 
agents [7], and in the treatment of leishmaniasis/HIV-1 co-
infections [9]. In continuation of our structural studies on 
these and related compounds [10, 11], herein the crystal 
structure of the title compound, 1 (Figure 1) is described.

During the analysis of the molecular structure of 
1 is was apparent that an intramolecular hydroxyl-
O–H···N(pyridyl) hydrogen bond had formed. This was 
unexpected as in the previously reported pyrimidin-2-yl 
analogue, 2, isolated as a monohydrate, no such hydrogen 
bond was formed [10]. While the absence of an intramo-
lecular hydroxyl-O–H…N(pyrimidinyl) hydrogen bond in 
2 might be related to the influence of a solvent molecule 
of water incorporated in the crystal lattice, the different 
behaviour was not anticipated as both compounds were 
prepared and recrystallised under very similar conditions 
[10]. Accordingly, it was thought of interest to complement 
the X-ray structural studies with quantum chemical calcu-
lations in order to understand the different crystallisation 
outcomes/molecular conformations. The results of this 
investigation are reported herein.
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Experimental
Synthesis and characterisation

A solution of 2-mercaptopyridine (1.5 mmol), (2S,2S)-boc-phenyla-
lanine epoxide (1.6 mmol) and triethylamine (1.6 mmol) in metha-
nol (10 mL) was stirred at room temperature for 2 h. The reaction 
mixture was rotary evaporated. The solution was concentrated in 
vacuo and to the residue was added 5% aqueous HCl solution. The 
mixture was extracted with dichloromethane and the combined 
organic layers were washed with brine, dried over anhydrous 
Na2SO4 and evaporated, giving 1 in 98% yield. The crude product 
was crystallised from methanol/water (7:3), m.pt: 372–373 K. The 
sample used in the structure determination was grown from its 
EtOH solution.

1H-NMR (DMSO-d6): 8.39 (d, 1H, J = 4.2, H5′); 7.62 (dt, 1H, 1J = 8.0, 
2J = 1.8, H3′); 7.29 (d, 1H, J = 9.5, H2′); 7.25-7.22 (m, 2H, Ph); 7.18-7.14 (m, 
3H, Ph); 7.09 (ddd, 1H, 1J = 7.3, 2J = 5.0, 3J = 0.7, H4′); 6.70 (d, 1H, J = 8.8, 
NH); 5.37 (d, 1H, J = 5.8, OH); 3.66–3.58 (m, 2H, H3 and H2); 3.51 (dd, 
1H, 1J = 13.5, 2J = 3.4, Hb); 3.08-3.01 (m, 2H, H1a and H4b); 2.57 (dd, 1H, 
1J = 13.7, 2J = 10.2, H4a); 1.26 (s, 9H, Boc).

13C-NMR (DMSO-d6): 158.7; 155.2; 149.1; 139.5; 136.5; 129.1; 127.8; 
125.6; 121.7; 119.5; 77.4; 72.4; 56.2; 35.6; 34.1; 28.1.

EM-ESI (m/z): 397.2 (M++Na, 100%).
IR νmax (KBr pellets, cm−1): 3356 (OH); 1686 (C=O); 2979 (NH); 

1578 (C=C and C=N); 659 (C–S).

Crystal structure determination

Intensity data were measured at 100 K on a Rigaku Saturn724+ CCD 
with Mo Kα radiation. Data processing and absorption correction 
were accomplished with CrystalClear-SM Expert [12]. With the use 
of SHELXS-97 [13] and SHELXL-2014/7 [14] programs integrated into 
WinGX [15], the structure was solved by direct methods and refined on 
F2 by full-matrix least-squares with anisotropic displacement para-
meters for all non-hydrogen atoms. The C-bound H atoms were placed 
on stereochemical grounds and refined in the riding model approxi-
mation with Uiso = 1.2–1.5Ueq(carrier atom). The O- and N-bound H 
atoms were refined with O–H = 0.84 ± 0.01 and N–H = 0.88 ± 0.01  Å, 

Fig. 1: Chemical structure of 1: tert-butyl N-[3-hydroxy-1-phenyl-
4-(pyridin-2-ylsulfanyl)butan-2-yl]carbamate.

respectively, and with Uiso = 1.5Ueq(O) and Uiso = 1.2Ueq(N). A  weight-
ing scheme of the form w = 1/[σ2(Fo

2) + (0.034P)2 + 0.034P] where 
P = (Fo

2 + 2Fc
2)/3 was introduced. The absolute structure was deter-

mined based on 1202 Friedel pairs included in the data set, and con-
firmed that expected from the synthesis. Unit cell data, X-ray data 
collection parameters, and details of the structure refinement are 
given in Table 1. The programs ORTEP-3 for Windows [15], PLATON 
[16], QMol [17] and DIAMOND [18] were also used in the analysis.

Computational chemistry

Density-functional theory (DFT) calculations were performed 
using the Gaussian09 software package [19]. The LC-wPBE [20, 21] 
exchange-correlation functional was coupled with the exchange-
hole dipole moment (XDM) dispersion model [22, 23] as imple-
mented in the postg program [24]. The 6-31+G* basis set was 
employed as was Gaussian’s ultrafine setting for the numerical 
integration grid.

The pyridyl and pyrimidinyl derivatives, 1 and 2, were subjected 
to full geometry relaxation. At the minimum-energy structures, 
the dihedral angle along the C–S bond was rotated, and geometry 
relaxations at fixed values for that angle were conducted in order 

Table 1: Crystallographic data and refinement details for 1.a

Formula   C20H26N2O3S
Formula weight   374.49
Crystal colour, habit   Colourless needle
Crystal size/mm   0.04 × 0.07 × 0.65
Crystal system   Monoclinic
Space group   P21

a/Å   10.2898(8)
b/Å   9.8137(7)
c/Å   10.4918(8)
β/°   112.340(8)
V/Å3   979.95(14)
Z/Z′   2/1
Dc/g cm−3   1.269
F(000)   400
μ(MoKα)/mm−1   0.187
Measured data   7268
θ range/°   3.1–27.5
Unique data   3905
Rint   0.045
Observed data 
(I  ≥  2.0σ(I))

  3460

R, obs. data; all data   0.040; 0.046
Rw, obs. data; all data  0.087; 0.090

aSupplementary material: Crystallographic data (excluding struc-
ture factors) for the structures reported in this paper have been 
deposited with the Cambridge Crystallographic Data Centre as 
supplementary publication no. CCDC-1493079. Copies of available 
material can be obtained free of charge, on application to CCDC, 
12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 
or e-mail: deposit@ccdc.cam.ac.uk). The list of Fo/Fc-data is 
available from the author up to 1 year after the publication has 
appeared.
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Fig. 2: Molecular structure of 1 showing the atom labelling scheme. 
The diagram is drawn at the 70% probability level.

Table 2: Selected torsion angle data (°) in the experimental (1 and 2·H2O [10]) and geometry-optimised structures of 1 and 2.a

Torsion angle  
 

Experimental 1  
 
Geometry optimised 1  

 
Experimental 2·H2O  

 
Geometry optimised 2

Y = C2 Y = C2 Y = N3 (pym) Y = N3 (pym)

S1–C6–C7–O1   68.4(3)   88.9   65.2(3)   88.9
C6–S1–C1–N1   14.2(3)   16.7   178.6(2)   5.7
C6–S1–C1–Y   –167.2(2)   –163.9   –0.9(3)   –173.7
C1–S1–C6–C7   –88.1(2)   –79.2   89.9(2)   –75.1
S1–C6–C7–C8   –168.42(19)   –151.9   –176.4(2)   –151.9
O1–C7–C8–N2   –169.8(2)   –173.2   –179.3(3)   –176.2
O1–C7–C8–C14   –48.0(3)   –49.6   –57.7(3)   –52.9
N2–C8–C14–C15  –58.6(3)   –53.6   –70.4(3)   –50.8
N2–C8–C7–C6   65.5(3)   64.4   62.0(3)   61.2
C6–C7–C8–C14   –172.7(2)   –172.1   –176.3(3)   –175.6
C8–N2–C9–O2   –0.1(4)   20.5   –3.5(5)   26.0
C8–N2–C9–O3   180.0(2)   –161.0   –165.2(3)   –155.2

aRefer to Figure 2 for the numbering scheme.

to examine the energy profile with respect to rotation around the 
C–S bond.

Hirshfeld surface analysis

Crystal Explorer 3.1 [25] was employed to generate Hirshfeld sur-
faces mapped over dnorm, shape-index, curvedness and electrostatic 
potential for each of 1 and 2·H2O. The electrostatic potentials were 
calculated using TONTO [26, 27] which was integrated into Crystal 
Explorer. The electrostatic potentials were mapped on Hirshfeld sur-
faces using the STO-3G basis set at the Hartree-Fock level of theory 
over the range ±0.08 and ±0.13 au for 1 and 2·H2O, respectively. The 
contact distances di and de from the Hirshfeld surface to the near-
est atom inside and outside, respectively, enables the analysis of the 
intermolecular interactions through the mapping of dnorm. Finally, the 
combination of de and di in the form of two-dimensional fingerprint 
plots [28] provides a convenient summary of intermolecular contacts 
in the respective crystal.

Results and discussion

Crystal and molecular structures

The molecular structure of 1 is shown in Figure 2. Each 
of the C7 and C8 stereocentres has an S-configuration as 
expected from the synthetic protocols. The four atoms 
comprising the carbamate moiety are strictly co-planar 
(r.m.s. deviation = 0.0004 Å) and the carbonyl-O2 and 
amide-H atoms are anti. The dihedral angle between the 
carbamate and the pyridyl ring is 84.60(10)°, indicat-
ing an almost perpendicular relationship. The compara-
ble angle formed with the aryl ring is 74.84(11)°, and the 
angle between the two rings is 12.07(17)°. From the torsion 
angle data collated in Table 2, it is evident that there is 
an extended approximately planar C4S chain running 
through the molecule, i.e. the S1–C6–C7–C8 torsion angle 
is –168.42(19)° and C6–C7–C8–C14 is –172.7(2)°. In this 
description, the hydroxyl and 2-pyridyl groups lie to one 
side, and the carbamate ester to the other. Finally, the O1–
C7–C8–N2 torsion angle of –169.8(2)°, where the terminal 
atoms are anti, indicates co-planarity in this residue. The 
hydroxyl group is in an orientation to allow the formation 
of an intramolecular hydroxyl-O–H···N(pyridyl) hydrogen 
bond that closes a S(7) loop, Table 2.

The most prominent feature of the molecular packing 
is the formation of amide-N–H…O(carbonyl) hydrogen 
bonds, Table 3, made possible by the anti relationship 
between the amide-H and carbonyl-O atoms. The result 
is the formation of helical supramolecular helical chains 
along the b-axis, Figure 3a. Chains are assembled into 
layers in the ab-plane by π(pyridyl)…π(aryl) interactions 
operating in the a-direction, Table 3 and Figure 3b. The 
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Table 3: Summary of intermolecular interactions (A–H…B; Å, °) operating in the crystal structure of 1.a

A   H   B   A–H   H…B   A…B   A–H…B  Symmetry operation

O1   H1o   N1   0.85(3)   1.94(3)   2.782(3)   173(3)  x, y, z
N2   H2n   O2   0.871(14)   2.181(15)   3.029(4)   164(3)  2 – x, ½ + y, –z
Cg(N1,C1–C5)    Cg(C15–C20)      3.6868(18)   12.07(14)  –1 + x, y, z

aCg corresponds to the ring centroid of the specified atoms.

layers stack along the c-axis without specific interactions 
between them, Figure 3c.

Computational chemistry

The key observation differentiating the molecular struc-
tures of 1 and 2 is that in the former, an intramolecular 
hydrogen bond is formed but, in the latter, despite having 
two nitrogen atom acceptors, the hydrogen bond of 1 is not 
replicated in the experimental structure of 2·H2O. As seen 
in the overlay diagram of the experimental structures, 
Figure 4a, the lack of this hydrogen bond arises as a result 
of a very different orientation of the 2-pyrimidinyl ring in 
2·H2O cf. the 2-pyridyl ring in 1.

The molecular structure 1 was subjected to uncon-
strained geometry-optimisation calculations and an 
illustration of the overlap between energy-minimised 
structure and experimental (crystallographic) structure is 
shown in Figure 4b. From this, it is apparent that while 
some differences exist, there is a high degree of agreement 
between the molecular structures. From the torsion angle 
data in Table 2, the major differences relate to twists about 
the S1–C6, C6–C7 and N2–C9 bonds; other differences are 
usually <5°. There are also differences in the relative ori-
entations of the terminal rings so while they were approxi-
mately co-planar in experimental 1, i.e. the dihedral 
angle = 12.07(17)°, they are twisted in geometry-optimised 
1, i.e. that dihedral angle is 65.1°. The most notable feature 
of the optimised structure is the persistence of the intra-
molecular hydroxyl-O–H···N(pyridyl) hydrogen bond.

The experimental structure of 2, sans the water 
molecule of crystallisation, was also subjected to geom-
etry-optimisation calculations. The overlay diagram of 
experimental 2 and geometry-optimised 2, Figure 4c, and 
the data in Table 2, suggest perturbations in the molecular 
geometries, with changes in torsion and, crucially, evi-
dence for intramolecular hydroxyl-O–H···N(pyrimidinyl) 
hydrogen bond formation was found.

When the optimised forms of 1 and 2 are overlapped, 
Figure 4d, the agreement between the structures is closer 
than shown in Figure. 4a, with the obvious similarity 
not found in the experimental structures, being in the 

S-terminus whereby the 2-pyridyl ring in 1 is syn to the 
hydroxyl group similar to the 2-pyrimidinyl group in 2. 
Based on these results, there appear to be distinct confor-
mational preferences in 1 and 2 and in order to test this 
further, additional calculations were performed.

For each compound, a potential energy (PE) profile 
was constructed by rotating about the C6–S1 bond and 
fixing the value of the dihedral angle but allowing the res-
idues on either side of the bond to relax. The PE profiles 
of the two compounds, Figure 5, indicate that the initial 
conformer of each compound was the minimum energy 
structure and rotation of the defined torsion leads to the 
less stable conformers. This was particularly the case for 2 
where the energy differences between the most stable con-
formation and the one with no hydrogen bond as smaller, 
i.e. 0.5 kcal/mol compared with the differences calculated 
for 1, i.e. >2.0 kcal/mol. Therefore, it is likely that the dif-
ferences in molecular conformations are related to the 
influence of molecular packing, in particular the role of 
lattice water in 2·H2O. A deeper analysis of the molecular 
packing is given Hirshfeld surface analysis.

Hirshfeld surface analysis of 1 and 2.H2O

In this section an analysis of the molecular packing in 1 
based on Hirshfeld surface analysis will be contrasted to 
that in 2·H2O. While the molecular packing for 1 has been 
described above, it is salient to recall the essential fea-
tures of the molecular packing for 2·H2O here [10] before 
describing the Hirshfeld surface analyses for 1 and 2·H2O.

In the crystal of 2·H2O, linear supramolecular chains 
mediated by amide-N–H…O(carbonyl) hydrogen bonds 
are found, Figure 6. Two chains are linked into a tape via 
hydrogen bonding involving the water molecule of crystal-
lisation. The water molecule forms three significant inter-
actions, accepting a hydrogen from a hydroxyl group, and 
donating hydrogen atoms to a symmetry related hydroxyl 
group and to a pyrimidinyl-nitrogen atom.

The comparison of Hirshfeld surfaces computed for 
1 and its pyrimidin-2-yl analogue, 2·H2O, i.e. containing a 
lattice water molecule, successfully explains the influence 
of the latter in the crystal. The Hirshfeld surfaces mapped 
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Fig. 3: Molecular packing in 1: (a) a supramolecular helical chain 
along the b-axis moderated by amide-N–H…O(carbonyl) hydrogen 
bonds, shown as blue dashed lines, (b) supramolecular layer in the 
ab-plane whereby the chains of (a) are connected by π(pyridyl)…
π(aryl) interactions, shown as purple dashed lines, and (c) a view 
of the unit cell contents shown in projection down the a-axis, high-
lighting the stacking of layers along c.

Fig. 4: Overlay diagrams of the molecular structures in 1 and 
2, whereby the C6–C7–C8 chains have been made coincident: 
(a) experimental 1 (red image) and experimental 2 in 2·H2O (blue), 
(b) experimental 1 (red image) and geometry optimised 1 (green), 
(c) experimental 2 in 2·H2O (blue image) and geometry optimised 2 
(purple), and (d) geometry-optimised 1 (green image) and geometry-
optimised 2 (purple).

Fig. 5: Potential energy curves for 1 and 2, whereby rotation about 
the C6–S1 bond in 20° increments were effected.

over dnorm, de, shape-index, curvedness and electrostatic 
potential clearly indicate the formation of different supra-
molecular assemblies through the different intermolecu-
lar interaction profiles for molecules 1 and 2·H2O in their 
respective crystal. Thus, the shape of surfaces, the number 
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Fig. 6: Molecular packing in 2·H2O: supramolecular tape moder-
ated by amide-N–H…O(carbonyl) hydrogen bonds, highlighting the 
pivotal role of water molecules forming water-O–H···N(pyrimidinyl), 
water-O–H···O(hydroxyl) and hydroxyl-O–H···O(water) hydrogen 
bonds. The N–H···O and O–H···O hydrogen bonds are shown as blue 
and orange dashed lines, respectively.

Fig. 8: Two views of the Hirshfeld surface mapped over electrostatic 
potential for 1. The red and blue regions represent negative and 
positive electrostatic potentials, respectively.

Fig. 7: Two views of Hirshfeld surfaces mapped over dnorm for 1, 
where the atom labels near red spots indicate the intermolecular 
interactions.

Table 4: Additional short interatomic contacts (Å) in 1 and 2·H2O.

Contact   Distance (Å)  Symmetry operation

1
 C1...C18   3.336(5)  –1 + x, y, z
 C4...C19   3.367(4)  –1 + x, y, z
 C19...H4   2.73  2 – x, ½ + y, 1 – z
 O1...H13B   2.62  x, y, 1 + z
 O1...H12C   2.67  2 – x, ½ + y, –z
 O2...H16   2.69  2 – x, ½ + y, –z
 H1o...H12C   2.38  2 – x, ½ + y, –z
 H13A...H14A  2.24  2 – x, ½ + y, –z
2·H2O
 O2...H19   2.66  x, –1 + y, z
 N1...H6   2.63  ½-x, –½+y, 2 – z
 H1...H26   2.39(3)  x, 1 + y, z
 H10...H24   2.36  –½ + x, ½ + y, z
 H12...H14   2.33  x, –1 + y, z

of bright-red spots on the dnorm mapped surfaces and the 
red and blue regions on the Hirshfeld surfaces mapped 
over electrostatic potential are different for 1 and 2.

In the two views of the Hirshfeld surface mapped over 
dnorm in the range –0.12 to 1.4 Å for 1 are shown in Figure 7. 

The bright-red spots appearing near the amide-H2n and 
carbonyl-O2 atoms indicate their roles as the respective 
donor and acceptor in the dominant N–H···O hydrogen 
bonding; these also appear as blue and red regions cor-
responding to positive and negative electrostatic poten-
tials on the Hirshfeld surface mapped over electrostatic 
potential in Figure 8. The presence of a short intermo-
lecular C···C contacts between the pairs of pyridyl and 
aryl carbons, C1, C18 and C4, C19, Table 4, indicative of 
π···π contacts, Table 3, are also viewed as light-red spots 
near these atoms in Figure 7. In addition, a pair of faint-
red spots near benzene-C19 and pyridyl-H4 also indicate 
the presence of short intermolecular C···H/H···C contacts, 
Table 4.
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Fig. 9: Two views of Hirshfeld surfaces mapped over dnorm for 2·H2O, 
where the atom labels near red spots indicate the intermolecular 
interactions.

Fig. 10: Two views of the Hirshfeld surface mapped over electro-
static potential for 2·H2O. The red and blue regions represent nega-
tive and positive electrostatic potentials, respectively.

In the Hirshfeld surface mapped over dnorm for the 
lattice water-containing pyrimidin-2-yl analogue, 2·H2O, 
Figure 9, the increase in the number of dominating inter-
molecular interactions is viewed as a greater number of 
bright-red spots appearing on the surface near the O1w, 
H1w, H3n, O2, H1o and N1 atoms. The hydrogen bond 
involving the hydroxyl-O1 and water-H2w are inside the 
surface and shown with dashed lines between them in 
Figure 9. The respective donors and acceptors of hydro-
gen bonds in this molecule are also viewed as blue and 
red regions on the Hirshfeld surface mapped over electro-
static potential in Figure 10.

The overall two-dimensional fingerprint plots cor-
responding to different percentage contributions from 
various non-bonded contacts for 1 and 2·H2O are illus-
trated in Figure 11; and are summarised quantitatively in 
Table 5. The fingerprint plots delineated into H···H, O···H/
H···O, C···H/H···C and S···H/H···S contacts [29] are shown 
in Figures 11b–e, respectively. In addition, the plots delin-
eated into C···C contacts for 1 and N···H/H···N for 2·H2O 
are included in Figure 11f due to their significance in their 
respective crystal structures.

The fingerprint plots delineated into H···H contacts for 
1 and 2·H2O, Figure 11b, show the points to be distributed 
in different patterns with respect to their molecular confor-
mation and have their respective peaks at de = di ~ 1.1 Å for 
1, and 1.2 Å for 2·H2O corresponding to short interatomic 
H···H contacts, Table 4. The decrease in the percentage 
contribution from H···H contacts to the Hirshfeld surface 
of 2·H2O is due to the presence of O–H···O, O–H···N and 
N–H···O hydrogen bonding involving the solvent water 
molecule. The absence of such hydrogen bonding inter-
actions in 1 enables more hydrogen atoms on the surface 
to form intermolecular interactions. An almost the same 
percentage contribution from O···H/H···O contacts to the 
Hirshfeld surfaces is noted for 1 and 2·H2O, Figure 11c, 
Table 4, although these arise from different intermolecu-
lar contacts, i.e. the short interatomic O···H/H···O con-
tacts for the former and the dominating hydrogen bonds 
involving water in the latter. A pair of spikes with the 
tip at de + di ~ 2.2 Å in the fingerprint plot of 1 arises from 
intermolecular N–H···O interaction whereas in the respec-
tive plot for 2·H2O the tip at de + di ~ 2.0 Å derives from 
O–H···O interactions masking the intermolecular N–H···O 
interactions.

In the absence of C–H···π interactions in the crystal 
and the characteristic wings in the fingerprint plot deline-
ated into C···H/H···C contacts, Figure 11d, the forceps-like 
end at de +  di ~ 2.7 Å with 11.5% contribution to the surface 
for 1 is the result of short interatomic contacts, Table 4. 
The 14.3% contribution from these contacts in 2·H2O are a 
result of the different distribution of points in the plot at 
(de, di) distances greater than van der Waals separations, 
hence do not have their influence on the crystal packing. 
Finally, the 4.6 and 5.0% contributions from S···H/
H···S contacts to the Hirshfeld surfaces for 1 and 2·H2O, 
Figure 11e, showing an asymmetric distribution of points 
with the tips at distances greater than van der Waals dis-
tances indicate these do not have a significant influence 
on the molecular packing.

The 8.1% contribution from N···H/H···N contacts to 
the Hirshfeld surface of 2·H2O is the result of O–H···N 
hydrogen bonding involving the solvent water molecule, 
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Fig. 12: A view of Hirshfeld surface for 1 mapped over (a) shape-
index and (b) curvedness.

Fig. 11: Two-dimensional fingerprint plots: (a) full, and delineated 
into (b) H···H, (c) O···H/H···O, (d) C···H/H···C, (e) S···H/H···S, and (f) 
C···C for 1 and N···H/H···N for 2·H2O interactions.

and is viewed as a pair of spikes in the outer part of the 
plot at de + di ~ 2.1 Å, Figure 11f; a very small percentage 
contribution, i.e. 1.5%, from these contacts in the structure 

Table 5: Percentage contributions of various intermolecular con-
tacts to the Hirshfeld surface areas of 1 and 2·H2O.

Contact  
 

% contribution

1   2·H2O

H···H   65.9   58.9
O···H/H···O  10.5   10.7
C···H/H···C   11.5   14.3
S···H/H···S   4.6   5.0
N···H/H···N   1.5   8.1
C···C   2.9   0.1
C···S/S···C   2.4   0.4
N···S/S···N   0.5   0.3
S···O/O···S   0.0   1.0
C···N/N···C   0.1   0.0
S···S   0.0   0.5
C···O/O···C   0.1   0.2

of 1 clearly indicates the absence of such interactions. The 
C···C contacts are assigned to short interatomic C1···C18 
and C4···C19 contacts listed in Table 4 and π···π stacking 
interactions between symmetry related pyridyl and aryl 
rings as described in the earlier discussion of the mole-
cular packing for 1 appear as the distinct distribution of 
points in the plot delineated into C···C contacts, Figure 11f. 
A pair of small tips at de + di ~ 3.3 Å belong to the C1···C18 
contact whereas the points distributed around these tips 
correspond to other C···C contacts, and the points around 
de = di ~ 1.9 Å result from π···π contacts. The presence of 
π···π stacking interactions is also indicated through the 
appearance of red and blue triangle pairs on the Hirsh-
feld surface mapped with shape-index property identi-
fied with arrows in the image of Figure 12a, and in the flat 
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Fig. 13: A view of Hirshfeld surface for 2·H2O mapped over (a) 
shape-index and (b) curvedness.

region on the Hirshfeld surface mapped over curvedness 
in Figure 12b.

In the structure of 2·H2O, the orientation of aryl and 
pyrimidinyl rings around the C5S backbone prevents them 
from forming such contacts resulting in a negligible con-
tribution to the surface. The images corresponding to Hir-
shfeld surface mapped with shape-index property and 
curvedness in Figures 13a and b are consistent with this 
conclusion.

Conclusions
The experimental molecular structures of 1 and 2 in 2·H2O, 
determined on crystals prepared under essentially the 
same conditions, present two different conformations 
with the former featuring an intramolecular hydroxyl-
O–H···N(pyridyl) hydrogen bond which density-functional 
calculations suggest is ca 2.0 kcal/mol more stable that the 
conformation where this hydrogen bond is absent. In the 
case of 2·H2O, the putative conformation where the hydro-
gen bond is present is only 0.5 kcal/mol more stable that the 
conformation where the hydrogen bond is absent. Under 
these circumstances, the energy gain from global crystal 
packing, most notably the involvement of lattice water, 
more than compensates the adoption of the high-energy 
molecular conformation found in the structure of 2·H2O.
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