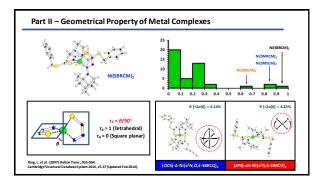
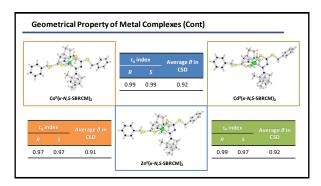
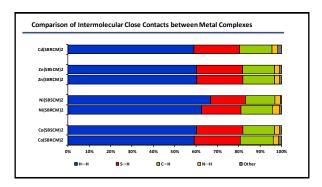
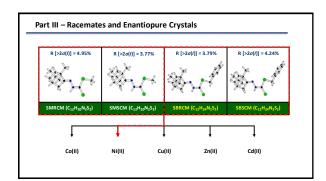

- To study the effect on the use of chiral ligand to the formation of complexes.
- To study the geometrical and structural differences between different complexes with same coordinating ligand.
- To compare the crystallographic properties between enantiomeric and racemic structures.

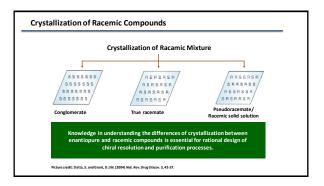


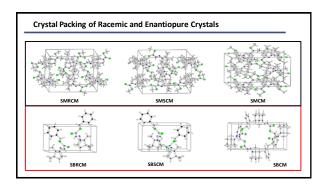


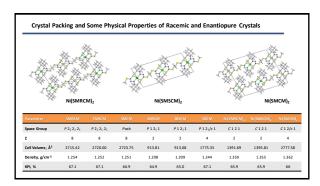
And the	SBRCM R = 0.048 Flack x = -0.10 (8)	For a Flack's x value to reliably determine the absolute configuration: $0 < x < 1, -3u < x < 3u;$ Confidence limit for $u < 0.10$			
	Kan a second sec				

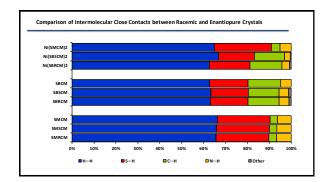


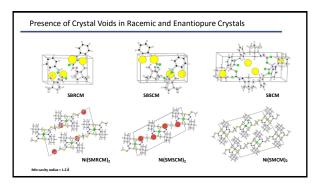

Parameter	Co ^{II} (K-N,S-SBRCM) ₂	Co ^{II} (K-N,S-SBSCM) ₂	$Zn^{ii}(\kappa\text{-}N,S\text{-}SBRCM)_2$	$Zn^{ii}(\kappa\text{-}N,S\text{-}SBSCM)_2$	$Cd^{\prime\prime}(\kappa\cdot N,S\cdot SBRCM)_2$
Flack x (su)	-0.036 (17)	0.016 (26)	0.017 (15)	0.062 (17)	-0.04 (4)
Hooft y (su)	-0.003 (9)	-0.014 (23)	0.029 (10)	0.059 (9)	-0.02 (3)
P2 (true)	1.00	1.00	1.00	1.00	1.00
P3 (true)	1.00	1.00	1.00	1.00	1.00
P3 (rac-twin)	0	0	0	0	0.3 x 10 ⁻⁵²
P3 (false)	0	0	0	0	0.5 x 10 ⁻¹⁸⁰






		(•	(Zn		Cd	
	110 pm	111 pm		118 pm		136 pm		
covalent radius								
Parameter (average)	Ni(SBSCM) ₂	Ni(SBRCM) ₂	Co(SBRCM) ₂	Co(SBSCM) ₂	Zn(SBRCM) ₂	Zn(SBSCM) ₂	Cd(SBRCM) ₂	
τ_4 index	0.60	0.90	0.97	0.97	0.99	0.99	0.99	
M-N/ Å	1.901	1.988	2.041	2.040	2.060	2.061	2.284	
M-S/ Å	2.211	2.255	2.279	2.277	2.292	2.293	2.462	
S-M-N/ *	85.1	86.8	87.8	87.7	88.3	88.6	81.9	
N-M-N/ *	177.8	142.7	124.9	125.0	123.3	123.1	123.3	
s-m-s/ *	153.8	111.5	114.4	114.6	118.1	118.1	125.4	





Conclusions

- The use of chiral ligand have resulted in formation of metal complexes with inherited chiral property, although the helicity around the metal center remains unresolved for some complexes.
- All complexes adopted a pseudo-tetraheral geometry, with the Ni(II) complexes being the first on its kind as found in the database.
- Racemic compounds are generally found to agree with Wallach's rule in which they are denser and more closely packed than their enantiopure counterparts.

