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Abstract 14 

One of the leading causes of the hand, foot and mouth disease (HFMD) is Enterovirus 71 15 

(EV-A71), displaying symptoms such as fever and ulcers in children but some strains can 16 

produce cardiopulmonary oedema which leads to death. There is no FDA-approved 17 

vaccine for prevention of severe HFMD. The molecular determinants of virulence for EV-18 

A71 are unclear. It could be a single or a combination of amino acids that determines 19 

virulence in different EV-A71 genotype/sub-genotypes. Several EV-A71 strains bearing 20 

single nucleotide (nt) mutations were constructed and the contribution of each mutation to 21 

virulence was evaluated. The nt(s) that contributed to significant reduction in virulence in 22 

vitro were selected and each mutation was introduced separately into the genome to 23 

construct the multiply mutated EV-A71 strain (MMS) which carried six substitutions of 24 

nt(s) at the 5’-NTR (U700C), VP1-145 (E to G), VP1-98E, VP1-244K and G64R in the 25 

vaccine seed strain that had a partial deletion within the 5’-NTR region (nt. 475-485) of 26 

∆11bp. In comparison to the wild type strain, the MMS showed low virulence as it 27 

produced very low RNA copy number, plaque count, VP1 and had 105-fold higher 28 

TCID50, indicative of a promising LAV candidate that should be further evaluated in vivo. 29 
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Abbreviations 32 

EV-A71: Enterovirus 71; PV: Poliovirus; 5’-NTR: 5’- non translated region; aa: amino 33 

acid; nt: nucleotide; CPE: cytopathic effects; MOI: multiplicity of infection; RD: 34 

Rhabdomyosarcoma; PFU: plaque forming units; TCID50: 50% tissue culture infectious 35 

dose; VP1: Viral protein; LAV: live attenuated vaccine; MMS: multiply mutated strain. 36 

1. Introduction 37 

In 2016, there were approximately 2.14 million reported cases of Hand, Foot and 38 

Mouth Disease (HFMD), including 204 deaths in China (WHO Western Pacific Region 39 

Surveillance Summary 2016). Vaccines against the Hand, Foot and Mouth Disease 40 

(HFMD) are highly desirable as HFMD has evolved to become a severe global and life 41 

threatening disease, ravaging lives of young children in cyclical epidemics in the Asia 42 

Pacific. With rising concern about the virulence of EV-A71, there is an urgent need for a 43 

vaccine against EV-A71 to be produced that is endorsed by the United States Food and 44 

Drug Administration (FDA). Up to date, several biopharmaceutical companies in China 45 

have ended their Phase III Clinical Trials, producing the inactivated vaccine (IV) 46 

adjuvanted with alum, against the sub-genotype C4a. Although the efficacy of their IVs 47 

was more than 90% against mild HFMD, it only conferred 80% protection against severe 48 

HFMD (Chong et al., 2015). The IV induces good humoral immunity but is deficient in the 49 

cellular arm of immunity, which is needed for long-term protection. Therefore, there is a 50 

need to develop other types of vaccines. The development of live attenuated vaccines 51 

(LAVs) is desirable as it is known to induce excellent immunogenicity, can elicit both 52 
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humoral and cellular immunity and able to confer live-long immunity. A LAV from the 53 

BrCr strain (S1-3’) prototype strain carrying mutations in the 3’-NTR, 3Dpol and 5’-NTR 54 

was constructed by Arita et al. (2007). Although there was reduced virulence, mild 55 

neurological symptoms were still observed in the 3 cynomolgus monkeys immunized with 56 

the EV-A71 (S1-3’) strain. Hence, the plan to use this strain as a LAV was discontinued 57 

(Arita et al., 2007). 58 

Before an effective LAV can be developed, there is a need to identify the genetic 59 

determinants of virulence. Once the specific determinants of virulence in EV-A71 have 60 

been identified, rational design of the LAV can be carried out by site directed mutagenesis 61 

(SDM) to target the specific amino acids that are associated with virulence. Classification 62 

of genetic determinants of virulence in EV-A71 by analyzing differences in the genome has 63 

been published. Sequence comparison between virulent and non-virulent strains showed 64 

that 4 amino acids (aa) in VP1 (GlyP710/GlnP710/ArgP710/GluP729), 1 aa. in the 2A protein 65 

(LysP930) and 4 nucleotides (nt) in the 5’-NTR (GP272, UP488 and AP700/UP700) could be 66 

genetic determinants for virulent EV-A71 sub-genotype C4 strains (Li et al., 2011). In 67 

addition, it was postulated that the EV-A71 mutant displaying high-fidelity (sub-genotype 68 

B4) with a single aa. change, (G64R) in its RNA-dependent RNA polymerase (RdRP) 69 

enzyme greatly reduced viral pathogenicity in vivo (Meng and Kwang, 2014). Kataoka et 70 

al. (2015) found that if the aa. glutamic acid was present at position 145 of VP1 (VP1-71 

145E) in EV-A71 (sub-genotype C1), the virus induced neuro-pathogenesis and viremia 72 

more efficiently in cynomolgus monkeys than if glycine (G) was found at residue 145 73 

(VP1-145G) (Kataoka et al., 2015).  74 
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The analysis of significant molecular determinants of virulence that were responsible 75 

for the attenuated phenotypes of the Sabin Oral Polio Vaccine (OPV) strains was due to the 76 

complete sequences of 3 poliovirus (PV) genomes and the development of infectious PV 77 

cDNA clones. For example, the Sabin 1 strain differed from its wild type strain with 57 nt. 78 

substitutions (Nomoto et al., 1982). It was found that the A480G in the IRES region is the 79 

most vital determinant of virulence that contributed to the attenuation in the Sabin 1 strain. 80 

It could be possible that nt. 480 affects the formation of a structure in the 5’-NTR 81 

responsible for neuro-virulence (Kawamura et al., 1989). For the Sabin 2 strain there were 82 

only 2 nt. substitutions (nt. 481 in IRES and nt. 2909 in VP1), whereas a total of 10 nt. 83 

substitutions were discovered for the Sabin 3 strain. Amongst the 10, there were 3 84 

significant molecular determinants of virulence (C274U in IRES, C2034U in VP3, and 85 

U2493C in VP1 (Chia et al., 2014; Huang et al., 2013; Westrop et al., 1989). Virulent 86 

strains of EV-A71 are referred to as the new polio as it is neurotropic. Both the 87 

enteroviruses share very high sequence homology, particularly in the 5’-NTR. EV-A71 88 

contains a similar nt. G481 that is a significant molecular determinant of neuro-virulence in 89 

the PV wild type. Hence, studies on PV in earlier research could be good references to 90 

design attenuated EV-A71 viruses. 91 

With advances in molecular biology, novel approaches to viral attenuation can be 92 

further studied such as altered replication fidelity and codon de-optimization. As high 93 

mutation rates often hinder the effectiveness of a LAV, increasing the replication fidelity 94 

can potentially attenuate whole virus population, culminating to a population collapse with 95 

the absence of mutating vital immunogenic epitopes. For all species, codon pair usage is 96 

biased and some codon pairs are utilized more often than others (Gutman and Hatfield, 97 

1989). A big part of the genetic code is redundant as contiguous pairs of aa. can be coded 98 
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for by 36 alternate pairs of synonymous codons (Buchan et al., 2006; Sharp et al., 1986). 99 

Through the substitution of alternate but synonymous codons within the genome sequence, 100 

this would produce different codon pairs but expressing a similar sequence of amino acids. 101 

The proteins expressed from these viruses would elicit the same immune response as the 102 

wild type viruses. Burns et al. (2006) replaced half of the total codons in the Sabin type 2 103 

OPV strain (within capsid region) with less frequently utilized synonymous codons. They 104 

discovered that processing and manufacturing of viral proteins were unaffected but viral 105 

fitness was reduced (Burns et al., 2006). Subsequently, they replaced natural capsid region 106 

codons with synonymous codons that had an abundance of CpG and UpA dinucleotides. 107 

Codon-deoptimized PVs were produced and these viruses had significantly lower overall 108 

fitness as indicated by lower viral plaque number and virus yields (Burns et al., 2009).  109 

Mueller et al. (2006) introduced the biggest number of less frequently utilized 110 

synonymous codons in the capsid region of PV type 1 Mahoney. They found a significant 111 

decrease in replicative fitness and number of infectious viral progeny. As compared to the 112 

wild type, there was also reduction in the viral infectivity up to approximately 1,000-fold 113 

and decrease in genome translation (Mueller et al., 2006). The codon deoptimized viruses 114 

remained attenuated after repeated cell passages and were genetically stable with minimal 115 

risk of reversion (Burns et al., 2006; Mueller et al., 2006). As these viruses have sequences 116 

that are fairly divergent from circulating wild type viruses, probabilities for further 117 

recombination and production of vaccine-derived variants will be reduced. In addition, the 118 

codon deoptimized attenuated viruses were genetically stable and showed low risk of 119 

reversion. 120 
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Previously, we had mutated the EV-A71 virus (sub-genotype B4 virus; 121 

5865/Sin/000009) by substitutions at positions 475, 486, and 487 as these 3 nucleotides 122 

corresponded to the significant molecular determinants of neuro-virulence in PV Sabin 123 

strains 1, 2 and 3. In EV-A71, we have introduced a partial deletion (PD) (deletion from nt. 124 

475-485 in the 5’-NTR) as it is considered to be genetically more stable than single site 125 

mutations. Compared to mutants with specific nt replacements at 475, 486 and 487, the EV-126 

A71 PD mutant carrying the 11 base pair deletion demonstrated the lowest viral RNA copy 127 

number, plaque count and VP1 capsid protein. The PD mutant demonstrated low virulence 128 

and therefore, could possibly be a good potential seed strain for designing a LAV candidate 129 

(Yee et al., 2016).  130 

In this study, we constructed several codon deoptimized EV-A71 viruses by 131 

substituting single synonymous codon at positions VP1 (98E), VP1 (242K), VP1 (244K), 132 

VP2 (149K) and 2A (930K) to assess the outcome of each codon deoptimization on 133 

replication fitness in Rhabdomyosarcoma (RD) cells. If the LAV has single site mutations, 134 

there is a strong possibility for reversion to occur. However, if it bears a short deletion and 135 

further mutations added to the genome, there is a possibility to reduce reversion and 136 

increase the stability of LAVs. In addition, a better attenuated mutant was constructed by 137 

introducing multiple mutations into the EV-A71 mutant PD. Hence, we also constructed a 138 

multiply mutated EV-A71 strain (MMS) by substituting 6 nucleotides at the 5’-NTR 139 

(U700C), VP1-145 (E to G), VP1 (98E), VP1 (242K), VP1 (244K), G64R in the mutant PD 140 

(∆11bp in 5’-NTR). We evaluated the attenuation of virulence of the MMS in RD cells 141 

such as cytopathic effects, viral infectivity by tissue culture infectious dose (TCID50), 142 

plaque counts, production of VP1 and RNA copy number.  143 
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2. Materials and Methods  144 

2.1 Tissue culture of RD cell line 145 

Human Rhabdomyosarcoma cells (RD, ATCC # CCL-136) were propagated in Dulbecco's 146 

modified Eagle's Minimal Medium/F-12 (DMEM/F-12, Invitrogen, USA), that was 147 

supplemented with 1.5% NaHCO3, 10% fetal bovine serum (FBS) (Gibco, USA), 1% non-148 

essential amino acids and 1% penicillin/streptomycin antibiotics. The cells were grown at 149 

37°C in 5% CO2 until they reached confluence. 150 

2.2 Virus propagation and storage  151 

A 75cm2 tissue culture flask with 100% confluent Rhabdomyosarcoma (RD) cells was 152 

infected with 100 μl of virus supernatant. The flask was incubated for 1 h at 37°C and 153 

replaced with fresh DMEM supplemented with 2% FBS. The flask was incubated at 37°C 154 

for 24 - 48h and observed for cytopathic effects (CPE). The culture supernatants were 155 

harvested and freeze-thawed 3 times. The supernatants were then centrifuged at 10,000 x g 156 

for 20 minutes at 4°C to remove cell debris. The harvested supernatants were then stored at 157 

-80°C until further use. 158 

2.3 Viral RNA Extraction  159 

This process was performed using QIAamp® Viral RNA Mini Kit (Qiagen, Calif., USA). 160 

The principle was based on the selective binding properties of a silica-gel based membrane 161 

together with micro spin technology to extract viral RNA. The samples were lysed with a 162 

buffer which aids in denaturing RNases. The RNA was attached to the membrane which 163 

was then washed two times with buffers. The RNA was eluted with DEPC-treated water. 164 
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An aliquot of 140 μl taken from the samples were processed and the viral RNA was eluted 165 

in 50 μl of elution buffer (Qiagen, Calif., USA).  166 

2. 4 Reverse transcription of EV-A71 RNA 167 

The purified EV-A71 genomic RNA was converted into cDNA with the SuperScript® IV 168 

First Strand Synthesis System (ThermoFisher Scientific, Calif., USA). Each mixture 169 

contained 50 mM Tris-HCl (pH 8.3), 4 mM MgCl2, 10 mM DTT, 50 mM KCl, 0.5 mM 170 

dTTP, 0.4 MBq/mL [3H]-dTTP, 0.4 mM poly(A) oligo (dT)12-18 and SuperScript® IV RT 171 

enzyme in 20 μL for 10 min at 37°C. 172 

2.5 Cloning of EV-A71 cDNA into the pCR-XL-TOPO vector 173 

The pCR-XL-TOPO vector was supplied with 3’ thymidine (T) overhangs. The PCR 174 

products carrying 3’ deoxyadenosine (A) overhangs were cloned in the pCR-XL-TOPO 175 

vector (Invitrogen, Calif., USA) based on the manual from the manufacturer. About 100 176 

ng/μl of the cDNA template was prepared. An aliquot of 4 μl of the cDNA template in TE 177 

buffer was mixed with 1 μl (10 ng/μl) of plasmid DNA and incubated at room temperature 178 

for 30 min. Thereafter, 1 μl 6X TOPO stop solution was added to prevent the reaction from 179 

proceeding further. The recombinant pCR-XL-TOPO_EV71 plasmid was then transformed 180 

into E. coli XL10-Gold® Ultra competent Cells (Invitrogen, Calif., USA). 181 

2.6 Site-directed mutagenesis 182 

Mutations were introduced by using the QuickChange Lightning Site-Directed Mutagenesis 183 

Kit (Agilent Technologies, Calif., USA). A pair of primers consisting the desired mutation 184 

was designed for the recombinant pCR-XL-TOPO_EV71 vector. The cycling parameters 185 
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for the QuikChange Lightning Site-Directed Mutagenesis Method were: 95°C for 2 min for 186 

initial denaturation, followed by 18 cycles of 95°C for 20 secs, 60°C for 10 secs, 68°C for 5 187 

min 30 sec and 68°C for 5 min for final elongation. Approximately 2 µl of DpnI enzyme 188 

was added to each amplification reaction to digest the non-mutated supercoiled dsDNA. 189 

The enzyme mix was transformed into XL10-Gold ultracompetent E. coli cells. Colonies 190 

were selected on LB + Kanamycin plate before 3 purified colonies were screened by 191 

sequencing. 192 

2.7 Construction of a partial-deletion in the 5’-NTR of EV-A71  193 

A partial deletion (PD) (deletion from nt. 475-485 in the 5’-NTR) was constructed in the 194 

EV-A71 genome with a pair of 24-mer forward and 24-mer reverse primers. The mutation 195 

was introduced using the Q5® Site-Directed Mutagenesis Kit (New England Biolabs, USA) 196 

[(Chua et al., 2008)]. The presence of the deletion was confirmed using the nucleotide 197 

Basic Local Alignment Software (BLAST by NCIB).  198 

2.8 Restriction digestion of plasmid DNA  199 

Digestion of pCR-XL-TOPO_EV71 plasmid was carried out with restriction enzyme EagI 200 

(New England BioLabs, Massachusetts, USA). Briefly, this was carried out in an 201 

Eppendorf tube containing 15 μg of plasmid DNA, EagI in the corresponding 1X digestion 202 

buffer. All reactions were incubated for at least 2 hours at 37oC specified by the 203 

manufacturer. 204 

2.9 Phenol-chloroform DNA purification  205 
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The linearized DNA was added with an equal volume of phenol/chloroform/isoamyl 206 

alcohol (Invitrogen, Calif., USA) and subsequently, vortexed for 1 minute. Solvent and 207 

aqueous phases were visible after centrifugation at 15, 000 x g for 10 minutes. The aqueous 208 

phase was aspirated and added with an equal volume of chloroform/isoamyl alcohol 209 

(Invitrogen, Calif., USA). This step was necessary to remove the remaining phenol. After 210 

10 minutes of centrifugation at 15,000 x g, the aqueous phase was aspirated and 1/10 211 

volume of 3 M sodium acetate (pH 5.2) was added and vortexted. An aliquot of 1 volume 212 

of isopropyl alcohol was added and kept at -20°C for 2 h. The precipitated DNA was 213 

centrifuged at 15,000 x g for 30 minutes at 4°C and the DNA pellet was rinsed with 70% 214 

ethanol. After air-drying, the pellet was dissolved with TE buffer and DNA concentration 215 

determined. 216 

2.10 In vitro transcription of SP6 promoter 217 

RNA transcription was performed utilizing the RiboMAX™ Large Scale RNA Production 218 

System-SP6 (Promega, Calif., USA). The reaction mixture was prepared in a 100 µl 219 

reaction volume according to the manufacturer’s instructions. The reaction mixture was 220 

incubated at 37°C for 2 h, followed by addition of DNase for 30 minutes to remove parental 221 

DNA. The transcribed RNA was purified with the Illustra Microspin G-50 column (GE 222 

Healthcare Life Sciences, Chicago, USA) before transfection in RD cells (Han et al., 2010).  223 

2.11 Transfection of infectious RNA 224 

Overnight grown RD cells (1.5 x 105 cells/well in a 24-well plate) were prepared and used 225 

for transfection. Approximately 1μg of RNA was transfected into a well within the 24-well 226 

plate. Prior to transfection, the growth medium was removed and replaced with Opti-MEM 227 
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(Invitrogen, Calif., USA). Transfection mix was prepared with a ratio of 2 μl of 228 

Lipofectamine 2000 reagent to 1 μg of RNA. The RNA-containing Opti-MEM was mixed 229 

with the Lipofectamine 2000 reagent containing Opti-MEM and incubated for 20 min at 230 

room temperature. Thereafter, the RNA-lipofectamine mixture was added to the RD cells 231 

drop-by-drop. Four hours after transfection, the transfection medium was removed and 232 

substituted with 500 μL 10% FBS DMEM without Penicillin/Streptomycin. 233 

2.12 Quantitation of viral infectivity by tissue culture infectious dose (TCID50) assay 234 

RD cells (3.0 x 104 cells/well in a 96-well plate) were prepared a day before. Using DMEM 235 

serum-free media as a diluent, 10-fold serial dilutions of the harvested virus supernatant 236 

were carried out in quadruplicates in a 96-well plate. The negative control wells contained 237 

infected RD cells (without any virus supernatant). The plate was incubated at 37oC and 238 

observed daily for CPE for up to 48h. 239 

2.13 Viral RNA copy determination by real-time RT-PCR 240 

With the RNeasy extraction kit (Qiagen, Calif, USA), viral RNA was extracted from the 241 

virus suspension of transfected RD cells. Real-time PCR was carried out utilising the 242 

TouchTM Real-Time PCR Detection System (Bio-Rad, CFX96) and the SensiFAST™ 243 

Probe No-ROX One-Step Kit (BioLine, California, USA). The 20 μl reaction mixture 244 

contained 4 μl of RNA template, 10 μl of 2x SensiFAST Probe No-ROX One Step Mix, 0.8 245 

μL forward and reverse primers (10 uM), 0.2 μL probe (10 uM), 0.2 μl reverse transcriptase 246 

enzyme, and 0.4 μL RiboSafe RNase inhibitor. The reaction was performed for one cycle at 247 

48oC for 10 min, 95°C for 2 min, followed by 40 cycles at 95°C for 5s and 60°C for 20s 248 

using 0.2 mL PCR tubes and caps (Bio-Rad, Calif, USA).  249 
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2.14 VPl determination by western blot 250 

Cellular proteins were extracted from harvested viral suspension of infected cells using 251 

RIPA lysis buffer (1.0% Triton X-100, 0.5% sodium deoxycholate, 0.1% sodium dodecyl 252 

sulfate, 50 mM Tris, pH 8.0, and protease inhibitor mixture). The protein samples were 253 

mixed with an equal volume of 4X SDS protein sample buffer (240 mM Tris-HCl, pH 6.8, 254 

8% SDS, 5% β-mercaptoethanol, 40% glycerol and 0.04% bromophenol blue). The protein 255 

lysates were run on SDS-PAGE and transferred to nitrocellulose membrane (Millipore, 256 

Calif., USA). Thereafter, the membrane was blocked with 5% skim milk powder (Sigma-257 

Aldrich, St Louis, USA) in Tris-Buffered Saline and Tween 20 (TBST) buffer for 1 h on an 258 

orbital shaker at room temperature. The membrane was then added with anti-enterovirus 259 

VP1 mouse monoclonal primary antibody (Merck, Calif., USA) diluted in 2.5% TBST 260 

overnight at 4°C. The next day the nitrocellulose membrane was washed three times with 261 

TBST, for 10 min each wash, prior to incubation with anti-mouse HRP secondary antibody 262 

(Sigma Aldrich, St Louis, USA) diluted in 2.5% TBST. After hybridization, the membranes 263 

were washed three times with TBST, for 10 min each wash, and then detected by chemi-264 

luminescence using ImageQuant (GE Healthcare Life Sciences, Calif., USA). 265 

2.15 Quantitation of viral titer by plaque assay 266 

A 6-well plate with 6 X 105 RD cells/well was seeded before viral infection the subsequent 267 

day. Serial 10-fold dilutions of viral suspension were prepared and 1 mL of each dilution 268 

was added to the cells for 1 h at 37oC. After viral attachment to the cells, the dilutions were 269 

aspirated and substituted with 2 mL of 0.9% w/v high viscosity carboxymethylcellulose 270 

(CMC) (Sigma Aldrich, St Louis, USA). After 48 h incubation, the CMC was removed and 271 

the cells were fixed with 10% formalin for 10 min. After fixation, the formalin was 272 
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removed and replaced with 0.5% crystal violet solution for 20 min incubation. The plaques 273 

were visible against a white background and the plaque forming units (PFU) were 274 

calculated for each EV-A71 mutant. 275 

2.16 Bioinformatics Analysis 276 

The protein sequence of EV-A71 viral proteins was analyzed and the amino acid sequences 277 

were aligned with the Clustal method of DNASTAR MegAlign. Predictions of 5’NTR 278 

secondary structures of probable base pairs predictions, which might include pseudoknots 279 

was conducted by using databases such as RNA Structure at Rochester University: 280 

http://rna.urmc.rochester.edu/RNAstructureWeb/index.html and the mfold Web Server at 281 

http://molbiol-tools.ca/RNA_analysis.htm. 282 

2.17 Statistical Analysis 283 

Based on the data of at least three independent biological replicates, the mean ± standard 284 

deviation was calculated. Statistical significance was determined with the Mann-Whitney 285 

test, whereby a p value of < 0.05 was considered as statistically significant. 286 

3. Results 287 

3.1.1 Cytopathic effects (CPE) caused by EV-A71 mutants 288 

The EV-A71 sub-genotype B4 virus (5865/Sin/000009) was genetically engineered to 289 

produce several codon deoptimised EV-A71 viruses by substituting single synonymous 290 

codon at positions VP1-98E, VP1-242K, VP1-244K, VP2-149K and 2A-930K. We also 291 

substituted several nucleotides (nt) at three positions within the 5’-NTR (C272U, U488C, 292 

U700C), VP1-E145G and the 3Dpol region (G64R). The effects of these changes were 293 

http://rna.urmc.rochester.edu/RNAstructureWeb/index.html
http://molbiol-tools.ca/RNA_analysis.htm
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assessed by the inhibition of CPE in RD cells (Table 1). Upon transfection into RD cells 294 

with a multiplicity of infection (MOI) of 0.1, mutant C475U still caused the lowest CPE 295 

(Figure 1m) when compared to the wild type EV-A71 (Figure 1q). CPE was observed as 296 

round cells that lifted off the surface and there was abundant CPE observed with the EV-297 

A71 wild type strain 41 (Figure 1q).  298 

Mutant EV-A71 PD caused much lower CPE (Figure 1e) when compared to mutants 299 

C272U (Figure 1i) and 2A-930K (Figure 1h). Out of all the mutants, VP2-149K displayed 300 

abundant CPE (Figure 1g) as observed from the shrunken and rounding up of many RD 301 

cells. Mutants VP1-242K (Figure 1b), U488C (Figure 1j) and A486G (Figure 1n) 302 

demonstrated an intermediate amount of CPE after RD cell transfection. Based on the 303 

morphology shown in Figure 1c, 1f and 1o, infection of RD cells by mutants VP1-244K, 304 

VP1-E145G and G487A showed minimal CPE as cells had the healthy spindle-like shape 305 

of multiplying RD cells when compared to EV-A71 wild type sub-genotype B4  (Figure 306 

1q). There were not many dead cells floating and showed similar morphogy as the negative 307 

control (uninfected RD cells) (Figure 1p). 308 

A multiply mutated EV-A71 strain (MMS) was constructed by substituting six 309 

nucleotides at the 5’-NTR (U700C), VP1-145 (E to G), VP1 (242K), VP1 (98E), VP1 310 

(244K), G64R in the strain that consisted of a partial deletion in the 5’-NTR (∆11bp). The 311 

MMS showed an absence of CPE (Figure 1l), displaying similar morphology as the 312 

negative control (Figure 1p). Lower CPE was observed in the MMS in comparison to the 313 

codon deoptimised mutant VP1-98E (Figure 1a) and G64R (3Dpol) (Figure 1d). The 314 

morphology displayed by these EV-A71 mutants showed vast disparity from the abundant 315 

CPE observed for the postive control (wild type strain 41) (Figure 1q).  316 
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3.1.2. Quantitation of viral infectivity by tissue culture infectious dose (TCID50) assay 317 

The tissue culture infectious dose (TCID50) is a measurement of the amount of virus 318 

that elicits cytopathic effect in 50% of the transfected cell cultures. The MMS demonstrated 319 

the highest TCID50 of 3.16 X 108 in comparison to the wild type EV-A71 strain (2.13 X 320 

103) (Figure 2). This indicates that the MMS would need a significantly higher amount of 321 

virus (105-fold more) to elicit a cytopathic effect in 50% of the of the transfected cultures. 322 

EV-A71 mutants VP1-E145G and VP1-244K also had 105-fold increased TCID50 value 323 

(3.16 X 108) in comparison to the positive control, indicative that the mutants showed a 324 

reduction in infectivity. EV-A71 mutants with SDM at VP1-242K (7.02 X 105) and G487A 325 

(7.50 X 105) demonstrated greater than 102-fold rise in TCID50 value in comparison to the 326 

positive control (EV-A71 wild type). EV-A71 mutant VP1-98E (1.16 X 106) and PD 327 

displayed 103-fold increases in TCID50 value in comparison to the wild type (2.13 X 103). 328 

An examination of the TCID50 values implicates that mutants carrying single mutations in 329 

the VP1, for example, E145G and 244K as well as the MMS required the highest quantity 330 

of viruses to elicit cytopathic effect in 50% of the transfected cell cultures. The results 331 

indicated a high degree of attenuation in the two SDM mutants and the MMS carrying 332 

multiple mutations in its genome (Figure 2).  333 

3.1.3 Viral RNA copy determination by real-time RT-PCR 334 

  Assays such as the viral RNA copy number quantitation and TCID50 of various 335 

mutant strains will allow a better quantitative comparison of the growth aspects of the 336 
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different mutant strains. The viral RNA copy number of the EV-A71 mutant strains was 337 

assessed after transfection into RD cells. The positive control (wild type strain 41) 338 

produced the highest amount of viral RNA copy number (5.8 X 104). Significantly lower 339 

RNA copy numbers were detected for mutants C475U (1.02 X 102) and PD (1.05 X 102) 340 

(Figure 3). When the mutant strains were examined in RD cells, a few new mutations seem 341 

to decrease viral replication. It was demonstrated that mutant VP1-244K gave a yield of 2.9 342 

X 102 RNA copy number which was 100-times lesser than the positive control viral RNA 343 

copy number (5.8 X 104). It appeared that mutant VP2-149K yielded the greatest amount of 344 

viral RNA copy number of 2.9 X 104 in comparison to the positive control (wild type strain 345 

41). As the RNA copy number is still approximately half to that of the wild type strain, this 346 

shows that there remains some degree of attenuation.  347 

In addition, the mutant VP1-E145G displayed significant decreases in viral RNA copy 348 

number (4.5 X 102) (Figure 3). The MMS yielded markedly low viral RNA copy number of 349 

1.3 X 102 and substantially deceased the viral RNA copy number to almost 102-fold less in 350 

comparison to the positive control (5.8 X 104). A reduction of RNA copy number was also 351 

expressed by mutants VP1-98E and G64R (3Dpol) at 7.8 X 102 and 1.4 X 103, respectively.  352 

3.1.4 VP1 determination by western blot 353 

Western blotting with monoclonal antibodies targeted at the VP1 capsid protein of 354 

EV-A71 could enable the detection of the viral capsid protein and be an indirect indicator 355 

of the ability of the various mutant strains to produce viable viral particles. Cellular protein 356 
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lysate was harvested from the supernatants of infected RD cells and sodium dodecyl sulfate 357 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed to separate the EV-A71 358 

proteins based on molecular weight (MW). A singular band was revealed at a MW of 37 359 

kDa which corresponds to the VP1 monomer (Figure 4). 360 

Based on the Western blot analysis, cellular proteins from RD cells transfected with 361 

the positive control (wild type EV-A71) (Figure 4, Lane 16) showed the greatest VP1 362 

protein amount (36 kDa). There was hardly any VP1 observed for mutant C475U (Figure 4, 363 

Lane 8), mutant G487A (Figure 4, Lane 5) and mutant PD (Figure 4, Lane 13). The results 364 

were consistent with the cytopathic effect, TCID50 infectivity and viral RNA copy number. 365 

There seems to be a few nt. in the EV-A71 viral genome that are attenuating the virus as the 366 

quantity of VP1 for some of the mutant strains were significantly lesser than the positive 367 

control (Figure 4, Lane 16). The mutant MMS (Figure 4, Lane 6), mutant VP1-244K 368 

(Figure 4, Lane 10) and mutant VP1-E145G (Figure 4, Lane 3) showed much lesser VP1 369 

quantity in comparison to the positive control (wild type strain 41) (Figure 4, Lane 16). 370 

Although each mutant had caused significant reduction of virulence in terms of VP1, viral 371 

RNA copy number, and TCID50 values, the introduction of all the mutations together in a 372 

single genome will enable increased genetic stability. 373 

3.1.5 Quantitation of viral titre by plaque assay 374 

Plaque numbers produced by the different EV-A71 mutants were assessed in RD 375 

cells by plaque assays. Our objective is to evaluate the ability of the various mutants to 376 
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form plaques. RD cells infected with the positive control (wild type EV-A71 strain 41) 377 

gave the largest plaque number (8.0 x 108 PFU/mL). The smallest plaque numbers were 378 

produced by the MMS (1.2 x 104 PFU/mL) and mutant C475U (7.0 x 104 PFU/mL) (Figure 379 

5).  380 

Based on Figure 6, there are a few nt. in EV-71 viral genome that appear to attenuate the 381 

virus. The EV-A71 mutant VP1-E145G gave a yield of 3.5 x 105 PFU/ml and the mutant 382 

VP1-244K produced a decrease in number of plaques (2.5 x 105 PFU/ml) in comparison to 383 

the EV-A71 wild type (5865/Sin/000009), although the plaque counts were higher than the 384 

mutant PD (1.0 x105 PFU/mL). The mutant VP1-98E also showed reduced plaque number 385 

(7.5x105 PFU/mL). As there was reduction in viral growth, this was indicative that the 386 

plaque forming capability has been decreased markedly for several mutant strains. This 387 

signifies that there would be weaker viremia due to a reduction in viral copy number as 388 

viral load induces pathogenicity. 389 

4. Discussion 390 

In our previous investigation, we genetically engineered the EV-A71 sub-genotype B4 391 

(5865/Sin/000009) through site directed mutagenesis via the substitution of nt. at positions 392 

475, 486, and 487 as these nts. were the molecular determinants of neurovirulence in PV 393 

Sabin strains 1, 2 and 3. We also introduced a partial deletant (PD) in the 5’-NTR region 394 

(deletion from nt. 475-485 in the 5’-NTR) as it may be genetically more stable than single 395 

site mutations. The study concluded that the EV-A71 partial deletant (PD) and mutant 475 396 

demonstrated the lowest RNA copy number, plaques and VP1 protein followed by EV-A71 397 
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mutants 487, 5262, 158 and 486 in the order listed. This shows that the mutant PD could 398 

serve as a potential vaccine seed strain to carry beneficial mutations that will further 399 

attenuate or stabilize it to become a good LAV candidate (Yee et al., 2016).  400 

In addition, better attenuated mutants could be constructed by introducing multiple 401 

mutations into the attenuated EV-A71 mutant PD. With advances in molecular biology, 402 

novel approaches to viral attenuation can be further studied such as altered replication 403 

fidelity and codon deoptimization. As for the latter approach, synonymous codons can be 404 

substituted all over a viral genome, hence preventing a decrease in immunogenicity and 405 

minimal possibility of reversion to wild type virulence. Studies on codon bias on viral 406 

multiplication and pathogenicity of poliovirus (PV) have been reported (Burns et al., 2009; 407 

Mueller et al., 2006). Interestingly, many studies have discovered that the deoptimized 408 

viruses remained attenuated after repeated passages and hence, were genetically stable with 409 

minimal risk of reversion. As both PV and EV-A71 share very high percentage of sequence 410 

homology hence, the codon deoptimization research on PV published in recent work could 411 

be referred to in the production of highly attenuated EV-A71 viruses. Therefore, we 412 

constructed several codon deoptimized EV-A71 viruses by substituting synonymous codon 413 

at positions VP1 (98E), VP1 (244K), VP1 (244K), VP2 (149K) and 2A (930K) to evaluate 414 

the effect of each codon deoptimization on replication fitness in Rhabdomyosarcoma (RD) 415 

cells. 416 

Thus far, there is no quantification of the effects of different amino acids in the viral 417 

genome on virulence except for studies of comparison of nt. and amino acid sequences 418 

between virulent and non-virulent strains. In addition, most of the studies using 419 

comparative analysis between the strains were of sub-genotype C4. For example, 4 aa. 420 
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differences in the VP1 region (GlyP710/GlnP710/ArP710/GluP729), LysP930 in 2A region and 4 421 

nts. in the 5’-NTR region (AP700/UP700, GP272, UP488) were found after aligning the VP1 422 

sequences between fatal and mild EV-A71 strains (sub-genotype C4) (Li et al., 2011). 423 

These aa. demonstrate that there were several genetic determinants for virulent EV-A71 424 

strains and these aa. could possibly be responsible in changing mild strains into fatal ones. 425 

This is to be expected as the 5’-NTR was responsible for cap-independent translation of 426 

viral proteins. As such, research reported in the study by Li et al. (2011) served as a 427 

reference to assess quantitatively the degree of attenuation of EV-A71 mutants constructed 428 

in this study to carry mutations C272U, U488C and U700C in the viral genome.  429 

The importance of a C104U nt. substitution in the 5’NTR region (between the 430 

cloverleaf and stem-loop II region) of CV-A16 was first demonstrated by Li et al. (2016). 431 

This mutation could significantly lower RNA replication and inhibit translational activity in 432 

vitro and also in the neonatal ICR mice. They identified that the nt. C104U could possibly 433 

be a molecular determinant of virulence for the lethal CV-A16 strain. The mutation affected 434 

the binding of the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and A1 (hnRNP 435 

A1) with the 5’NTR, hence reducing translational rates. This was discovered by aligning 436 

with nt. sequences in the 5’NTR of the prototype G10, the non-lethal SHZH05 strains and 437 

the lethal Changchun024 strain. Thereby, the authors constructed infectious mutants of CV-438 

A16 with different nt. substitutions in the 5’-NTR (Li et al., 2016). Similar to the finding 439 

that the 5’-NTR region is also carrying the specific genetic determinants for virulent EV-440 

A71 sub-genotype C4 strains, this study reporting specific nt. changes in the 5’-NTR of 441 

CV-A16 with subsequent reductions in viral replication lends credence that the 5’-NTR 442 

region is a virulence-associated site.  443 
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In addition, Caine et al. (2016) discovered that a single mutation in VP1-244 (K244E) 444 

was crucial for mouse-adapted EV-A71 (mEV-A71) virulence and expanded tissue tropism 445 

in adult interferon-deficient AG129 mice. They also found a new VP1 mutation (H37R) 446 

that was important for K244E recovery in primate cell culture (Vero cells). The authors 447 

postulated that the H37R/K244E interaction is pertinent for replication in primate cells but 448 

the K244E mutant could replicate alone in a murine model (Caine et al., 2016). Three 449 

positions were demonstrated to be conserved among neurovirulent strains but were 450 

different from sub-genotype C4a strains carrying mild HFMD (ValP1148/IleP1148 in 3A, 451 

ValP814/IleP814 in VP1, AlaP1728/CysP1728/ValP1728 in 3C). These amino acid residues may be 452 

potential genetic determinants of virulence. Amongst all the 3 neurovirulent strains, 453 

SDLY107 varied in 4 nts. (CP579/TP579, CP241/TP241, AP571/TP571 in 5′-NTR and TP7335/CP7335 454 

in 3′-NTR), suggesting that these nt(s). may be genetic determinants of virulence (Wen et 455 

al., 2013). Liu et al. (2014) discovered that there were 9 aa. differences in the VP1 456 

sequences (E145G/Q, V249I, H22Q, P27S, N31S/D, E98K, D164E, T240A/S, A289T) in a 457 

comparison between fatal and mild EV-A71 strains (sub-genotype C4). These aa. could be 458 

possible genetic determinants of virulence in EV-A71 that could convert mild strains into 459 

fatal ones (Liu et al., 2014). The position of a single or a combination of aa. may have deep 460 

implications for virulence in different EV-A71 genotype/sub-genotype strains.  461 

Wang et al. (2012) performed analysis on seven EV-A71 sequences (sub-genotype C4) 462 

from HFMD patients in Changchun, China who suffered either mild or severe HFMD. 463 

They identified that these seven viruses were actually recombinant viruses evolved from 464 

different type A Enteroviruses. For example, these viruses contained genetic recombination 465 

events between CV-A4, CV-A5, and EV-A71 (sub-genotypes B4 and C1) and hence not 466 

surprisingly, most of the structural protein, P1 of these viruses resembled that of the 467 
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prototype EV-A71, sub-genotype C1 strains. There was also a very high amount of 468 

similarity between the non-structural proteins (P2 and P3) and CV-A4, CV-A5, with EV-469 

A71 (sub-genotype B4) in varying genomic regions possibly due to genomic recombination 470 

events. As our viral strain was also of sub-genotype B4, our working strain may have 471 

evolved from a single common ancestor that had continuously evolved over the years. This 472 

has serious implications as a virus that continuously undergoes genetic recombination could 473 

lead to the evolution of more virulent viruses. This would then make designing of a vaccine 474 

more difficult for such viruses that have high mutability rates (Wang et al., 2012). Hence, 475 

further studies such as phylogenetic analysis of isolates from mild/severe patients infected 476 

with EV-A71 (sub-genotype B4) should be carried out to determine the pattern of 477 

evolution.  478 

Interestingly, when Threonine at position 251 within the 3DPol region was substituted 479 

with Isoleucine (T251I), it altered the temperature susceptibility of EV-A71 (sub-genotype 480 

C2) from total susceptibility to complete resistance at 39.5oC in vitro. This strain also had 481 

increased viral virulence and showed clinical symptoms in vivo (Huang et al., 2015). The 482 

pathogenicity of mutant T251I was not evaluated in our investigation as the EV-A71 strain 483 

41 (sub-genotype B4) does not carry a threonine (T) at residue 251 when compared to the 484 

sub-genotype C2 in the study conducted by Huang et al. (2015). However, we constructed a 485 

mutant similar to that of Meng and Kwang (2014) who produced highly attenuated EV-A71 486 

mutants displaying high-fidelity with a single aa. change, (G64R) in its RdRP that greatly 487 

reduced pathogenicity in vivo. These EV-A71 mutants have lower pathogenicity as they are 488 

unable to generate replication-efficient mutations and have much lower genetic diversity to 489 

withstand a wide range of selective pressures. The authors postulate that the G64R mutant 490 
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could serve as a promising vaccine candidate as G64R mutant was genetically stable in the 491 

brain and muscle of infected mice at 12th-day post-infection (Meng and Kwang, 2014).  492 

Kataoka et al. (2013) discovered that if glutamic acid (E) was present at aa. VP1-145 493 

(sub-genotype C1), the virus induced neuro-pathogenesis and viremia more efficiently in 494 

cynomolgus monkeys than if glycine (G) was found at residue 145 (Kataoka et al., 2015). It 495 

was also demonstrated that the E145Q substitution within the VP1 region was a frequent 496 

change in the EV-A71 viral genomes of strains associated with mild and fatal HFMD cases. 497 

Generally, fatal strains had more substitutions in the IRES and 5’-NTR regions (Chang et 498 

al., 2012). This was of no surprise as these regions were responsible for receptor binding 499 

and translation of viral mRNA. The VP1-145 amino acid has been determined as a “hot 500 

spot” for evolutionary pressures on EV-A71 (Tee et al., 2010). In order to investigate the 501 

involvement of VP1-145 and G64R in the molecular basis of virulence in EV-A71 sub-502 

genotype B4, site directed mutagenesis at positions G64R and VP1-E145G was conducted 503 

at these 2 sites to analyze the effects of both the mutations on virulence.  504 

However, one of the disadvantages of a LAV would be its potential to revert back to 505 

wild type virulence, especially if the strain consists of “hot spots” for mutations. Hence, to 506 

boost the genetic stability of the LAV, multiple mutations were further introduced into the 507 

EV-A71 genome to reduce reversion and increase the stability of LAVs. The virulence of 508 

the different EV-A71 mutant strains was evaluated in the RD cell line by cytopathic effects, 509 

viral titer by tissue culture infectious dose (TCID50), plaque assays, detection of VP1 and 510 

real time determination of RNA copy number. After the effects brought about by each of 511 

the single site mutation and the partial deletion were quantified, the most significant 512 

mutations that could reduce virulence were selected and introduced into the PD mutant.  513 
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Hence, we had constructed a multiply mutated EV-A71 strain (MMS) by substituting six 514 

different nucleotides at U700C, VP1-E145G, VP1-242K, VP1-98E, VP1-244K, G64R 515 

(3Dpol) in the strain carrying a partial deletant (∆11bp) within the 5’-NTR region.  516 

Very little VP1 quantity was observed in the EV-A71 mutants having site specific 517 

mutations at nt. 475 and 487 in the 5’-NTR. An examination of the TCID50 values showed 518 

that the MMS needed significantly greater viral titer (3.16 X 108) to show CPE in 50% of 519 

the infected cells. This was to be expected as the MMS had lower infectivity in RD cells 520 

than the other codon deoptimized and SDM mutants. Significantly lower RNA copy 521 

numbers were obtained for 3 mutants (MMS, VP1-244K, VP1-E145G) at 1.3 X 102, 2.9 X 522 

102, and 4.5 X 102, respectively. Although the MMS could not totally eradicate viral 523 

replication, there was significant 105-fold decrease in viral growth.  524 

Subsequently, the number of plaques produced by the various mutant strains was 525 

examined in RD tissue culture by plaque assays. If the capability to form plaques is 526 

reduced, this would mean that viral growth is slower, thereby producing a lower PFU/ml 527 

value. For example, the mutant VP1-244K (2.5 x 105 PFU/mL) and mutant VP1-E145G 528 

showed significant decreases in plaque count (3.5 x 105 PFU/mL) in comparison to the EV-529 

A71 wild type (strain 41) with 8.0 x 108 PFU/mL. The lowest plaque count was formed by 530 

the MMS (1.2 x 104 PFU/mL) and mutant C475U (7.0 x104 PFU/mL). 531 

Some of the site directed mutations such as those introduced into sites at 475, 487, 532 

VP1-145, VP1-244 and a deletion in mutant PD were very effective in reducing cytopathic 533 

effects, RNA copy numbers, plaque count, VP1 amount and TCID50. By combining the 534 

beneficial mutations into a single vaccine strain, the MMS may serve as a potential LAV 535 

candidate for further evaluation by virulence testing in vivo. Attenuated strains with low 536 
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viral RNA copy number are possible good vaccine strains as they could not replicate fast 537 

enough to yield high viral load and cause destruction of the tissue cells. Slow replication 538 

could infer that the cells could still carry enough antigens to stimulate a good immune 539 

response.  540 

5. Conclusions 541 

This investigation has isolated and characterized several EV-A71 mutants with 542 

significant attenuation of viral virulence in Rhabdomyosarcoma cells. Better attenuated 543 

mutants could be constructed by introducing multiple mutations into the attenuated EV-544 

A71 mutant PD. It was discovered that EV-A71 mutants carrying mutations at C272U, 545 

U488C and U700C in the 5’-NTR were not highly attenuated as they still produced more 546 

RNA, VP1 protein, plaque count and had lower TCID50 values than other SDM and codon 547 

deoptimized mutants. Therefore, they are not significant virulence determinants for the wild 548 

type EV-A71 strain 41 (sub-genotype B4) in comparison to the sub-genotype C4 fatal 549 

strains studied by Li et al. (2011) (Li et al., 2011). The multiple mutations in the MMS did 550 

not totally eradicate the capability of the virus to multiply in vitro, but there were 551 

significant decreases in replication. Further studies should be conducted to investigate the 552 

stability of the MMS. A strain which is genetically highly stable and does not revert easily 553 

would thereby make a better LAV for EV-A71.  554 

The results support the hypothesis that every EV-A71 genotype or sub-genotype carries 555 

a different virulence determinant or a combination of significant virulence determinants. In 556 

a particular sub-genotype, there may be several amino acids that determine virulence; hence 557 

it is important to identify significant amino acid residues that could be combined in the 558 

rational design of effective LAVs Therefore, the results obtained in this study demonstrate 559 
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that quantifying the reduction of virulence through comparison of each SDM and partial 560 

deletion introduced into the genome is more effective than comparison of sequences 561 

between fatal and non-fatal strains.  562 
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Table 1. Cytopathic effects (CPE) caused by EV-A71 mutants and the positive control 670 

(wild type EV-A71 sub-genotype B4). 671 

EV-A71 Mutants CPE 

C475U 

A486G 

G487A 

VP1-98E 

+ 

+++ 

+ 

++ 

VP1-242K +++ 

VP1-244K + 

G64R (3Dpol) 

Partial Deletant (PD) 5’-NTR                                             

++ 

+ 

VP1-E145G 

VP2-149K 

2A-930K 

C272U 

U488C 

C700U 

Multiple Mutant strain (MMS) 

+ 

++++ 

++++ 

+++ 

+++     

++ 

+  

Positive control (wild type EV-A71) +++++ 

RD cells were infected with EV-A71 mutants and the positive control (wild type EV-A71 672 

sub-genotype B4) at a multiplicity of infection (MOI) of 0.1. 673 
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Figure 1. CPE by EV-A71 mutants (a) VP1-98E (b) VP1-242K (c) VP1-244K (d) G64R 

(e) PD (f) VP1-E145G (g) VP2-149K (h) 930K (2A) (i) C272U (j) U488C (k) C700U (l) 

Multiple Mutant strain (MMS) (m) C475U (n) A486G (o) G487A in RD cells compared 

with (p) uninfected RD cells (negative control) and (q) infected RD cells (positive control).  

                             

Figure 2. Logarithm Tissue Culture Infectious Dose 50 (Log TCID50) of EV-A71 mutants 

compared with the positive control (EV-A71 sub-genotype B4). The plate was placed at 

37oC for up to 48h and observed daily for CPE. The TCID50/ml values are determined 

based on the Reed and Muench formula from at least three independent experiments. 

 

Figure 3. Viral RNA copy number quantification. Transfection of infectious RNA of EV-

A71 mutants into RD cells was carried out with Lipofectamine 3000 reagent with a MOI of 

0.1. (+) control refers to wild type EV-A71 sub-genotype B4. (-) control refers to RD cells 

with no virus infection. The RNA copy number was calculated at 24h post-infection by 

TaqMan Real-Time PCR based on the average of at least three biological replicates. Error 

bars indicate the standard deviation ± mean.  

 

Figure 4. Western blot using monoclonal antibodies against VP1 as the primary antibody. 

The quantity of total proteins from EV-A71 and β-actin in each lane was 20 μg. The lanes 

are as follows: lane M, molecular weight marker (from 10 - 250 kilodaltons), lane 1, 

Mutant G64R; lane 2, Mutant VP1-98E; lane 3, Mutant VP1-E145G; lane 4, Mutant 

U488C; lane 5, Mutant G487A; lane 6, MMS; lane 7, A486G; lane 8, C475U; lane 9, 

Mutant VP1-242K; lane 10, Mutant VP1-244K; lane 11, Mutant C272U; lane 12, Mutant 

U700C; lane 13, Mutant Partial Deletant (PD); lane 14, VP2-149K; lane 15, 2A-930K; lane 

16, Positive control (EV-A71 strain 41); lane 17, Negative control (non-infected cells). The 

molecular weights of the VP1 protein and β-actin are 36 kDa and 42 kDa, respectively. 

 

Figure 5. Quantification of plaque counts by EV-A71 mutants and positive control 

(wild type EV-A71). The plaque assays were carried out on RD cells incubated at 37oC for 

48h from at least two independent experiments. 

 

Figure 6. Plaque Forming Units (PFU) by EV-A71 mutants in comparison with the 

positive control (wild type EV-A71). RD cells were transfected with EV-A71 mutants and 

the positive control at a MOI of 0.1. Plaques were observed 48 h post-infection. PFU values 

are calculated based on the average of at least 2 biological replicates and error bars 

represent the standard deviation ± mean.
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Table 1. Cytopathic effects (CPE) caused by EV-A71 mutants in comparison with the wild type EV-

A71 strain 41. 

EV-A71 Mutants CPE 

C475U 

A486G 

G487A 

VP1-98E 

+ 

+++ 

+ 

++ 

VP1-242K +++ 

VP1-244K + 

G64R (3Dpol) 

Partial Deletant (PD) 5’-NTR                                             

++ 

+ 

VP1-E145G 

VP2-149K 

2A-930K 

C272U 

T488C 

C700U 

Multiple Mutant strain (MMS) 

+ 

++++ 

++++ 

+++ 

+++     

++ 

+  

Positive Control (EV-A71 strain 41) +++++ 

RD cells were infected with the EV-A71 wild type and mutant viruses at a MOI of 0.1. The 

TCID
50

/ml values are calculated using the Reed and Muench formula determined from three 

independent experiments. 
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                   (a)                                         (b)                                          (c)                    (d)                                         (e)                                     (f) 

                                                    
       (g)                                         (h)                                           (i)                                   (j)                                          (k)                                (l)                                   

              

                        (m)                                         (n)          (o)                (p)                               (q)                                   

Figure 1. Cytopathic effects (CPE) caused by EV-A71 mutants (a) VP1-98E (b) VP1-242K (c) VP1-244K (d) G64R (e) PD (Partial Deletant 5’-NTR) (f) VP1-E145G (g) 

VP2-149K (h) 2A-930K (i) C272U (j) U488C (k) C700U (l) Multiple Mutant strain (MMS) (m) C475U (n) A486G (o) G487A in Rhabdomyosarcoma (RD) cells in 

comparison with (p) uninfected RD cells (negative control using Opti-MEM) and (q) EV-A71 wild type strain 41 infected RD cells (positive control).  
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Figure 2. Logarithm Tissue Culture Infectious Dose 50 (Log TCID50) of EV-A71 mutants in comparison with the wild type EV-A71 sub-genotype B4 strain 41. The 

plate was incubated at 37oC and observed daily for CPE up to 48h. The TCID50/ml values are calculated using the Reed and Muench formula determined from at 

least three independent experiments. 



 

3 

 

 

Figure 3. Quantification of Viral RNA Copy Number. Transfection of infectious RNA into RD cells was performed with the use of Lipofectamine 2000 reagent 

using EV-A71 mutants with a MOI of 0.1. (+) control refers to the EV-A71 sub-genotype B4 strain 41. (-) control refers to the RD cells with no virus infection. The 

viral RNA copy number was determined at 24h post-infection by TaqMan Real-Time PCR. Viral RNA copy numbers are the average of three biological replicates. 

Error bars represent the standard deviation of the mean.  
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Figure 4. Western blot analysis using monoclonal antibody against VP1 as the primary antibody. The amount of EV-A71 total proteins and β-actin loaded in each 

lane was 20 μg. The lanes are as follows: lane M, molecular weight marker (from 10 - 250 kilodaltons), lane 1, EV-A71 Mutant G64R; lane 2, Mutant VP1-98E; lane 

3, Mutant VP1-E145G; lane 4, Mutant U488C; lane 5, Mutant G487A; lane 6, MMS; lane 7, A486G; lane 8, C475U; lane 9, Mutant VP1-242K; lane 10, Mutant VP1-

244K; lane 11, Mutant C272U; lane 12, Mutant U700C; lane 13, Mutant Partial Deletant (PD); lane 14, VP2-149K; lane 15, 2A-930K; lane 16, Positive control (EV-

A71 strain 41); lane 17, Negative control (uninfected RD cells). The molecular weights of the EV-A71 protein and β-actin are 36 kDa and 42 kDa, respectively. 
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(a) Positive control 

 

                    

 

Viral count: 8.0x108 

 

(b) VP1 (E145G)    

      

     

 

Viral count: 3.5x105 

(c) 3D (G64R) 

  

 

 

Viral count: 6.0x106 

(d) C475U    

     

 

 

Viral count: 7.0x104 

(e) A486G 

 

    

 

Viral count: 2.3x107 

 

(f) U488C 

       

 

 

Viral count: 2.3x107 

 

(g) VP1-242K 

 

 

 

Viral count: 2.0x107 

 

(h) C272U 

 

 

 

Viral count: 5.7x107 

 

(i) VP1-244K 

       

 

 

Viral count: 2.5x105 

       

(j) C700U 

 

 

 

Viral count: 2.0x107 
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(j) Partial Deletant (PD) 

 

 

 

Viral count: 1.0x105 

 

(l) VP2-149K 

 

 

 

Viral count: 9.9x107 

(m) 2A-930K 

 

 

 

Viral count: 7.0x107 

          (n) VP1-98E 

  

      

 

Viral count: 7.5x105 

(o) G487A 

 

      

 

Viral count: 1.4x105 

(p) MMS 

 

(q) Negative control 
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Viral count: 1.2x104 

 

 

Viral count: 0 

 

Figure 5. Quantification of plaque forming units by EV-A71 mutants and wild type EV-A71 strain 41. The plaque assays were performed on monolayer RD 

cells incubated at 37oC and were repeated at least two separate times. 

 



 

8 

 

 

Figure 6. Plaque Forming Units by EV-A71 mutants and the wild type EV-A71 strain 41. RD cells were transfected with EV-A71 mutants and the wild type EV-

A71 strain 41 at a MOI of 0.1. Plaque formation was observed 48 hours post-infection. PFU numbers are the average of two biological replicates; Error bars 

represent the standard deviation of the mean. 


