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ABSTRACT 

Biometrics provides a new dimension of security to modern automated applications since each user will need to 

prove his identity when attempting an access. However, if a stored biometric template is compromised, then the 

conventional biometric recognition system becomes vulnerable to privacy invasion. This invasion is a permanent 

one because the biometric template is not replaceable. In this paper, we introduce an improved FuzzyHashing 

technique for biometric template protection purpose. We demonstrate our implementation in the context of 

fingerprint biometrics. The experimental results and the security analysis on FVC 2004 DB1 and DB2 fingerprint 

datasets suggest that the technique is highly feasible in practice. 
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INTRODUCTION 

 

In the recent year, research to provide reliable biometric authentication system has been 

conducted extensively. Biometrics provides good alternative to traditional token (e.g ID card) or 

knowledge (e.g. password) for personal authentication system, as it is unlikely biometric data 

will get lost or forgotten. A conventional approach to biometric authentication is to capture the 

biometric template of all users during enrollment stage and store the templates in a reference 

database to be used during authentication stage by matching against another live captured 

biometric measurement. Nevertheless, there are some security and privacy issues posed to this 

approach, and one of the major concern is the invasion of privacy and non-replaceable of 

biometrics, e.g., the digital storage of biometric data, known as templates in digital form in a 

reference database is raising concern about their protection and usage of such information for all 

sorts of purposes, without the knowledge or consent of the user (Boult, Scheirer and Woodworth, 

2007). Adding to this, the authentication established using physical or knowledge possession 

like a token of password or PIN is re-issuable. This can be seen when an ATM card is lost or 

stolen, the banks just issues a new password or pin to protect the customer whereas this is not 

possible in the case of biometrics since we cannot change our own biometric components even 

we desire.  

 Generally, template protection technique is an emerging research direction spurred by the 

need to resolve the security and privacy risks that associated with biometric template storage. 
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There are two possible solutions to tackle the above mentioned issues, namely cancelable 

biometrics (Ratha, Connell and Bolle, 2001) and biometric encryption (BE) (Cavoukian and 

Stoianov, 2007). For cancelable biometrics (CB), the main idea is to converts a real-valued 

biometrics into a transformed template with the storage of some optional tokenized random 

number that could be used during the matching process. The general idea is to secure a 

biometric system through concealing raw biometric data to preserve user privacy. On the other 

hand, biometric encryption (BE) encompass the design of non-invertible of biometric 

representation via incorporating of helper parameters with an externalized identifier. i.e., 

random number generator (RNG) that served as protection mechanism to protect the security of 

storage template through template binding or hiding, thus no original biometric template is 

needed to be tied to an individual. In certain extent, BE could enhance the accuracy of template 

matching with the capability of template rectification and error correction using the helper 

parameters to the key authenticator in the model. A typical example of this abstraction is fuzzy 

commitment scheme (Juels and Wattenberg, 1999), which will be discussed in section 2. 

 

 

RELATED WORK AND MOTIVATION 

 

The most notable one of CB was proposed by Ratna et al. in year 2001, where the biometric 

signal is distorted intentional in the same fashion at both enrollment and authentication mode. 

Their proposal is realized in (Ratha, Chikkerur, Connell and Bolle 2007) by transforming 

fingerprint into various cartesian, polar and surface folding of the minutia positions. Based on 

empirical analysis, the authors have proven that the various proposed algorithms can achieve 

diversity, non-invertibility and performance practicality as required for template protection.  

 Another approach proposed by Teoh, Ngo and Goh (2004) which coined as Biohash. This 

technique first generate and orthonormalize a set of user-specific random number matrices using 

Gram-Schmidt process and then combines the tokenized random numbers with their biometric 

feature vectors via inner-product operation.  The formulation has been tested with various 

biometrics such as fingerprint (Teoh, Ngo, and  Goh, 2004), iris (Chong, Teoh, and  Ngo, 2005), 

palm print (Connie, Teoh, Goh, and  Ngo, 2004) and face (Teoh and Ngo, 2005) with nearly 

zero error rates were reported for all types of biometrics. However, their performance degrades 

substantially in the stolen token scenario when the genuine token was being used by imposter 

for verification purpose.  Following the this, the author has proposed a variant of such method, 

known as Multiple Random Projection (MRP) (Teoh and Chong, 2007) to address the problem 

of recognition performance and the experimental result showed that the original performance as 

in  sole biometrics was retained even in the stolen token scenario. 

       On the other hand, BE was first outlined by Davida, Frankel and Matt (1998). Either a 

biometric template itself, or a hashed value derived from it, was used as an identifier in this case. It 

was suggested to use error correcting codes (ECC) to compensate the bit variations and a one-way 

hash function to conceal the biometric template. However, a direct use of ECC in biometrics is 

vulnerable as it leads to data leakage. The fuzzy commitment scheme (FCS) of Juels and 

Wattenberg (1999) further extended the idea of Davida et al (1998). This scheme works as follows: 

at enrolment, let the binary biometric feature be denoted as b, the identifier, Id, the mixture, 

M=enc(Id)+b, where enc(•) is a ECC encoding function. The + operation is implemented as 

bitwise XOR in this context as the authors assumed binary biometric representation. M itself 

reveals no information about Id as well as b if both are uniformly random; though this assumption 

is difficult to materialize in practice. A fuzzy commitment {M, h(Id)} is formed where h(•) is a 

one-way hash function. Given a query biometric sample b’ during verification, Id’=M+b’is 

computed, decoded and hashed. h(Id’) = h(Id) if and only if b ≈b’. A few practical constructs were 
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reported in (F. Hao, Anderson and Daugman (2000), Tuyls , Akkermans, Kevenaar and Greert 

(2005), Kevenaar, Schrijen, Akkermans and Zuo (2005)). In addition, Juels and Sudan (2002) 

proposed an extension of fuzzy commitment via a secret sharing scheme to allow a non-exactly 

ordered biometric representation, namely fuzzy vault. 

 In this work, a secure template protection method known as improved Fuzzy Hashing (FZH) 

is proposed. FZH generates a revocable but irreversible template directly from biometric data. The 

proposed technique is hybrid approach of cancellable biometrics as well as biometric encryption. 

The former requires a transformed template to be stored and the decision is made based on a pre-

selected system threshold, but this is not required in FZH. Besides, FZH possess revocable 

capability and rectifies the non-uniform problem of biometric feature, which is lacking in the BE 

approach. In certain extent, both FZH and cryptographic hash share some common properties, 

such as one-way transformation (non-invertibility), uniformity and randomness. However, since 

biometric data is fuzzy and subject to intra-user variations such as rotation and alignment issue of 

fingerprint or illumination and pose variation in face etc.  In this context, error correction method 

is applied to reduce and rectify the differences of biometric data for a reliable performance. 

 As compared to the first proposed FuzzyHash on face biometrics (Teoh and Kim, 2007), this 

paper proposes an improved FuzzyHashing (FZH) technique which differs in the following 

aspects: 

1.) We propose a new realization based on the FZH framework which possesses better 

performance and stronger security proven than that of the previous realization. 

2.) We examine the technique in the context of fingerprint biometrics. 

 

 

DEFINITION AND DESIGN REQUIREMENTS 

 

The formal definition of FuzzyHash is outlined as follow.  

 

DEFINITION 1: A (k, δ, s, Gen, Ext) – FuzzyHash template, h is constructed using a 

transformation function, 
kmnRT 1} {0,: 

be a function to map a sequence x onto FZH based 

on user-specific information, w. Let d be a metric space on T with a distance function 

Rdd : . The function T is called  -robust to noise if and only if for all ,nRx  there 

exists of w
mR  such that   )',(,0 xx , where Gen(x) = w, then Ext(x’, w) = h. 

Specifically, Gen is a the procedure used to derive w from a set of biometric feature x, while Ext 

is the function allowing extraction of h based on the corresponding auxiliary information w, if x’ is 

sufficiently close to x. With this formulation, only auxiliary information, w is required to be stored, 

instead of x to avoid the expose of original biometrics. The auxiliary info, w should not leak any 

information to enable the recovery of biometric data. Note that the key idea is to allow h to be 

generated on the fly when x’ and w are presented. 

  

Based on the definition above, the requirements for generating a FuzzyHash template are as 

follows: 

 

1) Reproduction. For all possible intra-user variations, the same template, h should be 

reproducible whenever a similar biometric is presented. 

 

2) Revocability and Diversity. Reissuable of the transformed template and no single template 

can be used in more than one application. 
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3) One-way transformation. It refers to non-invertibility of the feature domain transformation. 

i.e. the altered domain of the chosen transform must not be able to be inverted to original 

feature domain in whatever circumstances. In other words, x is irremissible even though h 

and w are presented.  

 

4)  Randomness and uniformity. For any input x, h should be approximately uniformly 

distributed among all possible 2
k
 template outputs. In other words, the entropy of each h 

generated as H(x) = -ΣPr(x)log2Pr(x) with probability Pr(X=x) for discrete random variable 

on a finite set {X=xi|i = 1,…,n}, with high randomness of maximum entropy ~1 for the 

binary case. The highly randomness implies an adversary could not perform a random 

statistical extraction of feature space patterns based on intercepting multiple FuzzyHash 

templates. 

 

The rest of the paper is organized as follows: Section 3 outlines the design specification and 

requirements for a reliable template protection technique while Section 4 details the proposed 

algorithm. Experimental and security analysis are provided in Section 5, while section 6 and 7 

presents the discussion and the concluding remarks, respectively.  

 

 

REALIZATION 

 

To realize the proposed FZH transformation function, we follow a three-step procedure. The 

steps are described as follows: 

1) Random mixing of biometric feature vector f : 
n
 →

p
, where p<n. This can be done through 

the BioPhasoring proposed in Error! Reference source not found.]. 

2) Discretize the output from f via a discretization technique Error! Reference source not 

found.], g: 
p 
→ {0, 1}

k
 where p ≤ k. 

3) Error correction code e: {0, 1}
k
 → {0, 1}

k    

 

In this context, T is then redefined as a composition function, ie. T = f◦g◦e. In this work, we also 

quantify the relation of step (2) and step (3) so that to optimize the best parameters for error 

correction.
 

 

 

BioPhasoring  

 

The BioPhasoring comprises of two stages: (a) feature extraction and (b) random mixing. In this 

context, a 1-D feature vector x={xi|i =1,…,n}, with fixed length n is fist extracted from raw 

biometric data. Random mixing is carried out based on an iterated assimilation between the 

tokenized pseudo-random number (PRN) and the biometric feature. The PRN is derived from an 

external secret, such as a password or a token and specific to each user. The objectives of the 

proposed method are two folded: (1) To inject randomness into the biometric feature, and (2) To 

enable the changeability of biometric feature by altering the PRN. 

 Specifically, a BioPhasor for a kth user is given as 

1

1

1
( ) 1



  
n k

i
jk k

iji

x
tan , j ,..., p, p n

n r
   (1) 
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where rj = {ri| i=1,…,n} is a PRN set independently drawn from N(0, 1). The output is a set of p 

values α ={αi| i=1,…,p} with range [-π, π]. Note that (1) is an underdetermined non-linear 

equation system. The inversion of (1) given α and PRN is a NP-hard problem provided p<n. 

However, the performance will degrade if p<<n.  

 One potential issue of BioPhasoring is that if the genuine PRN is stolen by an adversary 

and uses it to claim to be the genuine user with his biometric feature; we shall consider whether 

the adversary can impersonate the genuine in this scenario (stolen-token scenario). In this case, 

the false accept rate will increase as compared to the normal setting (different-token scenario 

hereafter). We shall show experimentally in section 5.2 that BioPhasor is resistant to this threat.  

 

Discretization 

 

We follow the 2
N
 discretization algorithm as proposed in (Andrew, Toh and Yip, 2007) to divide 

the biometric sample space into equal-width intervals before converting each interval to a binary 

number. For a user j, the feature space is divided into 2
N
 segments based on the range of right (R) 

and left (L) boundaries of entire feature space. Note that the segment width, w varies according 

to w= 2
2

 
  

 
ijN

N

R - L
arg min  for feature element i of user j and  

 is the standard deviation of αi of user j. In particular, the randomly transformed feature’s ith 

element of user k, α ={αik| i=1,…,p} are quantized into a binary representation based on a two-

state decision of -π and π, based on the mean of vector elements, 
0 if 0

1 if 0

jk

jk

jk

b
 

 

 
 

  

.  

During this transformation, the number of bit in each segment, γij of each user can be determined 

from the divided feature space as the auxiliary information. To reduce the impact of too much 

information lost during the quantization process, we transform the feature set {αi |i=1,…,p} such 

that each transformed feature is discernible to separate the genuine user from potential impostors. 

Specifically, we transform αi from the real space into the index space and follow by a gray 

encoding which produce a set of compact bit string of template. The use of gray encoding is to 

ensure that further states of genuine region. i.e., occurring with high probability from imposter 

would have higher hamming distance.   
 

 

Error Correction Coding (ECC) 

 

For error correction, we adopt Reed-Solomon code (RSB), which uses linear algebraic code for 

multiple error correction and is an important subclass of BCH codes. Generally, RSB belongs to 

the family of linear cyclic block codes and is designated as  (nb, kb, tb) where nb ≤ 2 bm -1 and 2tb 

≤nb–kb. kb is the number of blocks after encoding, nb represents the number of blocks before 

encoding, tb the number of error blocks that can be corrected and mb the bits number per block. 

We denote the   parity as ρb = nb – kb.  

 

 

EVALUATIONS 

 

Database Setting 
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We use the fingerprint biometrics as the subjects of study. The proposed method is evaluated 

using datasets from FVC 2004, which was established with the aim of providing a benchmark to 

determine the state-of-the-art in fingerprint recognition applications 

(http://bias.csr.unibo.it/fvc2004/). The FVC 2004 comprises of four different databases (DB1-

DB4) by using the following sensors/technologies:  

1. DB1: optical sensor "V300" by CrossMatch. 

2. DB2: optical sensor "U.are.U 4000" by Digital Persona. 

3. DB3: thermal sweeping sensor "FingerChip FCD4B14CB" by Atmel. 

4. DB4: synthetic fingerprint generation. 

 

We only opt for DB1 and DB2 for experiments as they were acquired using the optical 

sensor, which is the most commonly used sensor in the market. Each DB1 and DB2 consists of 

100 subjects and each subject contains 8 fingerprint impressions. We combine both these 

datasets and hence we have 200 images in total. Every impression undergoes a core-point 

detection by the method proposed in (Teoh, Ong and Ngo, 2003), after which a 128x128 square 

fingerprint image region being cropped with respect to this reference point. Five images from 

each subject are randomly selected to be the training samples for discretization (as well as parity 

generation) and the remainders are used for testing. A multichannel Gabor Filter (FingerCode) 

(Jain, Prabhakar, Hong and Pankanti, 2000) is used to extract the fingerprint features. The 

outcome is an ordered feature vector with length 376. 

  

 Generally, the performance of genuine distribution is based on the matching of different 

fingerprint in each class, which leading to 600 ((3x2)/2 attempts of each subject x 200) attempts. 

On the other hand, the imposter distribution is determined by the matching of each subject of a 

class against the all other subjects, where the processes are repeated for all subsequent templates 

for (200x199)/2 x 3 = 59,700 impostor attempts. For the stolen-token scenario described in 

section 4.1, we consider the worst-case scenario where the adversary always manages to obtain 

the genuine token. In other words, only one set of pseudo-random numbers (PRN) is mixed with 

all FingerCodes.  imposter matching were evaluated under the assumption that imposters 

possess stolen PRN described above. To avoid statistical bias caused by the varying random 

matrices, the experiment is repeated run for 50 times and the results are averaged to obtain AER. 

 

 

Performance 

 

For the experiments, we first examine the effect of various p in equation (1) with n= 376. We 

vary from p = 50 until p = 350 with step size of 50. For these experiments, discretization is 

excluded and a normalized Euclidean distance is used as the matching metric. 

  

 

 

Table 1 shows a performance comparison of the FingerCode with BioPhasor at various p values 

in terms of AER (Average Error Rate)=(FRR+FAR)/2. It is clearly seen that BioPhasor in 

different-token case outperforms FingerCode significantly, as what we had expected to see in 

user-specific token mixing algorithm (Andrew et al, 2006). However, we also consider the 

stolen-token scenario which is generic in real world applications. We observed that the AER 

performance of BioPhasor in stolen-token scenario is slightly poorer than that of the FingerCode. 

 

 

http://bias.csr.unibo.it/fvc2004/
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Table 1: Performances of BioPhasor for various p and FingerCode in AER (%) 

p different- token stolen-token 

50 12.64 30.12 

100 10.21 28.12 

150 5.13 27.21 

200 0.64 27.01 

250 0.71 25.11 

300 0.02 25.74 

350 0 25.54 

FingerCode                          22.35                                                         -                         

 

 For the experiments in sequel, we examine the performance of discretized bit strings without 

ECC. We fix p = 200 for both DB1 and DB2. We take an average of the final length of bit string 

template, k by appending zeros within those lesser than k and discard those which are longer 

than k for all bit strings. In this work, k is set at 246. We will address later why this specific 

value has been chosen. 

 It can be seen from Table 2, the near separation of genuine and imposter distributions which 

imply a low AER especially in the stolen-token scenario (0.4%) after discretization. However, 

the left tail of imposter distribution in the stolen-token scenario as shown in Figure 1 is stretched 

to near zero τ (τ = 0.025). This indicates that there is a potential danger of over-correction of 

imposter bit string when ECC is applied, even though the amount of these imposter bit strings 

has been small. 

 

 

 
Figure 1: Genuine-imposter distribution of bit strings in stolen-token scenario before ECC. 

 

 To evaluate the success rate of an exact reproduction of FZH whenever auxiliary information 

such as the number bits per segment γij, parity ρ and genuine fingerprint are presented. The FAR 

and FRR are redefined to elaborate the scenario of FuzzyHash production. Here, FRRFH is defined 

as the error rate when a genuine user’s h failed to be extracted, and the FARFH is defined as the 

error rate that a legitimate user’s h is produced from an imposter’s fingerprint. Note that for the 

stolen-token scenario, FARFH is the only indicator as we do not allow an adversary to generate 

the genuine-user’s FH by using his own biometric and the stolen PRN. 
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Table 2: Genuine-imposter distribution statistics and AER(%) of bit strings before ECC 

 

 Genuine (mean, 

std, min, max) 

Imposter 

(mean, std, 

min, max) 

AER 

(%) 

diff- 

token 

(0.02, 0.013, 0,  

0.07) 

(0.49, 0.035, 

0.358, 0.627) 

0 

stolen- 

token 

(0.02, 0.013, 0,  

0.07) 

(0.44, 0.07, 

0.03, 0.62) 

0.4 

 

 In the experiments, we try mb = 5 and mb= 6, hence nb = 2
5
-1= 31 and nb = 2

6
-1= 63 blocks.  

 

 

Table 3 shows the list of possible   codes that can be used. From Table 2, the maximum value 

of genuine scores is about 0.07. We may choose a suitable  (nb, kb, tb) where tb/kb≥ 0.07. From  

 

 

Table 3, we notice that many codes can be selected since they all fulfill the condition, ie. tb/kb≥ 

0.07. However, we should choose the one which offers a sufficiently long bit string mbkb, as well 

as good performance. In this case, a moderate tb/kb such as RS(63, 41, 10) could be a good 

candidate. From this code, the length of h is large, ie. k=246 (41x6) bits and hence performs 

well. On the other hand, we should not use a high tb/kb, such as  (31, 11, 10) and  (63, 21, 20) 

as they introduce high FARFH and short bit string. 

 We should point out that the zero error rate obtained is based on the FVC 2004 subsets DB1 

and DB2, and we do not claim that the proposed technique is perfect with error free performance 

in all circumstances. Typically, a high tb/kb is required to correct the errors if the genuine 

distribution is large. However, we do not know the genuine-imposter distribution a priori and 

thus an accurate choice of tb/kb is difficult to find. However, our proposed technique relaxes the 

ECC selection hassle to a certain extent as it provides a near complete separation of genuine-

imposter distribution, even in the stolen-token scenario. 

 

 

Table 3: Performances of FuzzyHashing in FAR and FRR with mb=5 and mb=6. 

nb  kb  tb  tb/kb Bit 

length,  

k 

FRRFH 

(%) 

FARFH 

(%) 

FARFH(%) 

(stolen - 

token) 

31 11 10 0.91 55 0 0.12 2.73 

15 8 0.53 75 0 0 0.01 

21 4 0.19 105 0 0 0 

27 2 0.07 135 2.8 0 0 

63 21 20 0.95 126 0 0.26 3.64 

31 16 0.51 186 0 0 0 

41 10 0.24 246 0 0 0 

51 6 0.11 306 0.02 0 0 

 

 



30 Sunway Special Issue Volume 11  

 

One-way Transformations 
 

 The examination of the one-way transformation of FZH lies in two important dispositions: (1) 

irreversible random extraction of biometric information via BioPhasor, f: 
n
 →

p
 where p<n and 

(2) transformation from real-valued BioPhasor features to binary domain, g: 
p 
→ {0, 1}

k
 where 

p ≤ k. The overall effect of FZH is a one-way transformation of the real-space biometric vector 

into binary-space hashes without compromising the biometrics itself. In summary, BioPhasoring, 

f: 
n
 →

p
 has been shown irreversible for p<n and hence it is non-commutative. The net effect 

of FZH transformation, T: 
n
 x 

n
 → {0, 1}

k
 is a one-way transformation function based on the 

product principle of Shannon (Shannon, C. E., 1949), which stated that a systematic cascading of 

different types of ciphers in single cryptosystems will increase the cipher strength provided that 

the product ciphers are associative but not commutative. 

 

 

 

Randomness Requirements 

 

 To examine the randomness of the h, we empirically calculate the entropy of each bit string 

H(b) from the combined FVC2004 DB1 and DB2 dataset. Figure 2 depicts the average entropy 

distribution of 600 (200x3) bit string with k = 246. We have the empirical entropy bound of 

about [0.99  0.05]x246=[231 246] bits. Compared to its ideal entropy of 246 bits, the 

degradation is not significant. 

 

Figure 2: Average entropy distribution of h 

 We next examine the case when an adversary manages to acquire the stored information of 

discretization such as the segment bits number γij, where the information leakage due to γij. In 

other words, H(h |γij) is considered. If this is a leakage, then H(h|γij)<H(h) where H(h) is the 

empirical entropy of h. However, no information is leaked from γij since we do not store the 

statistics of feature elements, which may reveal the probable location of the genuine segment. 

Hence H(h |γij) = H(h) ≈ 231 bits (the lower computed entropy bound). 

 We also consider the entropy lost due to parity checksum, ρ, H(h |ρ). According to section 

4.3, we have H(h |ρ) = H(h) - mbρb. Thus, H(h |ρ) = 231 – 6(31-21) = 171 bits. Nevertheless, 

even if an adversary accesses ρ, the length of bit string is still sufficiently large (171 bits) to 

prevent a brute-force attack. 

 

Diversity 
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 Our scheme requires the users to enroll their biometric data for verification process. 

Biometrics, unlike any other types of identifiers, is unique for an individual as it contains 

sensitive information about that person. Thus, the sharing of biometric data across multiple 

applications represents a serious threat to privacy. In this context, the proposed method appears 

to be a promising solution to this problem as we allow multiple sets of independent external 

PRN to be tied with the same biometric data to yield a set of independent FuzzyHash for 

different applications. The template diversity provides more practical security system 

mechanism as any PRN could be securely revoked without affecting the others.  

 According to Teoh, Ngo and Goh (2007), the normalized hamming distance calculated from 

the comparisons of two uncorrelated binary bit strings with length k can be interpreted as a 

binomial distribution which has the functional form
!

( )= 0 5
!( - )!

kk
f x .

k 
, with expectation π=0.5 

and standard deviation 0.5/√k where x = λ/k, is the fraction of bits that happen to agree when 

two uncorrelated bit strings are compared. Therefore both theoretical expectation and standard 

deviation values will be 0.5 and 0.5/√(246) = 0.032 (k=246), respectively. 

 As shown in Figure 3, the empirical distribution closely resemblances the theoretical 

fractional Binomial distribution with expectation 0.49 and standard deviation 0.030. This 

implies that the generated FuzzyHash templates are nearly independent to each other, even when 

the same biometric data has been used. This is important to ensure that the FuzzyHash is 

revocable if it is compromised. 

 

Figure 3: Diversity Property Evaluation 

 

 

DISCUSSIONS 

 

In general, there are some similarities shared between Biometric Encryption (BE) and 

FuzzyHashing (FZH): both do not use biometric templates and an exact matching is required. 

Identifiers in BE is externally derived and bounded, therefore it is revocable whenever an old 

one is compromised, whereas FZH depends on the changing of auxiliary information, i.e. user-

specific pseudo-random numbers in BioPhasoring. Even though this characteristic is not obvious, 

it is testified by the strong diversity property of FuzzyHash. While FZH does not require a 

binding process, the binding process in BE poses the risk of recovering the biometric 

information if the binding is weak, such as the analysis reported in (Boult, Scheirer and 
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Woodworth, 2007). In FZH, the chain structure ensures that the transformation is one-way and 

the risk of recovery of biometric information is extremely low. 

 Our research works bears some resemblance to the works by Davida et al. (1998) in the sense 

that the techniques follow the Gen()/Ext() process. Davida et al. applied ECC to the Iris Code 

directly but we do it after BioPhasoring and discretization, with substantive security and 

stability enhancement. 

 Table 4 compares the proposed technique with various biometric template protection 

techniques discussed in Section 2. We do not include theoretical works such as those in Davida 

et al (1998) and Juels and Sudan (2002) which did not present an empirical validation. Since 

most of the techniques are biometric form-factor dependent, we present only the best reported 

results, including the techniques and database adopted. From Table 4, it is observed that our 

technique achieves the best performance in comparison to others.  

 In our technique, discretization facilitates “fastening” of intra-variation of feature vectors and 

at the same time repulses inter-class feature vectors via user-specific stored information, γij. As a 

net effect, intra-class variations are suppressed while the inter-class variations are enhanced, and 

this brings a good separation of genuine-imposter distributions. Subsequently, ECC reduces the 

errors further. With small or no overlapping in genuine-imposter distribution, ECC can correct 

up to zero errors as demonstrated in the experiments. Therefore the proposed method is 

potentially applicable to other form of biometrics as long as the biometric feature is presented in 

a fixed length feature vector. It is noted that γij is a user-specific data derived from biometric 

features; hence it is useless if an adversary snatches this piece of information without having the 

biometrics features, and the same concept is applied to parity checksum in ECC. 

 

 

Table 4: Comparisons of various template protection techniques with FZH method 

Biometrics Technique Bit 

length 

Database FRR FAR 

Fingerprint 

(Tuyls, 2005) 

Gabor Filter + Reliable 

component extraction + Error 

Correction 

76 FVC2000, 

110 

subjects 

5.4% 5.2% 

40 Homemade, 

500 

subjects 

 

5.4% 3.5% 

Face  

(Kevenaar et al, 

2005) 

Gabor Filter + Reliable 

component extraction + Error 

Correction 

58 Caltech, 

24 subjects 

3.5% 0% 

58 FERET, 

237 

subjects 

 

35% 0% 

Iris (Hao et al, 

2006) 

Concatenated Error Correction  140 Homemade, 

70 subjects 

 

0.41% 0% 

Fingerprint  

(Nandakumar et 

al, 2007) 

Random transformation + Fuzzy 

Vault  

58 ~ 

70 

FVC2002, 

100 

subjects 

10% 0% 

MSU-DBI 

160 

19.4% 0% 
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subjects 

 

Proposed Method BioPhasoring + Discretization 171 FVC 2004,  

200 

subjects 

0% 0% 

 

 

CONCLUSION 

 

A secure biometric template protection technique – FuzzyHashing (FZH) was proposed in this 

paper, which consists of biometric transformation based on Bio-Phasoring, discretization and 

ECC. The design requirements of FuzzyHash include randomness, reproduction, diversity and 

one-way transformation. FZH comprise of two important components: auxiliary info extraction 

during enrollment and FuzzyHash transformation. The FuzzyHash can be repeatedly generated 

by using the user’s biometric input and the auxiliary information. We presented a realization of 

FuzzyHash in terms of a composite function using fingerprint biometrics. Our experiments and 

security analysis on the fingerprint biometrics using a combination of FVC 2004 DB1 and DB2 

databases suggest that FZH is highly feasible in practice. 
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