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    Chapter 29   

 Enterovirus-Specifi c Anti-peptide Antibodies       

     Chit     Laa     Poh     ,     Katherine     Kirk    ,     Hui     Na     Chua    , and     Lara     Grollo     

  Abstract 

   Enterovirus 71 (EV-71) is the main causative agent of hand, foot, and mouth disease (HFMD) which is 
generally regarded as a mild childhood disease. In recent years, EV71 has emerged as a signifi cant  pathogen 
capable of causing high mortalities and severe neurological complications in large outbreaks in Asia. 
A formalin-inactivated EV71 whole virus vaccine has completed phase III trial in China but is currently 
unavailable clinically. The high cost of manufacturing and supply problems may limit practical implementa-
tions in developing countries. Synthetic peptides representing the native primary structure of the viral 
immunogen which is able to elicit neutralizing antibodies can be made readily and is cost effective. 
However, it is necessary to conjugate short synthetic peptides to carrier proteins to enhance their immu-
nogenicity. This review describes the production of cross-neutralizing anti-peptide antibodies in response 
to immunization with synthetic peptides selected from in silico analysis, generation of B-cell epitopes of 
EV71 conjugated to a promiscuous T-cell epitope from Poliovirus, and evaluation of the neutralizing 
activities of the anti-peptide antibodies. Besides neutralizing EV71 in vitro, the neutralizing antibodies 
were cross-reactive against several Enteroviruses including CVA16, CVB4, CVB6, and ECHO13.  

  Key words     Enterovirus 71  ,   Enterovirus-specifi c Anti-peptide antibodies  ,   Cross-reactive neutralizing 
antibody epitopes  ,   In silico analysis of B-cell epitopes  

1      Introduction 

    As the number of polio infections decreases, Asia is experiencing an 
increasing number of epidemics caused by Enteroviruses (EVs) 
such as Enterovirus 71(EV71) and Coxsackie virus 16(CA16). 
Hand, foot, and mouth disease (HFMD) infections are generally 
mild and are endemic in countries like China, Singapore, Taiwan 
and Malaysia. However, in recent years, EV71 has caused severe 
HFMD with associated neurological complications such as acute 
fl accid paralysis and brain stem encephalitis, leading to hundreds of 
deaths in several countries in Asia. Large HFMD outbreaks involv-
ing over 1.3 million children in China in 2013 were associated 
with high fatalities of 243 cases [ 1 ]. There are currently no vaccine 
or antiviral agent to prevent or treat serious HFMD caused by 
EV71. The whole virus formalin-inactivated vaccine candidate has 
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gone through phase III clinical trial in 10,000 healthy children in 
China and appears to be promising [ 2 ]. However, practical imple-
mentation of the formalin-inactivated EV71 vaccine for clinical 
application will require a carefully regulated manufacturing process 
and the establishment of good global vaccine standards as different 
companies in different countries will use different vaccine strains, 
different cell substrates and different production processes. 
Although the immunogenicity of the formalin-inactivated EV71 
vaccine is good, it is not long lasting and needs at least a booster 
dose after 6 months to remain effective. Due to antigenic variabil-
ity of RNA viruses, there is also the added problem of vaccine 
 coverage of different EV71 genotype/subgenotype strains which 
requires further investigations. Further diffi culties involved the 
necessity to grow large amounts of pathogenic viruses for inactiva-
tion and the possibility of inducing inappropriate allergic and/or 
reactogenic responses in the host [ 3 ]. 

 An alternative immunization approach is to identify peptide 
epitopes that can elicit the required immune response and to use 
the synthetic versions of the peptides as vaccines. Synthetic peptide 
vaccines are cost effective and do not carry the risk of reversion. 
Unlike the inactivated vaccine, it does not have a safety risk of 
incomplete inactivation or has components that can contribute to 
unwanted side effects. The use of synthetic peptide vaccines is 
desirable in situations when the natural protein antigen is unavail-
able or is diffi cult to prepare in large quantities. Synthetic peptide 
vaccines can be prepared to high purity and stored freeze-dried. 
This avoids the “cold-chain” requirement for storage, transport, 
and distribution. Rational design of synthetic peptide vaccines to 
include multiple epitopes from the same virus or multiple determi-
nants from several viruses will greatly expand the usefulness of the 
vaccine. For example, an inactivated vaccine may not have broad 
protection against all the serotypes, genotypes/subgenotypes and 
there is a need to include several serotypes, genotypes/subgeno-
types in the formulation. The inactivated Poliovirus vaccine had to 
include all three serotypes— viz . Sabin 1, 2, and 3. In several 
HFMD epidemics, the less virulent CA 16 virus was found to be 
co-circulating with EV71. A bivalent synthetic peptide vaccine can 
be designed to include virus-neutralizing epitopes from both EV71 
and CA16 viruses. Although promising, synthetic peptide vaccines 
have been shown to be less immunogenic than the traditional 
 vaccines. The challenge is to identify a synthetic peptide vaccine 
that can optimally stimulate both B-cell and T-cell immune 
responses. The added limitation to the use of a synthetic peptide 
vaccine is that it is mainly restricted to representing linear epitopes. 
If conformational B-cell epitopes are required to elicit neutralizing 
antibodies, peptides representing the B-cell epitopes could be 
assembled on a suitable backbone which represents the 
 three- dimensional structure [ 4 ]. Despite the shortcomings of low 
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immunogenicity, several synthetic peptide vaccines are under 
development against human immunodefi ciency virus (HIV1), hep-
atitis C virus (HCV), malaria, infl uenza, cytomegalovirus (CMV), 
and human papilloma virus (HPV) [ 5 ]. Most of the candidate pep-
tide vaccines under development against infectious pathogens are 
currently in phase I and II clinical studies but some peptide  vaccines 
against cancer have reached phase III studies. However, no human 
peptide- based vaccine has reached the market but strategies to 
improve the immunogenicity, stability, and delivery will enable 
some peptide vaccines to enter the human therapeutics market in 
the near future. 

   The development of an effective peptide vaccine will involve the 
identifi cation of the immunodominant epitopes which are capable 
of inducing both humoral and cell-mediated immunity against the 
viral pathogen. Synthetic peptide vaccines can be designed to tar-
get a humoral response which is mediated by specifi c neutralizing 
antibodies or a cytotoxic immune response mediated by cytotoxic 
T lymphocytes (CD8 +  T cells) or a combination of both. Both arms 
of immunity are further dependent on the induction of a helper T 
cell response. Vaccines that induce antibody formation should 
 contain the B-cell epitope and the T-helper epitope whereas vac-
cines that are designed to generate the cytotoxic response should 
carry the T-cell epitope and the T-helper epitope. Thus, a synthetic 
peptide vaccine should contain at least two antigenic epitopes, 
a T-helper epitope and the B-cell or the T-cell epitope [ 6 ]. 

 This chapter focuses on the design of B-cell epitope peptide 
vaccines, discusses their ability to elicit antipeptide antibodies that 
will neutralize Enteroviruses, and confers immune protection 
against invading viral pathogens. Peptides chosen as immunogens 
should contain at least eight and not more than 20 amino acids. 
Peptides smaller than eight amino acids may elicit antibodies that 
do not recognize the native protein and peptides longer than 20 
amino acids may fold incorrectly and do not represent the confor-
mation of the native protein. The preferred length of synthetic 
peptides as immunogens should be ranging from 15 to 20 amino 
acids, targeting the externally exposed regions such as turns, 
 connecting regions, or loops of the native protein [ 7 ]. These 
regions are often enriched with charged and polar amino acids [ 8 ]. 
Information of the native protein structure can be accessed by 
searching the protein NCBI database (  www.ncbi.nlm.nih.gov    ) 
Uni-Prot (  www.uniprot.org    ) and ExPaSy (us.expasy.org/tools). 
B-cell epitope identifi cation can be achieved through experimental 
methods which are divided into either structural or functional. 
Structural methods include X-ray crystallography, nucleic mag-
netic resonance (NMR), and electron microscopy (EM) of the 
antigen-antibody complexes. Functional methods utilize methods 
such as surface plasmon resonance, mass spectrometry, as well as 
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immunoassays [ 9 ,  10 ]. B-cell epitopes can be discovered through 
analysis of the antigen-binding domains of an antibody that are 
resistant to proteolysis. Thus, an epitope can be generated whilst 
bound to the antibody. The epitope can be eluted from the bound 
antibody under non-denaturing conditions. This allows identifi ca-
tion of linear as well as conformational epitopes [ 11 ,  12 ]. The 
 antibodies used for identifi cation of the B-cell epitope can be 
derived from the sera of infected patients [ 13 ].  

   The “PEPSCAN” method is a fast and systematic approach for 
assessing whether an amino acid sequence will bind to an existing 
antibody. Synthetic peptides are synthesized on a solid support, 
usually as overlapping peptides of 9–12 mers covering the whole 
sequence of a given protein. The peptides are covalently bound to 
the solid support and the antibody binding properties are  identifi ed 
using antibody marked with peroxidase in an ELISA. Immunization 
using a recombinant VP1 protein of EV71 was shown to confer 
protection against lethal EV71 infection in newborn mice, indicat-
ing that VP1 contains important antigenic sites or B-cell epitopes 
that could elicit production of neutralizing antibodies against the 
virus [ 14 ]. Neutralizing synthetic peptides can be identifi ed using 
either polyclonal or monoclonal antibodies. Polyclonal antisera 
raised against the foot and mouth disease virus (FMDV) were the 
fi rst sera used to identify peptides present in the VP1 to bind to 
anti-peptide antibodies in the PEPSCAN analysis [ 15 ]. Short pep-
tides are poor immunogens and need to be conjugated to carrier 
proteins such as keyhole limpet hemocyanin (KLH) or tetanus 
 toxoid which provide a source of T H  epitopes. Foo et al. [ 16 ] used 
a PEPSCAN strategy in which 95 overlapping synthetic peptides 
were designed according to the primary sequence of the VP1 cap-
sid protein of EV71. The diphtheria toxoid-conjugated synthetic 
peptides were injected into mice and the neutralizing activity of the 
anti-peptide antibodies were determined. One of the synthetic 
peptides, SP70, was able to elicits neutralizing titer which was only 
twofold lower than that elicited by a heat-inactivated whole virus 
[ 16 ]. When the antiserum raised against the SP70 peptide was 
 passively administered to newborn mice, the anti-peptide antibod-
ies were able to neutralize viruses injected into mice at a challenge 
dose of 1000 TCID 50  and conferred 80 % in vivo protection of 
EV71 sub-genogroups B2, B4, and B5. Passive protection of het-
erologous sub-genogroups belonging to C2 and C4 was lower at 
70 % [ 17 ].  

   In the absence of a native protein, computational design utilizing 
reliable in silico bioinformatics tools have led to B-cell epitope 
predictions. Most of the existing methods of computational 
B-cell  epitope prediction does not consider the conformational 
structure but depend on a given protein sequence as a  continuous 
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amino acid stretch or a linear sequence. Hopp and Woods 
 introduced the fi rst propensity scale method (or amino acid scale 
based) for predicting linear B-cell epitopes which was dependent 
on the chemical and physical properties of amino acids [ 18 ]. 
Improved propensity methods such as BepiPred which combines 
two propensity-scale methods with a hidden Markov model 
(HMM) was shown to have a statistically signifi cant improve-
ment in performance [ 19 ]. Machine learning methods such as 
ABCPred which uses recurrent artifi cial neural networks 
 combined with fl exible length classifi ers for predicting linear 
B-cell epitopes were proposed by Saha and Raghava [ 20 ]. Their 
program was shown to achieve 66 % accuracy using a window size 
of 16 amino acids. In an attempt to further improve the accuracy 
of prediction, a support vector machine (SVM) algorithm was 
developed and combined with the propensity scale method. This 
approach was able to attain an accuracy of 72 % on a dataset of 
1211 B-cell epitopes [ 21 ]. Lin et al. (2013) described the 
BEEPro (B-cell epitope prediction using Evolutionary informa-
tion and Propensity scales), a SVM-based learning machine which 
uses 16 properties to predict both linear and conformational 
B-cell epitopes. BEEPro achieves an accuracy of 99.29 % with 
a sensitivity of 0.9604, a specifi city of 0.9946, and a correlation 
coeffi cient of 0.9281 [ 22 ]. 

 In silico approaches for predicting conformational epitopes 
can be based on the sequence or the structure or both. There are 
now a few structure-based epitope prediction servers that are 
widely used and have been validated experimentally to varying 
degrees. Commonly used servers include the conformational 
 epitope predictor (CEP) which predicts surface-accessible epitopes 
based on the atomic positional distance between amino acids [ 23 ] 
and the DiscoTope developed by Andersen et al. [ 24 ] which uses a 
combination of amino acid statistics, spatial arrangement and sur-
face accessibility to predict conformational B-cell epitopes. 
DiscoTope can be used to predict both linear and conformational 
epitopes. Newer algorithms that try to improve analysis and 
broaden targets using linear sequences when structures are unavail-
able include the ElliPro which can align unknown sequences in 
BLAST and then model the structure with MODELLER [ 25 ]. 
Rubinstein et al. [ 26 ] introduced Epitopia for predicting B-cell 
epitopes in either a three-dimensional structure or a linear sequence 
which are immunogenic. Epitopia server predicts epitopes based 
on the physic-chemical and structural geometrical features. The 
immunogenicity and corresponding probability scores are 
 computed for every amino acid for a 3D structure input or for 
every amino acid for a sequence input. Performance of the Epitopia 
as a B-cell prediction tool is judged higher than the CEP, DiscoTope 
and ElliPro using the same data and the same assessment [ 26 ].  

Enterovirus-Specifi c Anti-peptide Antibodies
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   Several excellent reviews on peptide synthesis and conjugation 
methods, production and characterization of antipeptide  antibodies 
are available for referencing [ 27 – 29 ]. This chapter describes 
a multi-step algorithmic approach that utilizes both a sequence 
(ABCPred, BepiPred) and a structure-based Epitopia server to 
identify a functional peptide epitope for developing the synthetic 
peptide vaccine. An in silico computational analysis of the sequence 
and structure models was used to identify highly conserved B-cell 
epitopes that will elicit cross protection against all EV71 strains 
and other Enterovirus family members. The combined in silico 
approach identifi ed three highly conserved 15-mer epitopes across 
multiple EV subtypes. Epitopes were discounted if their normal 
position lay buried within the viral coat rather than being  presented 
on the surface. The K1 epitope was structurally more conserved 
with no more than 6 amino acid substitutions when compared to 
the VP1 sequence of other virus strains. K2 and K3 (from the VP3 
protein) had less sequence conservation with other viruses and 
represented less exposed, more buried regions. A neutralizing pep-
tide epitope, designated as D, was included for comparison. Other 
epitopes were identifi ed from VP2 and VP4 but were not as 
 promising as K1, K2, and K3 in terms of their conservation and 
antigenicity; hence, they were not evaluated as  potential vaccine 
targets. 

 Following the in silico identifi cation of several potential  peptide 
vaccine candidates, their ability to induce production of neutraliz-
ing anti-peptide antibodies in mice was assessed. Each peptide was 
synthesized as a linear construct containing a universal T helper 
epitope from Poliovirus by standard F-moc chemistry. These 
 peptide constructs elicited low levels of anti-peptide antibody 
response after the fi rst vaccination but 6 weeks after the second 
dose,  antipeptide antibodies against D1 and K3 were higher than 
those elicited by K1 and K2 peptides [ 30 ].   

2    Materials 

   Dulbecco’s minimal essential medium containing glutamine 
(DMEM) supplemented with 10 % fetal calf serum and 1 % of 
 penicillin/streptomycin (50 μg/ml). 

 Vero cells (African green monkey kidney cells, ATCC: 
CCL-81).  

   Four peptides to be evaluated as B-cell epitopes were commercially 
synthesized using Fmoc-solid phase peptide synthesis. Each B-cell 
epitope was synthesized as a linear construct containing a universal 
T helper epitope from Polio virus (KLFAVWKITYKDT).  

   Human Enterovirus 71(EV71 isolate number CAIG 99018233), 
Coxsackie A16 (CVA16: isolate number CAIG  9902-2745
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- 4PMEK9.4.00), Coxsackie B4 (CVB4: isolate number 99039838), 
Coxsackie B6 (CVB6: isolate number 273370/PBO (14.09.1989), 
and Echovirus 13(Echo13: isolate number 28-606PMEK 
(07.06.1990).  

   BALB/c mice (6–8 weeks old). 

 Complete Freund’s adjuvant (CFA). 

 Incomplete Freund’s adjuvant (IFA).  

       1.    Sodium carbonate buffer (50 mM, pH 9.6).   

   2.    Synthetic peptide (10 μg/ml of unconjugated synthetic  peptide 
in carbonate buffer).   

   3.    Phosphate-buffered saline (PBS) (20 mM Na 2 HPO 4  in 0.15 M 
NaCl, pH 7.3).   

   4.    Phosphate-buffered saline (PBS) containing 0.05%Tween-20 
and 0.5 % BSA (PBST).   

   5.    Blocking solution: 10 mg/ml BSA in PBS.   

   6.    Secondary antibody: Rabbit anti-mouse IgG conjugated to 
horseradish peroxidase.   

   7.    Enzyme substrate: 3,3′,5,5′-Tetramethylbenzidine (TMB).   

   8.    i-MarkMicrotiter plate reader.      

   Affi nity chromatography columns used were Protein A-Sepharose 
Fast Flow columns (10 mm × 85 mm).  

   96-Well plates. 

 Diluted anti-peptide antibodies. 

 3-(4, 5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium (MTS).   

3    Methods 

   The Picornavirus capsid protein (VP1-VP4) region was 
 computationally analyzed for hydrophobicity, solvent accessibility, 
surface accessibility of residues, polarity, and spatial distance orien-
tation relationships. The sequences were obtained from the NCBI 
Genbank and scored for aforementioned key antigenic attributes 
against the BLAST query algorithm [ 31 ]. Alignment of protein 
regions was compiled against multiple publicly available database 
sets and sorted via the clustalW alignment program [ 32 ]. Conserved 
sequences demonstrating homology within the protein data bank 
listings PDB ID: 3VBS Human Enterovirus 71; PDB ID: 1 BEV 
Bovine Enterovirus and PDB ID: 1HXS Mahoney Poliovirus were 
used to construct and verify the model. 
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   Sequence alignment models demonstrating >40 % structural 
 conservation with the PDB were used to generate a three-dimen-
sional structural model for the HEV-71 (VP1 and VP3) assemblies, 
using the Chimera [ 33 ] interface to MODELLER [ 34 ]. The 
 crystallographic atomic coordinates were reconstructed and 
uploaded to the epitopia server to estimate the rate of amino acid 
substitutions at each position in the alignment of homologous 
 proteins [ 28 ].   

   Four peptide vaccine constructs containing the universal T helper 
epitope from Polio virus were assessed for their ability to induce 
anti-peptide antibodies in mice. The vaccine constructs were des-
ignated as shown below:

   K1 (KLFAVWKITYKDTLMRMKHVRAWIPRPMR).  

  K2 (KLFAVWKITYKDTLFHPTPCIHIPGEVRN).  

  K3 (KLFAVWKITYKDTLGFPTELKPGTNQFLT).  

  D1 (KLFAVWKITYKDTLYPTFGEHKQEKDLEYC).    

 Groups of six male BALB/c (6–8 weeks old) were inoculated 
subcutaneously at the base of the tail with each of the four pep-
tides. Animals received 20 μg of peptide at days 0 and 28. The 
primary inoculation was administered with complete Freund’s 
Adjuvant (CFA) and the subsequent inoculation with the incom-
plete Freund’s Adjuvant (IFA). Sera were obtained from the 
 animals 10 days after each vaccination.  

   The presence of anti-peptide antibody in mouse sera was detected 
by enzyme-linked immunosorbent assay (ELISA). Briefl y, 
 fl at- bottomed polyvinyl microtiter 96-well plates were coated 
overnight with 10 μg/ml of B-cell peptide construct in 50 μl 
50 mM sodium carbonate buffer at pH 9.6 and incubated at room 
temperature overnight. Unbound antigen was removed and unoc-
cupied plastic surface blocked with 10 mg/ml bovine serum albu-
min (BSA) in phosphate-buffered saline (PBS) (20 mM Na 2 HPO 4  
in 0.15 M NaCl, pH 7.3) at 37 °C for 1 h. After blocking, plates 
were incubated with serially diluted serum from individual mice 
starting at a 1/100 dilution in PBS containing 0.05 % Tween-20 
and 0.5 % BSA at 37 °C for 1 h, and then washed two times with 
PBS containing 0.05 % Tween 20. One hundred microliters of 
a 1/2000 dilution of horseradish peroxidase-conjugated rabbit 
anti-mouse antibody was added to each well and allowed to 
 incubate at room temperature for 1 h. Unbound antibody was 
removed, and wells washed twice with PBST and rinsed with 
PBS. Bound antibody was detected by the addition of 100 μl of 
3,3′,5,5′-tetramethylbenzidine (TMB) substrate solution. The 
reaction was stopped after 20 min by the addition of a 1 M sulfuric 
acid. Color change was detected by an iMark Microplate Reader at 
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a wavelength of 450 nm. The assays were performed in triplicate. 
Antibody titers were expressed as the reciprocal of the highest ana-
lyte dilution that gives a reading above endpoint cutoff [ 35 ].  

   Neutralizing activity of IgG purifi ed from pooled sera from the 
immunized mice was measured using an in vitro micro- 
neutralization assay in 96-well plates (Imunoblot HB, USA). 
Purifi ed IgG, (10 μg/ml) at six twofold serial dilutions was 
 pre- incubated with an equal volume of 200TCID 50  of each virus 
(HEV-71, CVB4, CVB6, CA16, and Echo13) and then used to 
infect 80–100 % confl uent Vero (CCL-81) cells. The cells were 
washed and then incubated at 37 °C with 5 % CO 2  until the fi rst 
sign of complete CPE was observed in the virus control wells. At 
this point, 25 ul of 3-(4,5-dimethylthiazol2-yl)-5-(3- 
carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium 
(MTS) one-shot solution was added to all wells and an absorbance 
was recorded at 490 nm. The monoclonal antibodies against EV71, 
CA16, and CVB4 were included as positive controls. Results were 
read as positive if there was more than a 50 % CPE reduction as 
compared to naïve controls.  

    Confi dence interval . Statistical analyses were performed using 
a one-way parametric ANOVA test with 95 % confi dence interval.      
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