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METHANE PLUME LOCALIZATION 

WITH ENHANCED SELF-BEST REDUCTION AND 

GAUSSIAN IMPROVED PARTICLE SWARM OPTIMIZATION 

(GiPSO) 

ABSTRACT 

Swarm intelligence is a branch of artificial intelligence that studies the 

collective behavior of groups of social animals such as birds, fish, and bees. It 

has been used to solve various dynamic problems, including gas leak detection 

in drone-based leak detection platforms. However, gas plume dispersion has 

dynamical characteristics often influenced by external environmental factors 

such as wind direction, wind speed, dispersion rate and gas density. To 

investigate the adaption of swarm intelligence with dynamic modification to 

further enhance its capability to optimize gas plume dispersion.  

The research focuses on three questions to enhance the drone swarm 

optimization algorithm. These three questions steer the research in three 

separate domains, which helps the evaluations of the performances of our 

research. The research question, problems and objectives will be the research 

directed toward modifying Particle Swarm Optimization (PSO), namely 

Gaussian improved Particle Swarm Optimization (GiPSO). 

 Firstly, how can swarm intelligence aid in engaging dynamically challenging 

optimization problems such as gas plume dispersion? To investigate this, our 

research will investigate the adaptation of the Gaussian gas plume in the 
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simulation. Adapting the Gaussian gas plume model in the simulation 

provides the experiment with a realistic optimization problem for GiPSO to 

optimize in the simulation, where we can test the engagement of dynamically 

challenging optimization problems such as gas plume dispersions.  

 

Secondly, our research questions how the gas Gaussian gas plume model can 

address the adaptation of swarm intelligence in drone-based gas leakage 

detection. To address swarm intelligence adaptation in drone-based gas 

leakage detection, we investigate the existing swarm intelligence capability in 

optimizing dynamical problems in gas plume detection. Our research employs 

Gaussian improved Particle Swarm Optimization (GiPSO), derived from 

modification implemented on Particle Swarm Optimization (PSO) with Z-axis 

coefficient clamping and Self-Best reduction mechanism. Z-axis coefficient 

Clamping provides safety and reduction of drone swarm controlled by GiPSO 

risk with the physical collision with petroleum refinery exhaust. 

 

Finally, the third question of our research is how the gas leakage detection 

algorithm’s performance can be improved when the drone population is low. 

This guides the research investigating how population growth can impact 

GiPSO in Optimising Dynamic Problems. To enhance the performance of 
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population study in GiPSO, the GiPSO self-best reduction mechanism allows 

GiPSO to re-disperse the swarm when the same particle has retained as the 

global best as it achieves the limitation controlled by the operator. 

The highlight of our algorithm, GiPSO, exhibits improvement in optimizing 

the source of leakage in high precision Objective Function Value (OFV). As 

the experiment setup benchmark specification of DJI Phantom 4 available 

flight time, GiPSO shows improvement with high success in localizing the 

source of leakage with population performance peak with 14 particles used in 

the drone swarm. These further answers our third research question 

concerning the performance of GiPSO with low particle population. 
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1. INTRODUCTION 
Current gas leakage detection solutions can be mainly categorised into four 

approaches: infrastructure-mounted sensors, pipeline leakage detection micro-

robots, personal handheld devices, and leakage detection drones. However, 

these solutions need to be more effective. Mounted sensors [1] [2] [3], as well 

as handheld sensory devices such as infrared methane sensors [4] [5], can aid 

in overcoming the limited effectiveness and outreach of gas leakage detection 

solutions. For example, a leakage in inaccessible pipelines can be solved by 

using remote micro-robots [6] [7] [8] to carry out inter-pipeline inspections to 

determine the severity of the leakage. These technologies are beneficial for 

infrastructure leakage and detection that are inaccessible to workers. 

Nonetheless, these platforms will not be efficient when covering large areas as 

more sensors and personnel are required to detect and localise the gas leakage 

source in the shortest time possible.  

 

Figure 1-1 Three - Dimensional Gaussian Gas Plume Model 
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To enhance existing gas detection solutions, gaining an understanding of the 

dynamical characteristics of gas plume dispersion is crucial. Figure 1-1 shows 

the variables that impact a gas plume’s dispersion, where essential factors 

such as wind speed and leakage stack height will change the time-averaged 

plume centreline and the time-averaged plume boundary [9]. The overall 

height of the plume centreline, H, is defined by the combination h + ∆h, where 

h defines the stack height of the leakage source and ∆h as the plume rises in 

elevation. σy and σz represent the coefficients by which the gas plume will 

expand according to normal distributions in both the y-axis and z-axis. The 

length of the plume, which is depicted as X in Figure 1-1, is determined by the 

wind speed factor that will affect the direction of X. According to Gaussian 

plume dispersion models, the concentration of pollution disperses from a 

source by spreading outwards along the centreline, C, of the plume under the 

influence of normal statistical distributions, σy and σz, in both horizontal and 

vertical matter. 
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Figure 1-2Gaussian Gas Plume Model[9] 

 

The Gaussian gas plume model corresponds to the natural phenomena that 

occur in plants' pollination process. This process is affiliated with how bees 

localise flower sources in the wild [10]. Bees, such as Bombus Impatiens and 

Eastern Bumblebees, sense the traces of pollen carrying negatively charged 

static, where the bees remain positively charged throughout the flight, as 

shown in Figure 2. When the flower releases streams of pollen that flow along 

the direction of the wind, bees will pick up and track the pollen traces, which 

eventually lead to the flower. The swarm is separated into two groups 

throughout the foraging stage: the scout and employed bees. Scout bees are 

tasked to survey for surrounding food sources, whereas employed bees forage 

for the best food source available. 



4 

 

 

Figure 1-3Bumble Bee and Flower Charges  [10] 

Likewise, this bio-inspired approach can be implemented on a drone-based 

detection platform. Drones have limited flight time due to their battery 

capacity; thus, this bio-spired foraging method can help to optimise the flight 

time constraint of a drone platform. A multi-drone platform [11] [12] may 

achieve better results. Drone swarm adaptation from bee swarm may offer a 

new method to improve upon the robot swarm approach used in detection 

solutions for larger detection areas. Incidents caused by gas leakage have been 

increasing, whereby the consequences of such incidents are rather severe and 

deadly. These incidents can be prevented through early detection, and 

preventive measures can be taken to reduce the likelihood of severe incidents 

occurring. 
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The sub-chapter is further subdivided in the Chapter 1 introduction section as 

1.1, Research Questions, 1.2, Research Problem, 1.3, Research Objectives, 

and 1.4 Scope of Research. The focus of Section 1.1, Research Question, is on 

how the dynamical behaviour of a gas plume dispersion can be adapted to 

swarm optimisation algorithms as an optimisation problem. What 

methodology can we use to introduce gas plume dispersion in the simulated 

experiment to create a realistic situation for simulations to produce realistic 

results in the real world. The final research question emphasises the proposed 

solution's contribution to optimising the source of leakage as well as how the 

proposed solution approaches a dynamic environment. 

 

The first question in section 1.1, Research Problem, focuses on integrating the 

dynamical behaviour of the gas plume dispersion into the swarm intelligence 

to improve its performance in optimising the gas plume in a dynamic 

environment. The research problems also highlight the swarm population's 

contribution and investigation towards implementing the proposed solutions. 

As a result, the research will have a structure for gathering results as well as 

benchmarking of the algorithm to further analyse the proposed solution's 

performance. 
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Section 1.2 Research Problem emphasizes on the problem for swarm 

intelligence to carry out optimization in three-dimensional environment as 

well ability to perform in optimization of dynamic challenge such as the gas 

plume dispersion. In this section, highlights such as design of the new 

optimization problem are being discussed in order to provide a realistic 

environment for the algorithm to further produce realistic results. 

 

Section 1.3 Research Goal The section emphasises the research's goal of 

assisting in the resolution of dynamic environment issues using an 

evolutionary computing approach. The discussion in this section will revolve 

around the research focus and direction of tackling dynamic optimization of 

gas plume dispersion using a modified swarm intelligence algorithm. 
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1.1. RESEARCH QUESTIONS 
Aside from the main objective of utilising an unmanned aerial vehicle with 

swarm intelligence integration for gas leakage detection, this research also 

aims to answer questions that will aid in further research on issues which 

revolves around the direction of optimization of group robots in gas plume 

dispersion optimization. The research questions are as follows: 

 

1. How will swarm intelligence aid in the engagement of dynamically 

challenging optimisation problems such as gas plume dispersion? 

Swarm intelligence is often engaged in static and spherical optimisation 

problems. However, swarm intelligence can be used to optimise best solutions, 

provided that it can adapt its search methods with progressive best candidates 

in static conditions. Hence, applying such logic can help to improve the swarm 

optimisation performance for detecting the source of gas leakage. The result of 

the swarm intelligence modification with dynamic factors from the Gaussian 

gas plume model can help the swarm to adapt to the gas plume behaviour. 

Consequently, the swarm’s search and optimisation capability for gas plume 

detection can be improved. 
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2. How can the Gaussian gas plume model address the adaptation of 

swarm intelligence in drone-based gas leakage detection? 

The Gaussian gas plume model represents the behaviour of real-world gas 

plume expansion with factors such as emission rate, pollutant density, and 

wind direction. As the factors vary with time, the optimisation problem for 

swarm intelligence changes from time to time. Adapting realistic optimisation 

problems to swarm intelligence in a simulation will help in the study of the 

swarm’s performance in a real-world scenario, hence further justifying the 

performance of the swarm intelligence in collaboration with a drone-based gas 

leakage detection platform. 

 

3. How can the gas leakage detection algorithm’s performance be 

improved when the drone population is low? 

The adaptation of swarm intelligence into a drone-based gas leakage detection 

platform helps the drones navigate in an organised manner with result-based 

velocity generation. As such, using the current global best candidate as a 

reference to generate the drone’s next movement velocity will help the swarm 

to converge towards the source of leakage, as the global best candidate will be 

indicated by the highest sensory gas reading. 
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1.2. RESEARCH PROBLEM 
 

From Section 1.2, there is a need to focus on issues related to swarm 

intelligence and drone-based gas leakage detection platform in optimising 

dynamic challenges such as gas plume and gas leakage. Specifically, the 

dynamical optimisation problems of real-world gas behaviour can be 

addressed by adapting an efficient detection platform to detect gas from higher 

altitudes. Hence, the problem statements of this research, along with the 

corresponding motivations, are as follows: 

1. To investigate the adaptation of the Gaussian gas plume model in 

simulation to facilitate realistic optimization problem. 

The Gaussian gas plume model facilitates the simulation of cloud-like 

optimisation problems with realistic plume behaviour, thus rending the 

optimisation problems to a realistic scenario of how a gas plume expands with 

dynamical wind behaviour. Hence, the time taken, which is determined by the 

algorithm, will facilitate the comparison of the results with real-world results 

with the adaptation of swarm intelligence and drone-based gas leakage 

detection platform. 
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2. To investigate existing swarm intelligence capability in optimising 

dynamical problems in gas plume detection. 

The behaviour of gas plumes is unpredictable and dynamic. Such behaviour 

suggests that the early phase of the gas plume expansion may not have the 

same plume expansion characteristic as the late phases of the gas plume. As 

such, the optimisation problem formed can change drastically, affecting the 

optimisation time required to localise the source of leakage. Traditional 

methodologies for swarm intelligence are used to optimise static problems. 

Adapting the dynamic characteristic of the gas plume model can help the 

swarm intelligence to optimise dynamical problems, providing results that are 

relevant to realistic problems during experimentation investigations. 

3. To investigate the drone population’s impact on swarm intelligence in 

optimising dynamic problems. 

Elements such as the growth in drone population suggest that larger coverage 

regions can be achieved simultaneously. A higher drone population will help 

to maximise the swarm’s search capability compared to a lower drone 

population. Hence, the newly modified algorithm can help to reduce the 

population of the drone swarm to further improve the efficiency and 

productivity of the detection and optimisation of dynamic problems such as 

gas plume problems. 
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1.3. RESEARCH OBJECTIVES 
This research investigates the benefits of dynamic swarm intelligence (SI) 

adaptation in drone-based gas leakage detection platforms for oil and gas 

industries. With the ever-evolving dynamical optimisation challenge, the 

algorithm must adapt to the nature of the gas plume’s dynamic behaviour. The 

research objectives are as follows: 

1. To develop modification to swarm algorithms to adapt to the dynamical 

challenges related to the gas plume characteristics. 

To adapt to the dynamical characteristic of a gas plume expansion, 

the algorithm must first be able to function for a swarm of drones. 

Swarm intelligence controls the velocity generation for the drones’ 

new movement based on the global best individual. Hence, to 

improve the performance of swarm intelligence for a group of 

drones, employing concepts such as z-axis clamp and global best 

control can further enhance the swarm control of the movement 

velocity.
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2. To represent the actual gas plume behaviour as an optimisation problem 

in a simulated environment. 

An optimisation problem based on the Gaussian gas plume model 

will be considered to represent the dynamic challenges related to 

wind factors. In other words, the optimisation problem in the 

simulated environment will represent realistic parameters and 

characteristics of real-world gas plume behaviour. To further 

enhance the realism of the results, parameters will be derived, and 

performance will be benchmarked based on marketable solutions 

such as drone simulation parameters. With the modification of the 

swarm intelligence for swarm control and its adaptation to drone 

platforms to optimise realistic problems, realistic results for real -

world problems can be acquired in a simulated environment.
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3. To employ dynamical control for swarm algorithms in controlling the 

movement velocity of the drone swarm. 

 

A crucial element that affects the drone swarm’s performances and search 

capabilities at a particular time is the population size of the swarm. Utilising a 

threshold for the prevention of early local optima can improve the search 

performance of the swarm with iterative progressive improvements. Both the 

swarm crowd control and swarm size mechanisms can help in the reduction of 

the optimisation time, thus improving the drone swarm’s capability to perform 

an efficient search in the shortest time possible.
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1.4. SCOPE OF RESEARCH 
With the identified research objectives and problems, the research scope will 

involve evaluating the algorithm’s performances in a realistic 3D simulation 

environment. To evaluate the swarm intelligence algorithm’s performance, 

modelling of the plume optimisation is required. The model should be based 

on how the plume can behave in a natural environment depending on its 

environmental factors and parameters, such as the density, as the gas density 

can dictate how the plume can expand. 

 In the experiment, the modelling of the gas plume will follow the Gaussian 

gas plume model’s metaheuristic methods in collaboration with the point 

cloud functions in CoppeliaSim to simulate the gas plume as the objective 

source of leakage. 

 

Once the gas plume optimisation problem is defined, a benchmark model for 

drones is required to create a time limitation with a realistic battery flight time 

as the threshold in localising the source of leakage. In this scenario, DJI 

Phantom 4 Pro is utilised due to its commercial availability and cost-

effectiveness compared to the majority of the industrial drones available in the 
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market. According to its technical specification, the available flight time for 

Phantom 4 Pro is about 30 minutes.  

 

With the Phantom 4 Pro GPS horizontal error range specification of ±1.5 

metres, the objective function value (OFV) will be separated into three error 

range quartiles away from the radius of the actual source of leakage, which are: 

1. Q1 = 1.125 metres error range 

2. Q2 = 0.75 metres error range  

3. Q3 = 0.375 metres error range 

These quartiles allow for further analysis of how the algorithm will perform 

with different distance errors and how accurate the algorithm can be in 

achieving the closest possible distance to the actual source of leakage. For the 

definition of success in localising the source of leakage, any successful 

attempts within the battery threshold of 30 minutes are considered a success. 

The algorithm selected to test the capabilities of Phantom 4 based on its 

suitability to the study will then be further studied via a literature review 

before the modification and implementation of the algorithm for the research. 

In the following section of the thesis, a literature review on a few swarm 

intelligence algorithms will be presented to provide further insights. 
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2. LITERATURE REVIEW 
Birds are among many animals which are often observed for their feeding and 

migration behaviour. It is stated by James Kennedy, et al. [13] that the model 

relies heavily on the manipulation of inter-individual distances which are 

synchronously also affected by the flocking behaviour of the flock.  Such a 

natural phenomenon would allow continuous optimization with reduced 

downtime Particle Swarm Optimization (PSO) takes inspiration from the bird 

optimizing method where each particle would mimic a bird that would 

optimize on their effectiveness yet influenced by the flock instinct. With 

leading influence, the rest of the group would be affected by the action of the 

leading individual during feeding scenarios. Such a scenario reoccurs when 

the food has depleted, and another food source has been located with a 

different new leader. 

Optimization methods are also observed in other animals in the 

wild where populations are much larger and optimizing groups are 

larger in numbers as compared to birds. Bees are often observed 

for their unique organizations as well as group communications 

when they’re harvesting for the hive. Ant Colony Optimization are 

as relevant as it shares a similar uniqueness in group 

communications, where communications are conducted in terms of 
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pheromones which are left behind by passing ants. This insect 

group organization strikes interest by having optimized higher 

production in food by investing a lesser amount of energy spent. 

Often Artificial Bee Colony (ABC)  and Ant Colony Optimization 

(ACO) are compared to solve Minimum Spanning Tree (MST) 

problems. 
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This shares relevance to natural optimizing problems where ants would scout 

for food and once a food has been located more ants would be attracted to the 

source thus building up a stronger concentration of pheromone. ACO mimics 

such foraging behaviour in the field of data handling [14] [15] and multi-

sensory array handling [16] [17] [18]. 

ABC however, mimics bee foraging logic and methodology where a group of 

bees are separated into three different roles, namely employed bees, onlooker 

bees and scout bees. This behaviour allows ABC to execute optimization 

while seeking an additional food source. As compared to the ACO algorithm, 

ABC shows collaborative behaviour which was highlighted in [19], where 

ABC update each employed or onlooker bee at each iteration of ABC. Due to 

this collaborative behaviour of ABC, it is often applied in odour detection [20], 

gas detection [21] as well as optimizing structural damage detection [22]. 

 

Firefly Algorithm(FA) mimics different phenomena as compared to 

Artificial Bee Colony (ABC) and Ant Colony Optimization (ACO)  

which firefly mimics optimization based on common eastern 

firefly (Photinus Pyralis) mating behaviour. In the wild, female 

fireflies will be emitting lights on the tree branch while the males 

will be actively flying and searching for the brightest female. 
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The brighter the female emits the light, the better their genetics, as well as 

their health, therefore attract more males. Similar to the optimization problem, 

to attract other particles to influence one individual, that individual is required 

to have the “brightest” light, thus the rest would be influenced and attracted 

while the dimmer ones are lesser in fitness values. This method can be applied 

similarly to gas detection provided if one individual found a strong signal of 

gas detection the rest will follow and optimize in a similar pattern unless a 

brighter individual appears. 
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2.1. PARTICLE SWARM OPTIMIZATION (PSO) 
The feeding phenomenon where when one individual found a new food source 

and the rest of the group will be influenced. This will continue as when the 

food sources deplete, and another individual found another new food source so 

will the rest follow. In PSO these traits can be observed in the formulation as 

shown in equation 1 where Inertia Factors, current motion self-confidence, 

swarm confidence and swarm influence share similarity with behaviour in 

natural phenomena. In the formula where C1 influences each particle 

individual improvements optimize the problem where C2 swarm influences 

coefficient where the whole swarm will be affected. As these coefficients are 

being considered, the motion and inertia factor would also affect how fast 

each particle will move as accordingly. This gives an idea where PSO 

executes as a group of collective independent particles influenced by the 

group’s best individual to optimize a problem. 
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𝑉𝑖 = 𝑊𝑣𝑖 + 𝑐1𝑟1(𝑃𝑏𝑒𝑠𝑡,𝑖 − 𝑋𝑖) + 𝑐2𝑟2(𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖) 

Eq 2.1-1 Particle Swarm Optimization (PSO) formula [23] 

 

Caption: 

𝑉𝑖 = Velocity of the particle 

 𝑊𝑣𝑖 =  Inertia Weight 

𝐶1 & 𝐶2  = Acceleration Coefficient 

𝑟1& 𝑟2  = Randomizing Numbers 

𝑃𝑏𝑒𝑠𝑡 = Personal Best 

𝐺𝑏𝑒𝑠𝑡  = Group Best 

𝑋𝑖 = Position of individual particle  

 

In nature, if one individual found a food that would influence both C1 & C2, 

with C2 involved, the rest of the particle would change accordingly with 

swarm influence as well as the change of C2, therefore, attracting other 

individuals to the best value. The value of C1 & C2 can be interchangeable or 

static values depending on the setup of the algorithm, with threshold control 

implemented, the values can be controlled with limitations thus influencing 

the swarm with collected results. This is useful in gas detection because as 

soon as the gas is detected the rest of the swarm will be affected by the 

individual that detected the concentration of the gas. While the rest of the 

individuals detects gas leakage, the best individual amongst the group will 

then be the individual which triggers the swap of with the current global best 

which will then influences the swarm population. 
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Tao ma, et. al. [23] have showcased a work where PSOs are used to locate gas 

leakage detection problems with multiple scenarios as well as obstacles. Four 

scenarios are used for the test as each scenario increases with its obstacles 

simulating the scenario which are often met on offshore platforms. In the 

testing PSO, ACO and Common Scrambling Algorithm (CSA) were used, and 

PSO performs consistently throughout all 4 scenarios. This proves that with 

obstacles involved, PSO can perform optimization without negative impacts 

on its performance. 

B. Abhishek et. al. [24] proposed to have both PSO-HAS and PSO-GA hybrid 

algorithms for path planning in autonomous UAVs. Harmony Search 

Algorithm (HSA) Pitch Adjusting Rate (PAR) and Harmonic Memory 

Considering Rate (HMCR) are the two parameters within HSA that impact the 

solution’s convergence speed. While PSO-GA hybrid is used to further 

improve the luck-based performance of traditional PSO optimization. The 

scenarios of the 3D environment are modelled with obstacles as well as a 

sphere which is there to behave as enemy detection radar. 
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Martin Saska et. al. [25] implementation of PSO by having a swarm of 

miniature quadri-copters carrying gas sensors having the reading of the gas 

sensor output as the fitness value of PSO and localising the source of gas by 

having PSO predict the source.  A safety threshold was implemented into the 

algorithm for the drone’s collision avoidance with one another. Results show 

that cooperative swarms of quadri-copters are efficient for plume detection 

scenarios. 

 

Husanbir S. Panuu et. al. [26] implemented a solution having an adaptive 

neuro-fuzzy inference system (ANFIS) to enhance parameter selection for 

PSO optimization in benzene detection. The objective is to have ANFIS 

training with normalized parameters and through having the training PSO 

parameter will be selected accordingly to the current scenario. The result 

shows that ANFIS showed significant results compared to standard fuzzy and 

Neural Network based prediction. 
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These papers have highlighted where PSO can tackle dynamic problems in a 

3-Dimensional environment as well as applicable to path planning for quadri-

copters Martin Saska et. al [25] applications. PSO is also proven in Husanbir S. 

Panuu et. al. [26] and B. Abhishek et. al. [24]where PSO allows hybrid tuning 

to achieve better results than traditional PSO methods. This is due to PSO 

optimizing factors being based on randomizing factors as well as luck-based 

execution. These shows the ability where PSOs can perform in dynamical 

search of gas plume and utilize them for UAV gas detection Platforms. 

 

In the following segments, we can further identify recent research conducted 

in latest 5 years in PSO. Each of the optimizations are further broken down 

into Author/year/reference number, types of algorithms, work done on the 

research, finding as well as challenges faced in the research. The purpose of 

the tabulated literature review is to provide an insight on highlight the 

hybridism or modification as well as modification on the algorithm to further 

improving optimization performances. Scope of the literature in the recent 5 

years provides understanding and capability as well as understand of the PSO 

modification and enhancement trends. 
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Author / Year / 

Ref number 

Algorithm Type Work done Finding Challenges  

(Analysis of what their limitation) 

Tao Ma / 2020 / 

[23] 

PSO + ACO 

search method 
• Modification of 

PSO with ACO 

initialization search 

methods with 

population control 

on drone swarm 

gas leakage 

detection with 

obstacle 

environment. 

• The population of 

the swarm will 

directly impact the 

success of localizing 

of the gas source 

• At lower population, the success 

rate to localize leakage reduces. 

As the population grows, the 

success increases. 

Thangavelu 

Shankar  / 2020 / 

[24] 

PSO + 

Harmonic 

Search 

Algorithm 

(HSA) 

 

• Using HSA to 

generate new 

harmony with 

ascending sorting 

to obtain new 

global best for 

PSO crossover 

while having PSO 

to induce 

Exploration 

capability 

• The Outcome of the 

optimization of the 

hybrid algorithm 

outperforms 

PSO+GA hybrid 

which are often 

modified 

 

• Shuffled Frog Leaping Algorithm 

(SFLA) drone receives lower 

power as compared to PSO HAS 

however SFLA travels much 

further distance to optimize as 

compared to PSO HSA 

Martin Saska / 

2014 / [25] 

PSO with 

Smoke Source 

Prediction 

• Implementing PSO 

into Micro Aerial 

Vehicle swarm for 

• On the 18th iteration 

of MAV PSO 

execution, the 

• Utilizing light weight sensors 

causes uncertainties and 

measuring errors while detecting 



26 

 

gas Localization 

while allowing 

Visual Relative 

localization or 

Collision 

Avoidance to 

interrupt with 

movements of the 

swarm. 

swarm (population 

of 3) can localize 

the gas position with 

having the swarm to 

behave as 

dimensionless 

particle in PSO. 

• Second Experiment 

includes visual 

constraints and 

collision avoidance 

to interrupt with 

PSO, however 

results show that on 

29th iteration of PSO 

execution, the 

swarm achieved 

localization. 

gas concentration in the air.  

 

• Drones have the tendency to 

collide into each other due to the 

nature of particle behaviour in 

PSO where overlapping particles 

position occurs. 
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Hussanbir Singh 

Pannu / 2018 / 

[26] 

PSO + 

Adaptive 

Neuro-Fuzzy 

Inference 

System 

(ANFIS) 

• Implementing 

Artificial Neuro 

Fuzzy Inference 

System (ANFIS) 

into PSO with 

tuning on 

Antecedent and 

consequent 

parameters. On 

each executions 

iteration step of 

PSO, ANFIS 

evaluates if 

current found 

fitness exceeds the 

previous fitness 

and adjust ANFIS 

tuning if current 

fitness exceeds. 

• Mean improvement 

of proposed model 

prediction accuracy 

are found to be 

improved at 1.18%  

• Differences of 

Actual value and 

predicted value of 

mean reduction 

based on real time 

air data was found at 

difference of 

0.0635ppm. 

• Proving the 

capability of 

improving existing 

sensor mesh 

network with 

metaheuristic 

algorithm prediction 

collaborative with 

fuzzy and neural 

system. 

• Practicality of implementing 

large number of sensor mesh 

network within urban regions can 

be extremely costly. Urban 

environments possess challenges 

such as high skyscrapers and 

highways with highspeed 

moving vehicle which can 

impact on the accuracy of the 

sensor readings. 

 

Table 3.1-1 PSO work-done analysis 
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The  following table 3.1-1 , literature highlighted in the table are compiled to 

be PSO research efforts within the recent 5 years period.   The research efforts 

in the recent 5 years can be seen where PSO are still often used as the base for 

hybridism modification in reducing the size of swarm population while 

increases the productivity of the swarm performances. Within the  compiled 

studies , majority of the research efforts shows promising results with high 

success rating for each of their experiments, however this are achieved with 

hybridism capability. 

 

In order to further improve the capabilitty and efficiency of PSO , 

we have to further understand that PSO often has reduced chances 

of successfully localizing the source of leakage due to early 

convergence of the swarm to false positive location.  By 

dispersing the swarm apart from false global best and leading to 

the false positive source of leakage, the swarm can further 

enhance its capability in localizing the source of leakage thus 

improving the ability to successfully localize the source of leakage 

with lower iteration and time taken required.
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Title  Year Published in  Modification Type Methodology Results and Analysis 

Open 

Agricultural 

Burning 

Detection with 

Natural Inspired 

Swarm-based 

Detection 

Platform [27] 

2022 IICAIET VOL 3 PSO + self-

randomizer + z-axis 

reduction 

Modification: 

Changing the early 

emergence of false local 

optimum with randomizing 

the global best particle if the 

threshold is achieved.  

 

The generation of z-axis 

velocity is checked to ensure 

the z-axis velocity is above 

the physical height 

threshold. 

Modification of Gi-PSO focuses to 

have PSO jump out of early local 

convergence while having the 

generated velocity of the Z-axis for 

each particle to be above the limited 

physical height limitation. 

 

The improvements of GiPSO and 

PSO are that GiPSO is able to 

improve the chances of successfully 

localizing the source of leakage by 

12.24% while reducing the chances of 

failure to localize the source by 

14.35% 

 

A Hybrid 

Algorithm for 

Gas Source 

Locating Based 

on Unmanned 

Vehicles in 

Dynamic Gas 

Environment 

[28] 

2021 Mathematical 

Problems in 

Engineering Vol. 

2021 

PSO +Nelder Mead 

Algorithm 

Hybridism: 

By cooperating early stages 

of a z-travel search, 

threshold PSO will be 

triggered upon locating gas 

concentration to further 

optimize the source of 

leakage. The optimization 

processes, Nelder -Mead 

Simplex Method (NMSM) 

will enhance its capability of 

optimization quality by 

checking the current solution 

with satisfaction with the 

NMSM threshold 

The newly modified NMSM -PSO 

hybridism can efficiently reduce its 

search time and overall optimization 

time by 12.2% while reducing its 

iteration number to optimise the 

source of leakage by 27.6%. 
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Swarm Robot 

Implementation 

in Gas Searching 

using Particle 

Swarm 

Optimization 

algorithm [29] 

2017 Computer 

Engineering and 

Application Vol.6 

No.3 

Applied PSO to real 

ground robots. 

Implementation: 

Implementation of original 

PSO onto ground robots 

while having ground robot 

gas sensor to return the gas 

reading as fitness value. 

 

Gas is set up on each 

specific corner of the arena 

for the swarm to detect and 

optimize. 

The optimum swarm performance can 

localize the source of leakage on the 

20th second of the optimization 

attempts. 

Hybrid Odour 

Detection System 

for Search and 

Rescue Robot 

Based on 

PSO [30] 

2018 CHEMICAL 

ENGINEERING 

TRANSACTIONS 

Vol. 68 

BP neural network 

+ PSO 

Hybridism: 

Having the BP neural 

network record and calculate 

its optimum weights and 

threshold to improve the 

upcoming iterative 

experiments. The more 

experiments run the better 

the outcome of the 

optimization capabilities. 

The overall outcome of the BP neural 

network with PSO hybridism can 

achieve accuracy with errors of 8% in 

the detected values. As compared to 

the original bp neural network, the 

performance of PSO-BP further 

reduces the errors and further 

increases its accuracy. 

A stochastic 

programming 

approach for the 

optimization of 

gas detector 

placement 

in 

offshore 

platforms 

[31] 

2019 Ocean 

Engineering Vol. 

187 

Minimal 

Cumulative 

Detection Time 

model (MCDT) + 

PSO simulations 

optimization 

Hybridism: 

By having MCDT handle the 

probability estimation, PSO 

further optimised the values 

to locate the optimum 

location for mounting gas 

sensors.  

 

The simulation grounds are 

using Computational Fluid 

The experiment shows that the 

number of sensors increases with the 

reduction of numbers in Objective 

Function Value OFV. But upon 

reaching 1 OFV, the increment past 

30 sensors remains stagnant. 



31 

 

Dynamics (CFD) 

Inverse 

Frequency 

Response 

Analysis for 

Pipelines Leak 

Detection Using 

the Particle 

Swarm 

Optimization 

[32] 

2016 International 

Journal of 

Optimization in 

Civil Engineering 

Vol. 6 

Inverse Frequency 

Response Analysis 

(IFRA) + 

Particle 

Swarm 

Optimization 

(PSO) 

Hybridism: 

Having IFRA as the 

objective function to predict 

frequency responses of the 

pipe in return for any 

random set of leak 

parameters. When the 

prediction is completed, PSO 

will be used to further 

optimize the source of the 

leak on the pipeline 

When the error rate was compared 

based on actual leakage parameters 

and leakage size, it is shown that 

when there is only a single source of 

leakage, the error rate stands at 

0.033%. When there are multiple 

sources of leakage, the highest error 

rate in prediction versus actual 

parameters is 0.6%, whereas the 

lowest at 0.067%. 

A Pipeline Leak 

Detection and 

Localization 

Approach Based 

on Ensemble 

TL1DCNN [33] 

2021 IEEE Access Vol. 

9  

Transfer Learning 

one-dimension 

convolutional neural 

network 

(TL1DCNN) + PSO 

Hybridism: 

Utilizing PSO to further 

enhance the weight selection 

for TL1DCNN, PSO uses a 

combination of 50particles 

with 40 iterations to obtain 

optimal weight for 

TL1DCNN. Multiple 

TL1DCNN with classify and 

attempt to optimize the 

objective function, the return 

result will further be 

optimised again by PSO to 

group into the Ensemble 

TL1DCNN. 

In this experiment, Ensembled 

TL1DCNN is compared with EMD-

SVM, EMD-BP, WT-SVM, WT-BP, 

and 2DCNN. 3 different scenarios are 

used to test their performances. 

Ensemble TL1DCNN can achieve 

100% optimization for no leakage, 

WT-BP and EMD-BP similarly has 

also achieved 100% for no leakage. 

However, accuracy for small leakage 

of TL1DCNN, it can achieve a score 

of 97.5%, EMD-BP achieved 83.9%, 

and WT-BP achieved 84.9%.  This 

shows that Ensemble TL1DCNN 

achieves high scores with a low error 

rate compared to other proposed 

modified methods. 

Modified PSO 

algorithms with 

2018 Neurocomputing 

Vol. 292 

Multiple 

Guaranteed 

Modification: 

From Guaranteed 

Several modified PSO was used in 

the experiment with different distance 
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“Request and 

Reset” for leak 

source 

localization using 

multiple robots 

[34] 

Convergence 

Particle Swarm 

Optimization 

(MGC-PSO), 

Modification of 

having 2 different 

groups of particles 

in PSO based on 

their performance 

Convergence PSO GCPSO 

mechanism to limit the 

failure and success 

mechanism if consecutive 

success, it will then swap to 

a higher scaling vector, if 

there are failures, the success 

counter will then be reset 

and the failure counters to 

increase, thus resulting in 

smaller scaling vector. The 

group is then separated into 

2 different groups, particles 

with the lower fitness value 

will be grouped into the 

weaker group while the 

particles with a closer fitness 

value to the global best are 

grouped into the optimum 

group. The weaker 

performing group will 

update its’ velocity based on 

the optimum velocity group.  

scenario. Hybrid -PSO, MD-PSO, 

MDA-PSO, MGC-PSO. Upon 

comparison, hybrid PSO shares close 

results as compared with MGC-PSO, 

with implemented gaussian noise to 

the plume, Hybrid -PSO outperforms 

MGC-PSO due to the Mechanism in 

Hybrid PSO to have to reduce C1 

while increasing C2 iteratively. 

Despite increasingly higher gaussian 

noise in the plume, MGC-PSO shows 

a minor increment from 0.00 m to 

0.09 away from the actual 

destination. However, with a 

population size of 15 particles, MGC-

PSO shows a slightly higher standard 

deviation as compared to Hybrid PSO 

at 20.94 vs 20.49, but MGC-PSO can 

achieve higher precision in 5.11 as 

compared to Hybrid-PSO at 6.57. 

Novel leakage 

detection by 

ensemble 

1DCNN-

VAPSO-SVM in 

oil and gas 

pipeline systems 

[35] 

2022 Applied Soft 

Computing Vol. 

115 

Modified PSO 

variant, Variable 

Amplitude PSO 

(VAPSO) + SVM 

+1DCNN 

Hybridism: 

VAPSO is used for the 

improvement and 

optimization of parameters 

for the SVM model to 

prevent them from falling 

into local optima and 

affecting the overall 

In the experiment, several pipelines 

with different numbers of kernels are 

used for comparison of the study.  A 

few algorithms are also used to 

compare its accuracy in terms of its 

training set and test set experiment 

data. 
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performance of the model. 

SVM is then integrated with 

a deep learning model to 

substitute for the original 

fully connected layers (FCL) 

and softmax classifier 

 

VAPSO 

The inertia weights of the 

particles are based on SVM 

output values, whereas the 

optimization movements are 

based on traditional PSO 

methods. 

 

The C1 max reduces slowly 

as iteration increases. Upon 

each Iteration starts, the C1 

will return to its C1MAX 

and repeats its process to 

C1MIN. 

 

C2 of the VAPSO utilize the 

reverse methods of C1 

weight controlling, whereas 

as iteration increases the 

weight of C2 will increase 

from its C2Min to C2MAX. 

 

This method ensures as 

longer iteration increases, in 

Algorithm 

Type 

Accuracy 

training 

Set 

Accuracy 

Test Set 

1DCNN-

VAPSO-

SVM 

97.72% 96.61% 

1DCNN-

LPSO-

SVM 

96.88% 95.76% 

1DCNN-

MPSO-

SVM 

97.61% 96.40% 

1DCNN-

NLPSO-

SVM 

97.56% 96.18% 

1DCNN-

TVACPSO-

SVM 

97.56% 95.82% 

1DCNN 96.93% 94.92% 

1DCNN - 

SVM 

90.67% 87.30% 

It is noticeable that by 

comparing to its’ predecessor, 

1DCNN-SVM, 1DCNN-

VAPSO-SVM can outperform 

with much higher accuracy in 

training data sets as well as 

accuracy with actual test data 

sets. 1DCNN-VAPSO-SVM 

has improved its accuracy 

with the actual test set from 
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the early stage of the 

experiment the swarm will 

exhibit more global search, 

whilst on higher iterations, 

the swarm will begin to 

exhibit more local search 

capability. 

 

87.30% to 96.61%. 

Research on oil-

gas Pipeline 

Leakage 

Detection 

Method Based on 

Particle Swarm 

Optimization 

Algorithm 

Optimized 

Support Vector 

Machine. [36] 

2021 International 

Conference on 

Education 

Technology 

Management VOL 

2076 

PSO +SVM  Hybridism: 

Traditional PSO were used 

for parameter selection for 

optimum parameters so 

SVM can use it for optimal 

prediction. 

3 different algorithm were used to 

optimize the parameters for SVM to 

train on based on the gas sensor 

detection value, namely Particle 

Swarm Optimization (PSO), Genetic 

algorithm, and Grid Search 

Algorithm (GSO) 

 

The experiments are separated into 4 

different sets of experiments, 18,28, 

38, and 48 tests sets, each set is tested 

on each of the algorithms mentioned 

above, and the scoring of methods is 

scored based on accuracy and running 

time taken. On 18 test sets, PSO and 

GSO achieved 94.4%accuracy while 

GA achieved 88.89% accuracy, 

however, GA requires only 3.98 

seconds to complete while GSO 

requires 9.50 seconds. PSO achieved 

the best score with 94.4% in 0.99 

seconds. Such performance was 

shown in PSO achieving high 
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Table 3.1-2 PSO research in the recent 5 years period

accuracy with a shorter time, 

however, PSO performance in 48 test 

sets was reduced to 91.67% with 0.98 

seconds, GSO can achieve 93.75% 

but a longer time is required at 8.51 

seconds. GA achieved 83.33% 

accuracy with 2.99 seconds required 

on 48 test sets. 
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2.2. ANT COLONY OPTIMIZATION (ACO) 

Other than observing birds' feeding behaviour, scientists have long since 

observed and studied insects’ behaviour and organisational phenomenon. Ants’ 

communication is unlike insects such as fireflies or cicadas, where light 

signals or calls are being utilised for communication; due to their weak vision, 

communications are often carried out with pheromones. Once a scout ant finds 

a new and viable food source, it will return to the hive and attract more ants to 

follow them. Through this situation, more ants will leave stronger pheromones, 

signalling a food source is nearby, and more ants will follow to forage the 

food source. 

𝑝(𝑐𝑖
𝑗
|𝑠𝑝) =

𝜏𝑖𝑗
𝑎  .  [𝜂(𝑐𝑖

𝑗
)]𝛽

∑ 𝑐𝑖
𝑙𝜖𝑁(𝑠𝑝)𝜏𝑖𝑙

𝑎  .  [𝜂(𝑐𝑖
𝑙)]𝛽

 , ∀𝑐𝑖
𝑗
𝜖𝑁(𝑠𝑝) 

Eq 2.2-1 Ant Colony Optimization Selection Formula [38] 

Equation 2.2-1 shows the optimisation where τ symbolises the pheromone on 

the arc and η represents the heuristic information. 𝑁(𝑠𝑝) are solution 

components set to maintain feasibility. α and β are the parameters with a fixed 

value in the initialising step, determining the relative importance of the 

pheromone value and heuristic information. 𝑝 stands for the probability that 

ants would select the available path. This formula shows where the algorithm 

executes optimisation based on the strength of the available pheromone on the 

edge of each iteration.  
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The stronger the pheromone strength signifies the higher fitness value and 

more favourable solutions by the majority of the population. This is suitable 

for gas detection because when more particles sense gas in one direction, more 

will follow as the pheromone grows over time, thus leading to more 

wandering ants towards the source of gas leakage. 

Tao Ma et. al. [37] showcased similar work as [23], but instead of testing the 

PSO platforms on an offshore scenario, ACO is utilised to test gas leakage 

detection on offshore platforms. Four scenarios are used for the experiment 

stage for optimising gas leakage, with each scenario increasing in the number 

of obstacles as well as the complexity of obstacles. Two results were obtained 

during this experiment, where with a single source of leakage, the success rate 

is much higher than the two sources of leakage. In single-source optimisation, 

multiple instances have achieved a 100% success rate with lower iteration 

required, whereas double sources only have one instance that achieved a 100% 

success rate. 
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Qing-Hao Meng et. al. [38] have an ACO hybrid with an Upwind surgeon 

robot swarm to optimise leakage source. This solution excels when the robot 

arrives where no pheromones are detected, which determines that no 

individual has discovered this location. If such a scenario occurs, the robot 

will scatter and move upwind to search for the last memory where gas was 

detected. The robots can optimise the source, and efficiency increases along 

with the number of populations, where the group size of three and four robots 

are able to optimise up to a 100% success rate. In contrast, a group size of 2 

only manages 80%. 

YuHua Zou et al. [39] introduced a modified ACO where it comes into three 

stages of execution for multi-robot odour source localisation. The first stage is 

Local Traversal Search, Global Search and Pheromone Update. Global 

Probability Search is highlighted as a modification due to that if the currently 

available edge has no pheromone for a specified time. It will perform a Global 

search where the stochastic location in the defined environment where 

concentration is higher. Contribution as such would aid ACO to improve 

further the tendency to lower random wandering if no gas is detected. 
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Tao Ma / 2020 / 

[30] 

ACO 

modification 

with search 

space 

division 

• Modification of 

recognizing the best 

candidate for the ACO 

swarm to follow as 

well as modifying to 

have all individual to 

move towards best 

robot for gas source 

confirmation. If the 

concentration of all the 

robots isn’t the same 

as the best robot, the 

swarm will disperse 

out again for 

localization. 

Optimizing search 

space are separated out 

into search square 

spaces. 

• Performance of robot 

swarm optimizing a single 

leakage source reduces 

with the growth of 

population size. However, 

the performance of robot 

swarm to optimize two 

leakage spots increases 

significantly as compared 

to a single leakage source. 

• Rate of failure to optimize the 

problem increases due to with 

growth of numbers in population, 

other individual will not be able to 

achieve the same saturation as the 

best robot due to search space 

limitation thus failing the actual gas 

confirmation stage in Optimizing 

stage criteria to fulfil.  

Qing-hao 

Meng/ 2012 / 

[31] 

Adapted 

AACO + 

Upwind 

Surge 

(AACO 

+US) For 

Chemical 

Plume 

Tracing 

(CPT) 

• AACO adapts the 

population of the 

swarm into several 

subgroups to carry 

out optimization. 

Lower fitness 

group will be 

attracted to follow 

subgroup with 

higher 

• Incremental of success 

rate that first robot to 

approach the source 

grow alongside with 

the growth of 

population from 2 

robots per group to 4 

robots per group. 

However, group size of 

3 has the highest 

• Limitation on performance is 

depending on the size of the 

robot groups due to collision 

avoidance behaviour amongst 

each robot. Constriction of the 

search ground along with the 

increase in size of group 

population will constantly 

trigger collision avoidance 

thus affecting the efficiency 
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problem concentration. 

When no 

pheromone (Gas 

reading) was 

detected, these 

robots will scatter 

and move towards 

upwind. Subgroup 

with higher 

pheromone will 

surge upwind and 

explore more areas 

to prevent local 

optima 

prematurely. 

 

success rate for all 

robots to achieve 

localization of the 

source. 

and increment in failure rate. 

Yuhua Zou / 

2008 / [32] 

ACO • Modified ACO 

with local traversal 

search stage into 

each individual 

among Gas 

detection robot 

swarm. Gas 

concentration 

reading acting as 

strength of 

• With implementation 

of proposed local 

search modification 

improved the 

performance of 

localizing the source in 

much shorter time as 

compared to original 

ACO. While the 

original ACO tend to 

• If there are two different 

leakage sources while one has 

stronger gas concentration 

over the other, the robot 

swarm will confirm and 

localize source with the 

highest concentration while 

ignore the other leakage 

source. This is a challenge 

when the scenario has multiple 
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pheromone which 

is then used for 

path selection by 

ACO. Local 

traversal search is 

done in 5 points 

which revolves 

around the starting 

location with 

calculation of each 

position around 

radius, d, around 

the centreline. 

stray further away from 

each of the robots and 

has higher tendency to 

explore into 

environment randomly. 

The proposed local 

search methodology 

helps to reduce 

possibility of 

traditional ACO where 

each particle wanders 

randomly when no gas 

concentration was 

found. The movement 

path of modified ACO 

shows much orderly 

movement towards the 

source with increment 

of iterations. 

 

leakage source to be optimized 

and localized. 

Table 2.2-1 ACO work-done analysis 
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ACO can optimise problems with a higher concentration of data or an array of 

incoming data; however, ACO also exhibits random wandering where the 

particles roam in a random direction to prospect for potential pheromones. In 

ACO, optimisation is often carried out by identifying the path with the highest 

concentration of pheromone will be selected amongst the possible path 

selection. This algorithm shows an advantage where when there is a large 

amount of data, optimisation would be easier to carry out in return with the 

longer time consumed for the optimising problem as the algorithm utilise high 

counts of the selected path as the best path. This is beneficial in detecting the 

best solution to optimise a problem; if a problem requires a much shorter time, 

it may be challenging for ACO. 
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2.3. ARTIFICIAL BEE COLONY (ABC) 
Eusociality in insects often relates not only to ants, but bees share similarities 

in their social behaviour. Throughout 22 days life span of a bee, they will 

carry out different tasks accordingly to their age. Scientists have been 

interested in their foraging group, where bees are separated into different 

groups for different stages of foraging tasks. It is separated into scouting bees, 

employed bees and the onlooker bee. Unlike ants, where each ant can be an 

onlooker ant or scout ant, bees each carry out tasks accordingly to time 

determined by the sun’s location.  

𝑣𝑚𝑖 =  𝑥𝑚𝑖 + ∅𝑚𝑖(𝑥𝑚𝑖 − 𝑥𝑘𝑖) 

Eq 2.3-1 Profitability of Food Source [41] 

𝑓𝑖𝑡(�⃑�𝑚) = {

1

1 + 𝑓𝑚(�⃑�𝑚)
   𝑖𝑓 (�⃑�𝑚) ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑚(�⃑�𝑚))  𝑖𝑓   𝑓𝑚(�⃑�𝑚) <  0

 

Where 𝑓𝑚(𝑥𝑚) is the objective function value of solution 𝑥𝑚 

Eq 2.3-1 ABC Phase 1 Employed Bees [41] 

Equation 2.3-1 shows the formula for the profitability of a food source, depicting the 

neighbourhood food source in bee swarm memory.   𝑥𝑘  Symbolises the randomly 

chosen food source, 𝑖 stand as a random parameter index and a random number within 

the range of [-a, a]. The formula is then calculated as shown in Equation 2.3-1. 



44 

 

Equation 2.3-2 shows that if given the results of the objective functions are 

larger or equivalent to 0, then the fitness values are calculated by one divided 

by 1+ fm(solution vector to be optimisation problem), else if it’s less than 0, 

then one plus the absolute value of fm(solution vector to be optimisation 

problem). 

𝑃𝑚 =
𝑓𝑚(�⃑�𝑚)

∑ 𝑓𝑚(�⃑�𝑚)𝑆𝑁
𝑚−1

 

Eq 2.3-2 ABC Phase 2 Employed Bees Optimization [41] 

Equation 2.3-2 shows the second phase of ABC, where onlooker bees will 

take the results from Employed bees, where the probability is calculated by 

the fitness values provided by employed bees.  (�⃑�𝑚) Indicates food source, 

which is calculated by the onlooker bee; once this probability of food source 

has been chosen, 𝑓𝑚 which indicates the neighbourhood sources is then 

determined by using the equations; when the fitness value is then computed, 

more onlookers will be recruited to the richer sources with more positive 

feedback behaviour. This algorithm design allows the optimisation to select 

the higher neighbouring sources to be optimised when two neighbouring 

sources are found.  
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YingHao Zhao et al. [40] proposed combining the Tabu Search and Chaos 

Search methods into Artificial Bee to improve the searching efficiency further. 

As compared to traditional methods, the original roulette wheel selection has 

also been replaced with tournament selection to improve the global searching 

ability of Tabu Chaos Artificial Bee Colony (TCABC). Analysis of the 

experiment shows the performance of TCABC compared to actual measure 

damage is accurate, with minor error of 0.78% to 1.76% as the highest error 

rate. 

Ye Jiang et al. [41] proposed a Weighted Global ABC (WGABC) that 

considers the global factor utilising the advantage of the global best solution to 

guide the search for a candidate solution. This work suggests ensuring a good 

convergence rate for local search; a smaller weight is much recommended, 

whereas larger weights ensure faster global convergence speed.  Since smaller 

weights ensure a good local convergence rate, the weight coefficient should 

reduce as iteration increases. Traditional ABC and PSO were then used in the 

test to compare with the performance of WGABC. WGABC shows that the 

detected gas concentration errors reduce as more cycles occur; GABC and 

traditional ABC exhibit similar behaviour. Still, WGABC shows the lowest 

error percentage, as low as 0.007%, ABC shows 0.015%, and GABC shows 

0.012%. 
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Aveek Dutta et al. [42] have applied ABC to multi-sensory arrays to detect 

and compare tea quality. In this study, each employed bee is assigned to a 

single food source to be optimised. Five sensors are utilised for the experiment, 

and each experiment instance is set up with controlled parameters. Fuzzy C- 

Means (FCM) algorithm is compared with ABC for the training set and test 

set for the accuracy of results. Four sets of tea taster scores are allocated for 

training and testing; ABC results for the experiments show consistency in 

accuracy compared with FCM, where taster Score 3 shows 18.75% in error 

scoring, and 6 FCM is unable to obtain optimisations with 100%. ABC shows 

an 11.25% error in taster score three and an 11.66% error rate in taster score 6. 

This shows that FCM needs to distinguish between two types of tea samples, 

whereas ABC satisfactorily classifies these two kinds of tea. The classification 

of the results is shown according to the correctness of the total samples 

detected, where overall ABC achieved 96.55%, and FCM only obtained 75.86% 

correctness. 

J. Enríquez-Gaytán et al. [43]  integrated optimisation methods where K-

means cluster the data clusters before it is used for ABC optimisation. K-

Means algorithm suffers from being stacked into “local – minimum”, where 

ABC overcomes these issues by having scout bees seek out other potential 

food sources. This allows the algorithm to optimise the existing minimum 

food source and seek potential global food sources. The design of this hybrid 
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algorithms function by having a K-Means algorithm to reduce the dimension 

from 360 x 8 to 360 x2. After the K-Means algorithm downsizes the 

dimension, ABC will optimise for the centre of the data cluster. 

In TCABC [40], Tabu searches are separated into two parts, namely T1 & T2, 

where T1 stores the recently visited food source, preventing bees from 

revisiting the same source. T2, on the other hand, stores the location of 

deserted food sources; this can aid the bees in the selection of adventuring 

towards new food sources than optimising the existing food sources. As for 

the tournament selection strategy, each time two food are being compared, the 

ones with the highest fitness will then gain 1 point while the ones with the 

least fitness will receive 0 points; at the end of this strategy ones with the 

highest points will receive the higher probability of being selected as the best 

food source. 

In these experiments, it can be observed that ABC can tackle global minimum 

while exploring possible neighbouring food sources. ABC exhibits group 

collaboration while optimising the peak problems; this shows the algorithm’s 

ability to differentiate and optimise the “food source”, which is more 

beneficial with higher profit yields. 
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Yinghao Zhao / 

2020 / [34] 

ABC + 

Tabu Search 

Method 

• Two list is introduced 

into ABC for 

improvement of food 

source searching as 

well as better 

generation of next step 

movement. First list, 

T1 records the 

memory of recently 

found food source. 

When the number of 

list exceeds T1 list, the 

first recorded food 

source in T1 will be 

replaced. While the 

second list, T2 holds 

the memory of food 

source which are 

explored several times 

without improvement, 

thus deserted by the 

bee’s particle. 

• TCABC shows consistency 

in performance of low 

statistic as compared to 

Traditional ABC in overall 

Standard Deviation as well 

as lower worst solution. 

However, performances for 

best solution, TCABC has 

also improved from ABC 

performances throughout 

different tests scenario. 

• The experiment study suggests a 

scenario where search area is fixed 

into segmented sensory proximity. 

with fixed detection area, increase 

in number of sensors will result in 

neighbouring minimal value which 

are often known as local optima 

amongst two sensors.    

 

 

 

 

 

 

 

 

 

 

Ye Jiang / 2016 / 

[35]   

Weighted 

Global ABC 

(WGABC) 

• Controlling gas 

sensory particle in 

MATLAB with GABC 

which initializes with 

large initial weight 

coefficient, as iteration 

increases, the weight 

coefficients reduce to 

assure of better local 

• Population of particles 

remains as 20 particles 

throughout comparison 

with WGABC, PSO and 

ABC. WGABC has 

performed consistency in 

optimizing function with 

low cycles required as 

compared with PSO and 

• With consideration of reduction in 

weight coefficient, the paper 

suggests a consistent number of 

particles at 20 particles to test 

WGABC performance. A study 

based on increment of particles 

impact on efficiency of 

performance is needed as at higher 

iteration count, the weight 
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search capability  

•  

ABC. coefficient of ABC will be reduced 

accordingly. 

J. Enríquez-

Gaytán / 2020 / 

[37] 

ABC + 

Principal 

Component 

Analysis 

(PCA) 

• Using PCA for 

marking readings of 

gas sensors and then 

having ABC to find 

the centre of the 

cluster data. 3 main 

gas reading are 

focused which is 

Ethylene, Methane, 

and carbon monoxide. 

• The experiment shows that 

ABC can locate the centre 

of the clustering data, ABC 

optimization results are 

relatively close to PSO 

performances showing the 

possibility of using ABC as 

an alternative for cluster 

centre optimization. 

 

• With the differences in distancing 

between different types of gases to 

optimize, when two cluster of gas 

reading are closer, ABC may not be 

able to achieve centre optimization 

for two different gases as particle 

will fall into local optima scenario. 

Table 2.3-1 ABC work-done analysis 
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2.4. FIREFLY ALGORITHM (FA) 
Eusociality behaviour doesn’t exist only in organisational insects such as bees; 

wild mating behaviour also encourages swarming behaviour. In fireflies, 

swarming behaviour is observed during night-time, when female fireflies emit 

light on the trees to attract male fireflies for mating. This is because female 

fireflies emerge without wings, while male fireflies emerge as adults with 

wings. The attractiveness of a firefly is determined by the cold light emitted 

on the abdomen; the brighter it is, the more attractive one mating partner is.  

The same concept is applied in the FA optimisation algorithm, where the 

higher the fitness value, the brighter the individual becomes. In the swarming 

behaviour of FA, other individuals are influenced by the brightness of an 

individual; once a brighter individual occurs, the rest of the group will be 

influenced by the brightest individual and cause the ones with the least 

brightness to converge towards the brighter individual. 

 

𝑥𝑖
𝑡+1 =  𝑥𝑖

𝑡 + 𝛽0𝑒−𝛾𝑟𝑖𝑗
2

(𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) + 𝑎 ∈𝑖
𝑡 

Eq 2.4-1 Firefly Algorithm [46] 

Equation 2.4-1 shows the formula of the firefly optimisation algorithm; 

formula α indicates the scaling factor, which controls the step size of 

individual random walks, while γ is a scale-dependent parameter which 

controls the visibility of the firefly. 𝛽0𝑒 indicates the attractiveness constant 
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when two fireflies are zero above the equation [44].  ∈𝑖
𝑡  indicated in the 

formula indicates the random factor where its drawn from normal distribution. 

𝑥𝑖
𝑡indicates the current position of the firefly , whereas 𝑥𝑗

𝑡indicates the brighter 

individual in the swarm. 

KuangWei et al. [45] have proposed a modified FA by limiting the step size 

selection for the algorithm during optimisation; this step size is controlled in a 

range. As the number of iterations increases, the step size will reduce 

accordingly. These aid sizes are much larger in the early optimisation steps; 

explorations are encouraged as the iterations continue, and reducing the step 

size will aid in fine-tuning the efficiency in optimising the problem. The 

selection of the best individuals is also improved by introducing an adaptive 

circle around the best individual, and this circle will decrease accordingly as 

the iterations increase. Such improvements tackle the problem where the 

“brightest individual” may not be in the optimal position. This modification 

reduced the number of iterations required for optimising peak problems. The 

improved Firefly Algorithm also exhibited reduce in Average Operation time 

compared to the traditional Firefly Algorithm and levy flight Firefly 

Algorithm.  

Deng Long Ma et al. [46] have highlighted where in traditional Passive Firefly 

Algorithm (PFA) forms a new group by updating the parameters of each 
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individual through a comparison of each brightness. Active Firefly Algorithm 

(AFA) is introduced in response to PFA limitations by adopting Gaussian 

Normal Distribution. Standard Deviation of normal distribution of distances of 

the current individual compared to the brightest are also adopted. With this, 

comparison and updating of each brightness and parameter are not required as 

each parameter is updated as the algorithm optimises the peak problems. 

Consistent parameter updates are optimised, resulting in AFA producing skill 

scores lower than PFA in 3 of 4 release cases. This proves that AFA can 

obtain a more accurate estimation than PFA, even with smaller populations. 

Due to the nature of FA, where the brightness of each individual is required to 

be evaluated, and adjustment of parameters is required before carrying out the 

next step, this will consume more time required in optimising problems 

compared to PSO and ABC. FA shows potential to take on dynamic problems 

as the behaviour changes and optimal solution changes, as well as the 

experiments, are carried it; this shows promise with its capability to take on 

dynamical problems. However, modification in parameters update will also 

improve the time required for the updating process to tackle problems which 

weigh heavily on time taken, such as localisation on gas leakage sources
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2.5. RECENT WORK ON PSO RESEARCH IN THE PREVIOUS 5 YEARS PERIOD 
Title Year Paper Highlight Conclusion 

A review of swarm 

intelligence algorithms 

deployment for scheduling 

and optimization in a cloud 

computing environment 

[47] 

2021 A review study on Swarm Optimization 

in cloud computing: 

• PSO 

• ACO 

FA 

Hybridism of PSO and 

Modification of PSO 

parameters are often 

brought up in the 

modification of PSO. 

Particle Swarm 

Optimization and Fuzzy 

Logic Control in Gas 

Leakage Detector Mobile 

Robot [48] 

2015 Implementation of the ground robot with gas 

sensor collaborative with PSO and Fuzzy logic. 

Simulation Work 

 

Using a sensor to determine the “fitness” value 

Utilizing fuzzy logic to rule 

the movement control about 

velocity generated by PSO. 

Performance Analysis of 

the PSO algorithm: an 

experiment study [49] 

 

2021 From our experimental analysis, we conclude 

that the PSO protocol gives better performance 

overall if many particles are present in the 

swarm and the algorithm run for enough time 

to provide optimal results, but sometimes the 

target cannot be found. In other words, it can 

be concluded that the behaviour of the PSO is 

improved if sufficient input is provided for the 

algorithm to run; however, the nodes may not 

always be able to find the target. 

 

PSO performances are 

better and rather consistent 

if the population are larger 

and as iterative execution 

increase over time, the 

performance will improve 

accordingly. 
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Application and 

improvement of swarm 

intelligence optimization 

algorithm in gas emission 

source identification in the 

atmosphere [50] 

2018 Three different algorithms are used to compare 

performances. Firefly Algorithm (FA), PSO, 

ACO 

PSO outperforms in terms 

of boundary constraints and 

computational efficiency. 

ACO and FA perform 

poorly in larger boundaries 

compared to PSO, but when 

the boundaries reduce 

ACO, FA performance 

improves. 

 

Note that is suggested that 

to improve the efficiency 

for these SI to perform 

better in Atmospheric 

optimization, location 

parameters are required to 

improve the computational 

efficiency. 

A Novel Method for 

Source Tracking of 

Chemical Gas Leakage: 

Outlier Mutation 

Optimization Algorithm 

[51] 

2021 To improve the performances of current swarm 

intelligence algorithm performances and avoid 

local minimal which most SI will fall into in 

the earlier iterative optimization stages. 

Objectively is to optimize gas plume 

optimization problems. 

Outlier Mutation 

Optimization (OMO): 

Utilizes exploration 

and exploitation 

concepts for 

optimization. 

UAV swarm control 

strategies: A case study for 

2017 Implementing PSO onto a group of pixhwak 

drones mounted with a gas sensor. With drones 

3 improvements are made 

before the execution of the 
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leak detection [52] naturally having physical inertia weight, each 

drone will be evaluated according to their 

detected concentration of gas where the highest 

gas is grouped best and update the PSO 

formula accordingly. 

optimization process: 

1. Separation 

Moving away from 

each other 

2. Alignment 

Align towards the 

average heading of 

others 

3. Cohesion Group 

closer to form a 

swarm 

 

A Hybrid Algorithm for 

Gas Source Locating Based 

on Unmanned Vehicles in a 

Dynamic Gas Environment 

[53] 

2021 Hybridism between PSO algorithm to optimize 

problem while Nelder Mead Simplex Method 

(NMSM) to check if optimization of NMSM 

optimized global best can surpass the current 

global best. If the reflected NMSM output does 

not surpass the existing global best, the current 

solution will be updated instead 

The performance of 

PSO+NMSM reduced 

maximum time and 

maximum iterations as 

compared to standard PSO. 

In Standard PSO maximum 

time increases as the size of 

the group grows, however, 

PSO+NMSM maximum 

time reduces as compared 

to standard PSO. 

An improved particle 

swarm optimization 

method for locating time-

2019 Modified PSO with additional Acceleration 

coefficient with upwind velocity. The 

experiment is conducted in Computational 

The new Modified PSO 

with Upwind velocity 

successfully leave local 
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varying indoor particle 

sources [54] 

Fluid Dynamics (CFD) simulations. A new 

search strategy is implemented where a random 

search strategy will be activated if the plume is 

lost, or Modified PSO will continue to take 

effect. 

extremum areas and rapidly 

locate time-varying particle 

source in an indoor 

environment. The new 

method has improved with 

a success rate above 96% 

with a localization time of 

approximately 55 seconds. 

Modified PSO algorithms 

with “Request and Reset” 

for leak source localization 

using multiple robots [55] 

2018 Changing the strategy of the Standard PSO 

optimization method where if 50% of the 

current particle fitness is lower than the 

average fitness, randomly reset their position 

and velocity to be sent away from the global 

best to explore while another half of the 

population follows the historical globally best 

particle to strengthen local search around the 

best particle. 

 

 

If the new optimum group’s global best particle 

fitness is lower than the previous, the existing 

optimum group will be reset.  

In comparing performances 

between hybrid PSO and 

MGC-PSO in terms of 

population growth, standard 

deviations of MGC-PSO 

reduce along with the 

increment in populations. 

A multi-information fusion 

‘‘triple variables with 

iteration’’ inertia weight 

PSO algorithm and its 

2019 Implementing Linear Decreasing Inertia 

Weight (LDIW) to handle iterative control for 

weight to improve exploration and exploitation. 

 

The cases of controlling the 

maximum and minimum 

coefficient of the inertia 

weight are judged by case 
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application [56]  matching of the 

successfulness of each of 

the particles. More 

consecutive success will 

reduce the maximum 

coefficient while lower to 

no consecutive 

successfulness will increase 

its maximum intertie 

weight coefficients. 
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A Review of 

Representatives Swarm 

Intelligence Algorithms for 

Solving Optimization 

Problems [57] 

2021 Review Studies on current trends and research 

contributions from 2000 to 2020 on different 

algorithms category: 

• Ant Colony Optimization 

• Artificial Fish Swarm 

• Particle Swarm Optimization 

• Bacterial Foraging Optimization 

• Artificial Bee Colony 

• Other swarm intelligence algorithm 

 

The analysis review in this paper also 

categorises this analysis for types of 

research this algorithm is used to solve 

problems. The categorization following 

the trend as follows: 

• Scheduling Problems 

• Power Systems 

• Parameter Optimization 

• Image Processing 

• Signal Processing 

• System Identification 

Robot System 

 

 

Table 2.5-1 PSO studies in the past 5 years  
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In   the table 2.5.1 – 1 PSO studies in the past 5 years compiles the research efforts which are done on 

PSO  in the research field. From this table we can further understand that PSO are often used for 

parameters optimization or hybridism tactic is used to further enhance the capability of PSO. Paper  such 

as   Y. YUTNG ET. AL. [34] takes on approach such as  request and reset where if the results of the swarm 

are below satisfactory the swarm will then be communicated to dispersed and reset with randomized 

location . This can be utilized to further prevents the probability of drone swarm spiralling towards false 

localization.
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To conclude the literature review, we can observe that optimization algorithms  

such as PSO, Firefly Algorithm( FA), Artificial Bee Colony (ABC) and Ant 

Colony Optimization (ACO) retains their capability in localizing  and 

optimizing of a provided issue.  When the research objective are applied to 

further filters algorithms to be chosen, PSO better suits the objective of the 

research as FA, ACO, and ABC requires larger populations to perform 

optimizations.   

 

Furthermore,   when PSO are compared with other algorithms, we can see that 

PSO are better suited to take on dynamical challenge of the methane plume as 

the plume would change alongside with the increment of time. Algorithm such 

as FA,  ACO and ABC are harder to manoeuvre to dynamical optimization as 

the algorithms would have multiple stages of optimization and layers of 

communications. 
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The research focuses on improving the performance of swarm-based 

optimization with  lower populations size on the swarm .While the intention is 

to improve the productivity  of swarm algorithms , we have to also satisfy the 

criterion of reducing the time taken for each successful optimization to further 

proves the reliability and applicability  to realistic problems possessed by gas 

plume dispersion as well as the availability of flight time restricted by drone-

based gas leakage detection platform.   

 

With considerations of both criteria, algorithms with high population swarm 

size  and long optimization time will not be feasible as well as applicable to 

the research.  This will conclude that algorithms as such as Artificial Bee 

Colony (ABC) and Ant Colony Optimization (ACO) will not be  selected as 

both algorithms will require high swarm size particle populations as well as 

longer progressive optimization time to further improve their optimization 

methods as it has multiple optimization stages. Firefly Algorithm (FA) are 

computationally least complexity as compared to Particle Swarm Optimization 

(PSO) , however, the convergence time for Firefly Algorithm (FA) are  slower 

as compared to Particle Swarm Optimization (PSO).  
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Firefly Algorithm (FA) low convergence originates from the optimization 

methods where the particles are often travelling along in one direction. 

Provided that the optimization such as gaussian gas plume model which 

changes dynamically with the increment of time , Firefly Algorithm (FA) are 

not suitable for the experiment. Particle Swarm Optimization (PSO) is a 

population-based optimization algorithm where the size of the population will 

manipulate the efficiency of the swarm, such factor will satisfy the 

requirements of the research focus.  

 

Furthermore,  Particle Swarm Optimizationg (PSO) are often implemented for 

dynamical challenges as  Particle Swarm Optimization (PSO) are good for  

multi-objective optimization. To localize the source of leakage, multiple 

particles are required to compare and optimize for the best global best 

individual selection where it will then influence the swarm newly generated 

velocity movement. This will benefit the maneuver behavior to  challenge 

optimization problem such as gas plume dispersion problem.
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3. METHODOLOGY 
Due to the nature of the gas plume expansion and drone detection platform 

utilised, simulation is selected as this study’s methodology, as more results 

can be obtained autonomously. The intention of modification of Gaussian 

Improved Particle Swarm Optimization (GiPSO) focuses on the 

communication between the individual swarming behaviour as well as 

dispersion on threshold. While having intentions to maximize the capability 

of GiPSO with lower population count on the swarm , the global 

communication of the drone swarm controls is required to be focused on as 

well. As the population grows in the experiment , the communication 

between each individual and swarm as a while requires a thresholding to 

further prevents the possibility of having false global best individual thus 

leading towards false positive localization. 

 

Upon investigation of PSO behaviour with dynamically evolving 

optimization problem such as the gas plume model, PSO has high tendency 

to fall into false local optima. This is due to plume may shift direction as 

the factor , 𝑡, increases over time of the experiment. As the optimization 

continues with the time factor , 𝑡, random shifts of the plume will affect the 

PSO as the same current global best individual may retain as the false best 

individual thus leading the swarm into failure to localize the source of 

leakage. 
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To improve such issue, limitation such as re-dispersion of the swarm can be 

utilized to further reduce the tendency of the swarm falling into false local 

optima and encourages wilder pattern search when the same individual 

retains as the global best. As the swarm move towards the source of 

leakage, the probability of other individual may detect higher concentration 

thus becoming the current global best, this scenario will then  deactivate 

such mechanism unless the same global best has retain until the threshold. 

 

 The experiments are designed to reduce the local minima by applying a 

threshold to how often one individual can remain as the global best and 

improving the search performance with the integration of the Gaussian gas 

plume model. For each completion of the experiment, the results will be 

logged into the comma-separated value (CSV) file according to the 

instance count, iteration count, categories, and how many iterations are 

needed until the particles localised the source.  

 

 

To further evaluate the performances of GiPSO’s ability to optimise the 

global optima of the gas plume dispersion, Objective Function Value (OFV) 

and time limitation to conclude a success with the low time taken are 

indicated based on the specification of DJI Phantom 4. 
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The objective Function Value of our research focuses on how much 

horizontal range versus precision we can apply to evaluate further the 

performance of GiPSO and PSO compared to its ability to pinpoint the 

source of leakage. The categorisation of OFVs is further separated into 3 

different quarters to evaluate the performance of GiPSO and PSO in each 

OFV to be 25% closer to the source of leakage to satisfy successful criteria. 

The OFV for the population study is standardised to be the source of 

leakage without the horizontal error range of DJI Phantom 4. This can help 

us to study how GiPSO can perform with growth in population in localising 

sources of leakage with high precision. 

 

The categorisation of results into successful, high iterations and 

failure is based on the time taken to localise the source of 

leakage. Suppose the experiment instance can localise the 

source of leakage within 150 instances of movements. In that 

case, it will then be categorised as successful localisation as it 

would take less than 35 minutes within the available flight time 

of a DJI Phantom 4. However, experiments that succeeded in 

localising the source of leakage within 150 to 300 instances of 

the experiment will then be categorised as high iterations. 
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This is because the time taken for declaring a high instances success would 

take 35 to 45 minutes, which is the cut-off limit for DJI Phantom 4 flight 

time. Failure instances are categorised for any experiment exceeding 300 

instances in attempts to localise the source of leakage. 

 

The primary focus for the categorisation and limitations for OFV and 

success indication is based on the specification of DJI Phantom 4. This 

allows our research to produce realistic results and restriction to the actual 

scenario in the real-world environment. 
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3.1. GiPSO PSEUDOCODE 

 

Figure 3.1-1 GiPSO Pseudocode 

The design of GiPSO focuses on preventing the swarm 

algorithm from falling into the local optimum in the early stage , 

which will cause the swarm to fail in localising the global 

optimum.

GiPSO Initialize Population 

While ( 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 < 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑚𝑎𝑥 ) 

 𝐈𝐟  particle (x) (  𝑝𝑏𝑒𝑠𝑡(𝑥) > 𝑔𝑏𝑒𝑠𝑡)) 𝐓𝐡𝐞𝐧 ( 𝑝𝑏𝑒𝑠𝑡(𝑥) = 𝑔𝑏𝑒𝑠𝑡) 

 End 

   For (𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 < 𝛥𝑡 ) 

  If 𝒕 < 𝒕𝒎𝒂𝒙 

   Then 𝒙𝒊 ,𝒅 =  𝒙𝒊 ,𝒅 + 𝑽𝒊 ,𝒅 

  Else 

   𝑽𝒊 ,𝒅 = 𝑾𝒗𝒊 ,𝒅 + 𝒄𝟏𝒓𝟏(𝒑𝒊 − 𝒙𝒊 ,𝒅 ) + 𝒄𝟐𝒓𝟐(𝒑𝟐 − 𝒙𝒊 ,𝒅 )  

   If 𝑉2 >  𝜎𝐻𝑠 Then 𝑉2 =  𝑎𝑏𝑠 (𝑉2) −  𝜎𝐻𝑠 ) 

   Else 𝑉2 = 𝑉2  

  End  

  For x = 1 : population size 

  Switch(Gbest) 

           Case 1: 

𝑮𝒃𝒆𝒔𝒕(𝒙 − 𝟏)! = 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅(𝒏): 𝑮𝒃𝒆𝒔𝒕𝑪𝒐𝒖𝒏𝒕 = 𝑮𝒃𝒆𝒔𝒕𝑪𝒐𝒖𝒏𝒕 + 

             Case 2: 

𝑮𝒃𝒆𝒔𝒕𝑪𝒐𝒖𝒏𝒕 = 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅(𝒏): 𝑮𝒃𝒆𝒔𝒕 = 𝑷𝑺𝑶 𝑮𝑬𝑵𝑬𝑹𝑨𝑻𝑬 

𝑷𝑺𝑶 𝑽𝑬𝑳𝑶𝑪𝑰𝑻𝒀 𝑮𝑬𝑵𝑬𝑹𝑨𝑻𝑬:  𝑽𝒊 ,𝒅 = 𝑾𝒗𝒊 ,𝒅 + 𝒄𝟏𝒓𝟏(𝒑𝒊 − 𝒙𝒊 ,𝒅 ) +  𝒄𝟐𝒓𝟐(𝒑𝟐 − 𝒙𝒊 ,𝒅 ) 

        𝑮𝒃𝒆𝒔𝒕𝑪𝒐𝒖𝒏𝒕 = 𝟎 

              

             End 

 End 

  If 𝑥𝑖,𝑑 = 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝑀𝑎𝑥    

Then 𝑏𝑟𝑒𝑎𝑘 

End 
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 As shown in  GiPSO consists of a self-best reduction mechanism where 

when the same individual has remained the global best for too long, the 

global best will be randomised to a random individual, and the swarm is 

dispersed again. This mechanism will not be triggered in the later stages 

when the swarm is closer to the source of leakage. The closer the swarm is 

to the source, the more individuals will consistently replace the global best 

individual. 

 

𝑽𝒊 ,𝒅 = 𝑾𝒗𝒊 ,𝒅 + 𝒄𝟏𝒓𝟏(𝒑𝒊 − 𝒙𝒊 ,𝒅 ) + 𝒄𝟐𝒓𝟐(𝒑𝟐 − 𝒙𝒊 ,𝒅 )  

   If 𝑉2 >  𝜎𝐻𝑠 Then 𝑉2 =  𝑎𝑏𝑠 (𝑉2 ) −  𝜎𝐻𝑠 ) 

   Else 𝑉2 = 𝑉2  

Eq 3.1 -1 GiPSO Physical Stack Limitation 

Aside from the local optimum prevention, GiPSO also includes a 

mechanism to prevent the swarm from flying into a danger zone in the real 

world as shown in Equation 3.1-1. The mechanism will allow the user to 

set the physical stack height of a real-world chimney as the minimum 

height threshold.  

This  threshold wil l  help to prevent the swarm from venturing 

into areas below the height  of  the chimney;  as  methane gas 

(CH4) is l ighter  than air ,  i t  wil l  disperse at  a  higher height 

than the chimney height .  This  mechanism serves not  only as 

a safety feature for the swarm to avoid collision possibi l i ty 

but  also helps the swarm to avoid unnecessary ventures to 

places where there may not be t rails  of gases.
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Figure 3.1-2 Traditional PSO vs GiPSO 

In Figure 3.1-2, the differences between GiPSO and traditional PSO can be observed in terms of their 

pseudocode representation. In the GiPSO pseudocode, the modifications done for the movement 

velocity clamp based on the z-axis control and self-global best reduction mechanism are highlighted. 
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Figure 3.1-3 GiPSO modification visualization 

By understand the Gaussian Gas Plume model , we identified that the plume behaves as 

such that it would expand in a enlarging conical shape. Thus , the direction fashion of 

the plume goes in a decreasing fashion from the end of the plume towards to the source 

of leakage.  

While reducing the generated z-axis velocity for each of the particles with 

z-axis velocity clamp we have to ensure that that newly generated z-axis 

velocity should also be above the physical height clearance , h , to ensure 

the drone swarm does not collide with potential pipelines or chimney.  
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As the runtime of the experiment , t, increases the generated z-axis will gradually be 

reduced for each of the generated velocity thus increasing the chances of having the 

drones to be on parallel level with the gas plume. This ensures that the drone swarm 

remain above the physical clearance while generating reduced z-axis velocity similarly 

to gas plume formation. 

 

When a new set of velocities is generated on each iteration of movement, the z-axis 

movement velocities should be checked if the newly generated velocities are above the 

physical height threshold. The conditional checking ensures that the swarm does not 

generate a z-axis velocity that is lower than the threshold provided by the operators. This 

mechanism represents a safety precaution for the swarm in reducing the possible risk of 

physical collision and providing a limitation for the swarm to conduct optimisation in 

regions without gas plume expansions. 
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3.1.1. GLOBAL BEST THRESHOLD 
GiPSO modification focuses on two key elements, as highlighted in gaussian 

gas plume model where , where plume raise from the source of leakage , Δh, 

and z – axis of plume raised from plume center height , σz, are the factors that 

drones can exploit to improve the efficiency further in detecting and localising 

the source of leakage. The coefficient of z, σz, spreads larger the further the 

drone travels away from the gas source. This characteristic inspires the 

modification made by iteratively controlling the generated z-axis position for 

the drone swarm. With this modification, the drone will eventually reach a 

level where the swarm will carry out optimisation on the centreline of the 

plume with the highest chance of localising the source of leakage.  

𝐺𝑏𝑒𝑠𝑡 = {

𝐺𝑏𝑒𝑠𝑡 = 0  ,                                              𝑖𝑓 𝐺𝑏𝑒𝑠𝑡 < 𝑛
𝑒𝑚𝑝𝑡𝑦𝐶𝑜𝑢𝑛𝑡 + 1    ,                             𝑖𝑓 𝐺𝑏𝑒𝑠𝑡 == 𝑛
𝑒𝑚𝑝𝑡𝑦𝑐𝑜𝑢𝑛𝑡 =  ∅, 𝐺𝑏𝑒𝑠𝑡. 𝑟𝑎𝑛𝑑𝑜𝑚, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Eq 3.1.1-1 Self-Reduction of Global Best Reduction 

One of the challenges faced by traditional PSO occurs when a particle has 

been recognised as Gbest and no new gas particle is detected. Gbest will 

influence every other particle to steer towards the similar “lost” path, resulting 

in a high number of iterations and yet being unable to localise the leakage 

source. 
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This problem is alleviated with the modification of the algorithm by limiting 

how often one particle can be Gbest by setting a threshold to control it. The 

notation 𝑛 can be changed accordingly to the desired threshold that the user 

prefers. If any Gbest particle is maintained as Gbest for more than 𝑛, then the 

Gbest particle is randomised to a new Gbest.  

This modification is essential to encourage the overall swarm to follow Gbest 

and to remove any inconsistent Gbest in the group due to the sensory value as 

the gas plume model may produce “chaotic” gas plumes. The “chaotic” 

characteristic of the gas plume model is defined as the inconsistency of gas 

concentration in the plume, which is unlike a real-world plume, where the gas 

concentration is shared along the plumes. 

A class known as self best reduction function is created to keep 

track of the global best in case the global best has remained as the 

same individual for a fixed number of iterations. The use case of 

this condition checks if one individual has remained as the global 

best individual for this fixed number of iterations. The counter 

will be reset, and another randomised individual will be the new 

global best. When each iteration is completed, the counter will 

increase until the threshold has been reached.  
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The modification to randomise Gbest will aid not only in encouraging more 

adventuring to seek for the gas plume but also in preventing the same 

candidate from remaining as Gbest for too many iterations, as the swarm 

being unable to detect gas traces for too many iterations will cause stagnation 

in the optimisation process. 
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3.1.2. Z-AXIS COEFFICIENT CLAMPING 
After implementing the self-reduction function, the overall PSO-generated z-

axis is relatively randomised. The study on the Gaussian plume model 

suggests that the further the plume travels away from the source of leakage, 

the more σz increases significantly; thus, this characteristic can be utilised for 

a modification in PSO to control the generated z-axis for the optimisation 

process. 

𝑛𝑒𝑤𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 (𝜎𝑧)

=  {
𝜎𝑧 −  𝛥ℎ                          ,                 𝑖𝑓  𝑎𝑏𝑠(𝜎𝑧) > 𝛥ℎ  

𝜎𝑧 =  𝑛𝑒𝑤𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(𝜎𝑧)   ,   𝑖𝑓 𝑎𝑏𝑠 (𝜎𝑧) <  𝛥ℎ 
 

Eq 3.1.2-1 Condition for Z-axis Reduction 

This  modif icat ion  i s  to  encourage  the  i tera t ive  reduct ion  of 

the  newly  generated  veloci ty  on  the  z -axis  to reduce  the  

coeff ic ient  of  z  accordingly ,  hence reducing unnecessary 

explorat ion  and br inging the  swarm closer  to  the  source  of  

leakage.  
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 According to the Gaussian gas plume model, the closer the plume is to the 

source of leakage, the lower the coefficient of the z-axis. Thus, reducing the 

newly generated z-axis velocity will help to increase the performance when 

localising the source of leakage. The Move_particles() class cross-checks the 

3rd element of the newly generated velocity for each particle, ensuring the 

regulations of reducing or maintaining the generated value are followed. The 

condition functions in such a way that if the absolute value of the newly 

generated z-axis velocity is higher than Δh, then the new velocity is reduced 

accordingly. 

The benefit of this modification is that the PSO goes closer to the source of 

the plume the longer the iteration goes on in the optimisation of the source of 

leakage. An increment in the number of iterations also helps the particles to be 

closer to the source, thus increasing the chances of having more particles to 

optimise the problem.
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3.2. GAUSSIAN GAS PLUME MODEL 
To simulate dynamical problems, such as the plume dispersion in a 

natural environment, the Gaussian gas plume model can be used as a 

reference to define the function for the PSO to optimise. The Gaussian 

gas plume model shows that Δh dictates the centreline of the plume from 

the stack height, while σz dictates the dispersions of the plume away 

from the centreline as the distance increases away from the source. 

 

A modification was done on a chemical plume in Kok Seng Eu’s experiment 

[58], where a randomising factor was included in generating each new 

experiment instance. This scenario mimics a real-life scenario where gas 

leakages may not originate from the same source. The randomisation process 

includes randomising the direction and Δh such that each experiment will be 

tested with unique settings of plume dispersions. 
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Figure 3.2-1 Gaussian Gas Plume Model in Coppeliasim 

The Gaussian gas plume model is set up such that when each instance of the 

experiment restarts, the parameters such as the plume height threshold, wind 

direction, and emission rate will be changed accordingly. Hence the change of 

these factors provide the algorithm with new challenge upon start of every 

new instance of experiment.  
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Figure Error! Use the Home tab to apply 0 to the text that you want to appear here. Changes in Gas Plume 
Model in time comparison 

 

Figure 3.2-2 shows the mechanism of the gas plume modelling in 

CoppeliaSim, where the top subfigure shows the plume at the timestamp of 

08:55 seconds, while the bottom subfigure shows the plume at 09:28 seconds. 

Within a second, it can be observed that the plume is generated unorderly, 

where the particles in the cone-shaped plume change accordingly with time. In 

this experiment, the wind factors, such as the wind direction and speed, are 

consistent. 
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The green circle shows the closest distance to the source of leakage, the 

orange circle indicates a further distance from the source of leakage, and the 

red circle indicates the general area of the plume cone expansion. A change in 

shape is observed in the centre of the plume within the difference of a second. 

Therefore, this model represents a dynamic and realistic optimisation problem 

for optimisation by the swarm algorithm in a simulation. 
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3.3. OBJECTIVE FUNCTION VALUE (OFV) 

SETUP 
According to the technical specification sheet of DJI Phantom 4, the GPS 

horizontal hovering accuracy may vary by ± 1.5 metres. As such, the 

experiment will be evaluated in terms of time taken and success count. The 

objective function value is separated into three quartiles from the original 

horizontal GPS error range, namely Q3, 0.375 metres; Q2, 0.75 metres; and 

Q1, 1.125 metres. Q1 is the closest to the actual source of leakage, while Q3 is 

the furthest away from the source of leakage. 

 

Figure 3.3-1 DJI Drone GPS Error Range Quartile 

GiPSO and PSO will be tested with these error range quartiles as the cut-off 

value; if the location of the drones is on the cut-off value or lower than the 

cutoff value, the leakage source localisation will be considered a success. If 



82 
 

the drone swarm remains out of the OFV and exceeds the time limit, the 

localisation of the leakage source will be recognised as a failure. The 

segregation of the OFV into three different sectors provides a quartile analysis 

with different levels of precision that can be accepted as satisfactory results by 

both PSO and GiPSO. With each quartile reducing the acceptance proximity 

by 25%, the OFV is rendered to be more precise by 25% for each quartile, but 

the difficulty for the results to be satisfactorily declared as optimal global 

results also increases. 
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3.4. EXPERIMENT SETUP 
 

 

Figure 3.4-1 GiPSO Setup 

Python is selected as the foundation of PSO development as Python are stable 

and flexible as it provides libraries that are essential for the execution of the 

PSO. CoppeliaSim comes with support compatibility for Python; hence, 

Python code can be used to communicate with CoppeliaSim for issuing 

commands or extracting values across the platform. For ease of debugging, a 

command file, Dynamic_Movement.py, is used to communicate between the 

listening server of CoppeliaSim and PSO.py. The fitness value and the 

particles of PSO are integrated with the sensors' detection value and the 

drones' identification. Each drone acts as a particle of the PSO population, 

while each drone's sensor will dictate the drone swarm's fitness. The 

dynamic_movement.py will determine the cutoff condition.   
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In the simulated environment of CoppeliaSim, optimisation problems are 

developed based on the Gaussian gas plume model. With this model, GiPSO 

will generate a new set of movement velocities before the actual movement in 

the simulation for each movement iteration. The design of the gas plume 

model developed in CoppeliaSim utilises point cloud objects combined with 

multiple segmented Box-Mueller transformations with increasing radius. This 

design allows the plume to be emitted from the point cloud to expand 

accordingly with increasingly larger conical shapes similar to a realistic gas 

plume. Major contribution factors such as gas density; wind direction in the x, 

y, and z axis; and wind speed are included within the point cloud scripting 

format. This methodology addresses the research questions and objectives, 

particularly the first research objective, where the research questions and 

objectives focus on optimisation problems with realistic gas plume dispersion. 

With the implementation of the modified point cloud, the algorithm can then 

attempt to optimise the gas plume, which has similar characteristics to real-

world plume dispersion characteristics, as the plume will disperse according to 

the Box-Mueller transformed x and y coefficients for maximum and minimum 

dispersion limitation. 
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Both the z-axis coefficient clamp and global best threshold mechanism are 

implemented within the GiPSO core functions. As depicted in Figure 3-6, the 

dynamic movement core framework will then be called PSO.py for the 

generation of new movement velocity based on the sensory detection value as 

the fitness value in the algorithm.  

 

In conjunction with the research problems, research objectives, and third 

research question concerning population control, Dynamic Movement.py will 

require the operators to manoeuvre the core framework and modify the 

population number. By changing the population number, such data will be 

forwarded to PSO.py as the swarm size, where this parameter will be used to 

generate velocity for each particle accordingly. The handler for both the 

drones and sensor resides within Dynamic_movement.py; this information is 

then processed and parsed into PSO.py for further processing before the newly 

generated movement velocities are returned into the simulation in 

CoppeliaSim. 
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4. RESULTS AND ANALYSIS 
The results are categorised into three different categories, where fewer 

iterations are much more favourable. Experiments that require less than 150 

iterations to localise the source of leakage will be recognised as successful 

localisation. Experiment instances that require more than 150 iterations will be 

considered successful with a high number of iterations if the source of leakage 

is successfully located. Still, a much longer time is needed to locate the source 

of leakage for such experiment instances. On the other hand, any experiment 

with more than 300 iterations is considered failed, as the localisation of the 

source of leakage has taken too long.  

 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠, 𝑖 {

𝑅𝑒𝑠𝑢𝑙𝑡𝑠 =  𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ,               𝑖𝑓 𝑖 < 150 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 =  ℎ𝑖𝑔ℎ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 , 𝑖𝑓 150 > 𝑖 < 300
𝑅𝑒𝑠𝑢𝑙𝑡𝑠 = 𝑓𝑎𝑖𝑙𝑒𝑑 ,                                     𝑖𝑓 𝑖 > 300

 

Eq 3.4-1 Result Category Logic 

The categorisation is determined as such because an experiment with less than 

150 iterations will take a much shorter time, whereas an experiment that 

exceeds 150 iterations will take a longer time to localise the source; 

meanwhile, an experiment that exceeds 300 iterations faces the possibility of 

exceeding real drones’ battery life span before optimisation is completed. 
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To evaluate the feasibility of GiPSO and PSO to be implemented into a drone 

platform, the time restriction limitation is also considered in the experiment to 

understand further the time required for each successful localisation of the 

leakage source. Only localisation of the source of leakage within the time 

frame of 1 minute to 35 minutes is considered a successful localisation. 
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4.1. TIME TAKEN COMPARISON GiPSO VS 

PSO 

For the initial comparison of the performances of PSO and GiPSO, the time 

taken for each algorithm was recorded to determine if they were within the 

time limitation. The cutoff condition that indicates a successful localisation of 

the source of leakage will be divided into three categories derived from the 

GPS error range of DJI Phantom 4. The horizontal GPS error range for DJI 

Phantom 4 is within the range of ± 1.5 metres; thus, the error range can be 

divided into three quartiles, namely 1.125 metres, 0.75 metres, and 0.375 

metres. The purpose of this objective function value (OFV) is to divide the 

problem into multiple segmentations that the algorithm can analyse to ensure 

that only highly precise results close to the actual source of leakage will be 

declared successful. 
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Figure 4.1-1  Average Success Time Taken Comparison 

The analysis results for the average time taken for successful localisation of 

the leakage source with the battery threshold are shown in Figure 4.1-1 for the 

two different algorithms, GiPSO and PSO. In this analysis, the results are 

presented for Quartile 1 (Q1), Quartile 2 (Q2), and Quartile 3(Q3), which are 

the horizontal error ranges away from the actual source of leakage. The 

optimum process for the algorithm to declare that the source of leakage 

localisation is successful requires two criteria to be fulfilled: the result must be 

the highest concentration of gas reading from the sensor and within the 

declared range of Q1, Q2, and Q3.  In figure 4.1-1 we can observe that the 

performances of GiPSO  grows consistent in average time taken for each 

success instance of localizing the source of leakage. 
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However, when the comparison of GiPSO and PSO are being observed , as the 

OFV increases in precision  for satisfactory acceptance requirement, PSO has 

begun to lose the ability to localize the source of leakage, while GiPSO 

maintaining the average time taken as compared to OFV at 0.75 meters away 

from the source of leakage.  

 

Comparatively , we can observe that the time taken for OFV 1.125 

Meters, 0.75 Meters and 0.375 Meters in PSO stands from 22 minutes 

up to 28 minutes. On the other hand, GiPSO performances in these 

OFV stands from averagely of 13 minutes up to 17 minutes. This 

shows that GiPSO has further improve the time taken for success in 

localization of source of leakage by 38% lower as compared to PSO 

performances.
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Figure 4.1-2  Success Percentage Comparison 

 

Considering the battery flight time as a cut-off limitation for the localisation, 

both algorithms can be further studied in terms of their performance with 

parameters from the DJI Phantom 4 specifications. As depicted in Figure 4.1-2, 

the comparison of GiPSO and PSO’s success percentage and the average time 

taken is inclusive of the battery threshold limitation. In Figure 4-2, GiPSO’s 

success percentage exceeded that of PSO by 16% with a 1.125 metres error 

range. However, PSO outperformed GiPSO when the error range was reduced 

to 0.75 metres. While PSO was more successful, the average time taken for 

each successful localisation was 28 minutes, while GiPSO took only 17 

minutes on average for each successful localisation. This result is due to 

GiPSO’s consistent control in the z-axis velocity coefficient clamp. 
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On each z-axis velocity generation, GiPSO would consistently reduce the z-

axis until the z-axis was above the physical stack height. However, PSO’s 

generation of z-axis velocity was randomised, similar to the x-axis and y-axis 

velocity generation. This characteristic leads to PSO providing fewer 

consistent results with more chaotic z-axis velocity in each velocity generation, 

thus requiring more time to achieve each instance of successful localisation. 

Despite GiPSO having a lower success rate in localising the source of leakage, 

the average time taken to achieve optimum localisation was much lower than 

PSO. 

The result for Quartile 3 (0.375 metres away from the actual source of leakage) 

shows that GiPSO could localise the source of leakage while PSO could not. 

Despite the instances of success for GiPSO being only at 16% of the overall 

experiment, the average time taken per success remained the same as Quartile 

2 (0.75 metres). With higher difficulty than that of 0.75 metres, the success 

percentage was reduced by 10%; however, the average time taken was still the 

same. On the other hand, PSO failed to localise the source of leakage.
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4.1.1. GiPSO VS PSO Q1(1.125 Meters) OFV Analysis 

The first analysis in the experiment is for the radius of 1.125 metres away 

from the actual source of leakage. This radius is considered the objective 

value, as the horizontal error range for the GPS position is ± 1.5 metres in DJI 

Phantom 4 Pro. As such, the furthest quartile was analysed to determine how 

GiPSO and PSO performed with a larger error radius during optimisation.  

 

However, three criteria must be met for an experiment instance to be declared 

a success. One criterion is that the global optimum must be within a radius of 

1.125 metres from the actual source of leakage. Another criterion is that the 

time taken must be within the time limitations of 35 minutes, which represents 

the battery life span. The final criterion for the declaration of success is that 

the highest sensor detection value must be within the cutoff radius for 

successful localisation. The time taken for each successful instance was 

automatically logged by the algorithm into a CSV file for further data 

visualisation of the algorithms’ performance. 
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GiPSO 

1.125 Meters OFV Within Threshold 

8.04 12 96.48 

13.04 8 104.32 

18.04 6 108.24 

23.04 3 69.12 

28.04 1 28.04 
Average Per Success 13.54   

13M 30S 
Table 4.1.1-1 GiPSO Result with Q3 (1.125 Meters) OFV 

PSO 

1.125 Meters OFV Within Threshold 

22.81 22 501.82 
   
   
   
   

Average Per Success 22.81   
22M 48S 

 

Table 4.1.1-2 PSO with Q1 (1.125 Meters) OFV 

In Table 4.1.1-1, it is noticed that PSO had 22 instances of experiment which 

succeeded in achieving a satisfactory value for a new experiment instance to 

be started. Meanwhile, from 8 to 28 minutes, GiPSO achieved 30 instances of 

success out of 50 experiment instances. In terms of performance, GiPSO’s 

performance improved by 32.68% within 30 minutes as compared to PSO’s 

performance.  

In terms of successful performances, GiPSO had 12 instances of success out 

of 30 experiment instances within an average time taken of 8 minutes. The 
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success achieved by GiPSO shows that the distribution for successful 

experiment instances was concentrated around instances with a lower time 

taken to achieve success when compared to PSO. PSO achieved success only 

within an average time of 27 minutes and 48 seconds. This result shows that 

the capability of PSO to localise the source of leakage successfully within the 

battery limit is possible; however, longer times are required to achieve these 

successes. In terms of overall success in localising the source of leakage, 

GiPSO achieved a success percentage of up to 60% out of 50 experiment 

instances; on the other hand, PSO only achieved a success percentage of 44% 

in the experiment. 

 

Figure 4.1.1 – 1  GiPSO vs PSO results Q1 (1.125 Meters) OFV 

In figure 4.1.1 – 1  we can observe the performance of GiPSO has achieve 60% 

of success rate of experiment while 40% of the experiment instances has failed. 

On the other hand PSO has achieved success rate of 37% while having the 

failure rate of 63% amongst 50 instances of experiments.  The observation in 

this visualization shows that the improvement of GiPSO with the OFV of Q1 

with error acceptance range of 1.125 meters radius from the circle has 
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improved by 23% as compared to PSO. This shows that with the modification 

done within GiPSO has successfully improve the capability to increase the 

rate of success while lowering the rate of failure in localizing the source of 

methane leakage within the battery life of the simulated drone environment. 
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4.1.2. GiPSO VS PSO Q2 (0.75 Meters) OFV Analysis 

In the following analysis, the requirement to be considered a successful 

experiment instance is further narrowed down to a radius of 0.75 metres from 

the actual source of leakage. The Quartile 2 analysis analyses how GiPSO can 

take on the challenge of a much smaller global optimum acceptance radius. In 

the Q2 experiment setup, the difficulty of achieving a successful instance is 

increased by 25% because the acceptable success condition is much more 

precise than the Q1 radius. Comparing the success achieved by PSO and 

GiPSO in this quartile provides insights into how each algorithm will perform 

with a radius from the actual source of leakage with higher precision.  
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GiPSO 

0.75 Meters OFV Within Threshold 

Median of Time Instances Median x 

Instance 

8.18 2 16.36 

13.18 2 26.36 

18.18 6 109.08 

23.18 1 23.18 

28.18 2 56.36 

Average Per Success 17.80 

  
17M 48S 

Table 4.1.2-1 GiPSO Q2 (0.75 Meters) OFV 

PSO 

0.75 Meters OFV Within Threshold 

Median of Time Instances Median x 

Instance 

28.26 18 508.68 
   
   
   
   

Average Per Success 28.26 

  
28M 15S 

Table 4.1.2-2  PSO Q2 (0.75 Meters) OFV 

The results of the optimisation analysis for the Q2 horizontal error range of 

DJI Phantom 4 are shown in Table 4.1.2-2. With an objective function value 

and radius of 0.75 metres around the actual source of leakage, the optimisation 

condition is slightly more challenging compared to that of 1.125 metres away 

from the actual source of leakage. In this quartile, GiPSO achieved 13 
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successful optimisations in 50 experiment instances, while PSO achieved 18 

successful instances out of 50 experiment instances. However, PSO achieved 

18 successful instances within the average time taken of 28 minutes out of 30 

minutes, while GiPSO achieved 6 instances of success within the average time 

taken of 18 minutes. In terms of the average time taken per instance of the 

experiment, GiPSO required 17 minutes; however, for PSO to achieve a single 

successful instance, 28 minutes were required. The performance of GiPSO 

improved the success rate of the swarm localisation of the source of leakage 

by up to 38.65% when compared to PSO.  

 

To conclude, in the Quartile 2 OFV analysis of the performance of PSO and 

GiPSO, the overall success of GiPSO was observed to have fallen to 13 

successful instances; meanwhile, PSO achieved 18 successful experiment 

instances. Although PSO had more successful instances in localising the 

source of leakage, the average time taken for each successful experiment 

instance required up to 28 minutes and 15 seconds. On the other hand, despite 

having lesser successful experiment instances, GiPSO required only 17 

minutes and 48 seconds for each successful instance. This distinction 

highlights the difference in performances between the two algorithms. 
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Figure 4.1.2 -1 GiPSO vs PSO results Q2 (0.75 Meters) OFV 

 

In figure 4.1.2-1   the performance of GiPSO has reduced Success rate when 

the OFV further narrows down  with higher precision requirement. As 

compared to Q1 (1.125 Meters)  with 60% success rate, GiPSO has achieved 

26% success rate with Q2 (0.75 Meters) OFV.  PSO has achieve higher 

success rate as compared to GiPSO at 32% success rate while having a 

slightly lower rate of failure rate at 68% as compared to GiPSO at 74%. 

Despite PSO do have slightly higher chances of successfully localize the 

source of leakage, in table 4.1.2-1 and 4.1.2-2 we can observe that the time 

taken for GiPSO to achieve each success averages out at 17 Minutes and 48 

seconds, while PSO requires longer time with 28 minutes and 15 seconds. 

This shows that PSO are able to achieve slightly more success rate in 

localizing the source of leakage with the cost of reaching closely to the 

maximum flight time available for the drone battery limitations.
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4.1.3. GiPSO VS PSO Q3 (0.375 Meters) OFV Analysis 

GiPSO 

0.375 Meters OFV Within Threshold 
Median of Time Instances Median x Instance 

10.9 3 32.7 

15.9 2 31.8 

20.9 0 0 

25.9 3 77.7 

Average Per Success 17.78 
  

17M 48S 
Table 4.1.3-1 GiPSO Q3 (0.375 Meters) OFV 

 

In the Q3 objective function value, the error range was reduced to a 

radius of 0.375 metres away from the actual source of leakage.  PSO 

results are not available for comparison in Quarter 3 as since PSO 

couldn’t optimize the source of leakage.  In comparison to the Q2 and 

Q1 error ranges, 0.375 metres represent a criterion that is harder to be 

satisfied and a higher precision due to being closer to the source of 

leakage. 
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The advantage of having such close proximity is the further enhancement of 

the precision that can be achieved by GiPSO and PSO in the optimisation with 

controlled time allocation. With the limitation of 30 minutes set as the 

condition of failure due to battery limitation, PSO was observed to fail to 

achieve any success within 30 minutes, which implies that PSO was unable to 

achieve success within the battery life threshold. On the other hand, GiPSO 

achieved 8 instances of success in the experiment.  

 

Figure 4.1.3 – 1 GiPSO vs PSO results Q3(0.325 Meters) OFV 

 

In figure 4.1.3-1 , we can observe where both of the algorithms are 

being tested with a more precise OFV error range. With high accuracy 

acceptable OFV, we can observe that GiPSO managed to achieve 

success rate of 16% while PSO fails to localize the source of leakage. 

GiPSO does not only retain the capability of localizing the source of 

leakage, but the average time also required for GiPSO to successfully 

localize the source of leakage averages out at 17 minutes and 48 

seconds. 
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4.1.4 OVERALL GiPSO PERFORMANCE 

IMPROVEMENT IN TIME TAKEN  

 

Figure 4.1.4-1 GiPSO Overall Performance Improvement 

 

In Figure 4.1.4-1, we can observe that the performance of GIPSO 

compared to PSO in Q1 results, GiPSO, has improved by 34.64% of 

the overall performance. As the accuracy increases, GiPSO has a lower 

chance of localizing the source of the gas plume. However, regarding 

the time taken, GiPSO has improved performance by 22.71%. When 

the acceptance range has further reduced to 0.375Meters error range 

from the source of leakage, we can observe that GiPSO exhibits the 

capability to localize. However, PSO has failed to carry out 

optimization.
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From figure 4.1 - 3, we can observe the performances of GiPSO as compared 

to PSO. GiPSO has improved the ability to localize the source of leakage 

regarding horizontal error range as OFV. The performances of GiPSO show 

improvements in both capabilities to increase the success of optimizing the 

source of gas plume dispersion. It has also reduced the time required to 

localize the source of leakage compared to PSO. As the OFV reduces and the 

satisfactory criteria narrow down to higher precision, GiPSO retains the 

capability of optimizing the source of leakage. In contrast, PSO has failed to 

localize the source of leakage entirely. 

 

These improvements in the time taken and the potential to optimize the source 

of leakage shows that the modification on GiPSO has further improved the 

performances compared to PSO. In the following sections, our research will 

then utilize GiPSO with altered swarm populations to further evaluate the 

performance on population impact. This study will control the swarm 

population from 4 to 20 drones. Each of the experiment sets will increase the 

population by two drones to provide insights into a closer gap in population 

growth and how each growth of two drones can impact the capability of 

GiPSO to optimize the source of leakage. 
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4.1.5 STATISTICAL ANALYSIS OF GiPSO vs PSO 
 

 

 

Figure 4.1.5-1 Standard Deviation of GiPSO Results vs PSO Results 

 

In figure 4.1.5 – 1 we can observe the analysis of GiPSO results 

alongside with PSO results. In the figure, PSO will be represented with 

blue bar, however GiPSO will be represented with orange bar, each of 

the data representation will be clustered according to the results 

gathering based on the OFV quarters. In the analysis we can observe 

that the standard deviation of  Q1 for PSO  values are high as the time 

variations ranges from 20 minutes to 36 minutes , although GiPO has a 

higher value for standard deviation at  12, the variation of time taken 

ranges from  5 minutes to 25 minutes. Although the deviation of GiPSO 

are larger as compared to PSO the time ranges variation are lower. 
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Furthermore, in Q2 we can observe the standard deviation of PSO holds 

the value of 6 however, GiPSO indicates a larger value for standard 

deviation, This shows that the deviation of time taken range are larger 

as compared to PSO, this is because the time variation taken to 

successfully localize the source of leakage for GiPSO are spreaded out 

from 5 minutes to 30 minutes span. However, PSO standard deviation 

values are lower as the time taken are closely group around 25-30 

minutes.  

This shows that although the original PSO has higher consistency in 

time taken to localize the source of leakage, the average time required 

to localize the source of leakage are higher as compared to GiPSO. The 

similar trend can also be observed for OFV of Q3 as the values of 

standard deviation of PSO   is at 9 , however GiPSO has a wider spread 

value of  21. This phenomenon are caused by close grouping of PSO 

grouping of experiment counts with more experiment ranges from 41 

minutes to 62 minutes. However, GiPSO time taken ranges from 3 

minutes to 35 minutes. Although GiPSO spread of time taken are larger 

in terms of ranges as compared to PSO, GiPSO satisfies the requirement 

to lower the time taken for localizing the source of leakage.
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4.1.6 MEDIAN RESULTS OF GiPSO vs PSO 

 

Figure 4.1.6-1 Median Results of PSO vs GiPSO 

Upon analyzing the standard deviation of GiPSO versus PSO we have to 

analyze the median of the time taken for both algorithms to further understand 

their efficiency. In figure 4.1.6 -1 , the data are visualized in the format of 

both algorithms data median in terms of minutes grouped by their OFV 

quarters. In Q1 quarters of OFV we can observe that the median time taken for 

PSO stated at 25 minutes while the time taken for GiPSO is at 7minutes, this 

suggests that with larger error range the average time taken for GiPSO to 

localize the source of leakage has improved by 18 minutes as compared to 

PSO.  
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Similar fashion can be observed in both Q2 and Q3 OFV as the error range 

narrows further thus requiring a high precision to satisfy the acceptance 

conditions. GiPSO has improved by 12 minutes in Q2 OFV and 31 minutes in 

Q3 OFV, respectively. This shows that despite with higher precision 

requirement to satisfy the optimization requirement, the overall median in 

terms of time taken to localize the source of leakage fo GiPSO has improved 

as compared to PSO.  

 

To conclude the analysis of median of time taken to localize the source of 

leakage, GiPSO has successfully reduced Q1 time taken by 28%, Q2 by 61%, 

and Q3 by 35%. While the modification conducted on GiPSO has successfully 

decreases the time taken to localize the source of leakage, it has also increased 

the capability of localizing the source of leakage while the precision increases 

without having larger increment towards time taken to localize the source of 

leakage as compared to PSO. 
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4.2. POPULATION STUDY ON GiPSO 
For the population study, the conditions of success are the number of 

experiment instances to achieve the global optimum should be less than 150 

instances, and the cutoff should be achieved. The experiment setup used drone 

populations of 4, 6, 8, 10, 12, 14, 16, 18, and 20 drones to study the 

performance of GiPSO. For each population swarm size, 50 experiment 

instances were run before the results were analysed. 

 

 In Figure 4-3, the performance of successful attempts in localising the source 

of leakage was observed to be a progressive growth curve as the population 

increased from 4 drones to 8 drones. Increasing the population size from 4 

drones to 6 drones led to an increase in the success rate from 73.68% to 

78.95%, while a further increase in the population size to 8 drones resulted in 

a slight decrease in the success rate to 78.94%. However, from the population 

size of 8 drones to 14 drones, GiPSO’s success rate increased along with the 

growth in the swarm size. From a success rate of 78.94% for an 8-drone 

population, the success rate rose to 92% for a 14-drone population. 
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4.2.1. SUCCESS RATE OF GiPSO POPULATION STUDY 

 

Figure 4.2.1-1 Success Rate of GiPSO population study 

However, a performance bottleneck can be observed in the data shown in 

Figure 4.2.1-1. When the population increased to 16 drones, the success rate 

of localising the source of leakage dropped to 90% compared to the 92% 

success rate for 14 drones. A decline in a similar fashion can be observed as 

the drone population continued to increase from 16 drones to 18 and 20 drones. 

The swarm success rate decreased when the swarm size increased from 16 

drones to 20 drones.  

 

The success rate fell from 90% to as low as 79.59%. This result 

indicates that as the swarm size increases, the swarm will 

inevitably change the global best individual on each movement 

iteration. 
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This change will further randomise the direction of the swarm, as GiPSO’s 

generation of new movement velocity is based on the location of the current 

global best individual. As the global best individual changes rapidly, the 

swarm will be randomised more frequently, thus steering the swarm into a 

chaotic movement fashion.  

 

The analysis of the success rate and the population growth size shows the 

capability of GiPSO to improve its performance with an increment in the 

swarm population. The improvement in GiPSO’s performance with increasing 

population growth shows that as the population size increases, the swarms can 

optimise a larger scale of the search zone. 

 

 With the capability of optimising a larger search zone, the time required to 

localise the source of leakage successfully will be reduced, and the time 

criteria to achieve the best global solution will be satisfied. However, as the 

population continues to grow, there will be a limitation where the population 

will reach a bottleneck and inevitably fall into redundancy as the population 

will begin to move chaotically. Hence, the swarm will take longer to achieve 

the desired results within 35 minutes.  
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4.2.2. HIGH ITERATIONS SUCCCESS OF GiPSO 

POPULATION 

In Section 4.2.2, the performances of the swarm optimisation with a high 

number of iterations will be analysed. This analysis will focus on GiPSO with 

a high number of iterations, where successful localisation of the source of the 

leakage requires a time above 35 minutes and below 50 minutes. This analysis 

provides an overview of how often GiPSO can achieve success while 

requiring a longer time. Through this analysis, the effect of the drone 

population in achieving successful optimisation will be studied further. 

 

 

Figure 4.2.2-1 High Iteration Success of GiPSO Population Study 

Figure 4.2.2-1 shows that as the population or swarm size increased, GiPSO’s 

tendency to achieve success reduced while requiring a longer time. From the 

drone population of 4 drones to 14 drones, the success percentage of GiPSO 

with a high number of iterations reduced from 21.05% to as low as 8%. 
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This result shows that the possibility of reducing the time taken for each 

instance of success increased alongside an increment in the population count. 

However, increasing the drone population from 16 to 20 drones led to an 

increase in the success percentage of GiPSO with a high number of iterations. 

With a 16-drone swarm population, the percentage of successful instances was 

8%.  

With a population of 18 drones, the success percentage of GiPSO with a high 

number of iterations increased to 14.28%, and for 20 drones, it increased 

further to 16.32%. This analysis shows that for any population above 16 

drones, increasing the swarm size increases the possibility of success while 

requiring a longer time taken. The phenomenon that causes this condition is 

the redundancy of population, which leads to the rapid switching of the global 

best candidate. The side effect of such a scenario is that the swarm will 

disperse chaotically, which inevitably affects the capability of the swarm to 

optimise the global best solutions in a shorter time.  
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4.2.3. THE FAILURE RATE OF THE GiPSO POPULATION 

STUDY 

To further assess the performance of GiPSO with population growth as the 

control parameter, the failure rate will be analysed in Section 4.1.3. In contrast 

to the successful attempts, failure rate analysis can provide insights into how 

GiPSO performs with increasing swarm size. Experiments which exceed the 

1-hour time frame and have yet to achieve the conditions to be declared as 

successful instances will be designated as failed instances.  

 

Figure 4.2.3-1 Failure Rate of GiPSO in Population Study 

Figure 4.2.3 - 1 shows that from the swarm size of 4 to 8 drones, the failure 

rate was 5.26% of 50 experiment instances. The improvements of the GiPSO 

performances in localising the source of leakage can be observed when 

increasing the drone population from 10 to 14 drones, where the failure rate 

decreased from 5.26% to 3.51%, 2%, and 0%. This result indicates that the 

performance of GiPSO had the lowest failure rate with a drone size of 14 

drones. 
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However, as the drone population continued to increase to 16, 18, and 20 

drones, a rise in failure rate can be observed. This result indicates that GiPSO 

achieved peak performance when the drone population was 14 drones. 

However, upon reaching 16, 18 and 20 drones, GiPSO began to fail to 

optimise the source of leakage. The rise in failed instances is due to the 

redundancy created by the increasing number of redundant drones causing the 

swarm to move chaotically, thus redirecting the swarm away from the actual 

source. 

Drone 
Population 

Success 
Percentage 

High Iteration 
Percentage 

Failure 
Percentage 

4 73.68% 21.05% 5.26% 

6 78.95% 15.79% 5.26% 

8 78.94% 15.78% 5.26% 

10 84.21% 12.28% 3.51% 

12 86.00% 12.00% 2.00% 

14 92.00% 8.00% 0.00% 

16 90.00% 8.00% 2.00% 

18 81.63% 14.28% 4.08% 

20 79.59% 16.32% 4.08% 
Table 4.2.3-1 GiPSO Population Study Result Compilation 

From the table 4.2.3-1 shown above, the performance of GiPSO can be further 

analysed based on different results categorisation. Success percentage 

signifies success in localising the source of gas leakage within the available 

drone flight time of 35 minutes. On the other hand, success percentage with a 

high number of iterations represents success in localising the source of 

leakage while requiring more than 35 minutes and less than 55 minutes, which 

would be challenging for commercial drones to achieve. 
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Failure percentage signifies the failure to localise the source of leakage and 

satisfy the 55-minute time limitation. The different levels of result segregation 

are differentiated based on the available flight time of DJI Phantom 4 Pro. 

 

According to the table above, an improvement trend can be observed for the 

success percentage when the drone population increased from 4 drones to 14 

drones. The success percentage increased by 18.32%. While the success 

percentage increased, the success percentage with a high number of iterations 

reduced by 13.05%. This result shows that the increment of population led to 

consistent growth of the optimisation capability. Meanwhile, the failure 

percentage was reduced by 5.26% when the drone population increased from 

four drones to 14 drones. 

While the optimum performance of GiPSO was achieved with a 14-drone 

population, a performance bottleneck was noticed for the drone population of 

16 to 20 drones. As the population grew beyond 14 drones, the success 

percentage deteriorated from 92% to 79.59%, representing a significant drop 

of 12.41% in successful optimisation within the time limit of 35 minutes. 

Alongside it, the success percentage with a high number of iterations 

increased from 8% to 16.32%, representing an increment of 8.32% in 

successful optimisation within 45 minutes. 
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 This phenomenon shows that as the population exceeds the 14 drones 

required for peak performance, the swarm will be steered into chaotic 

movements due to the redundancy of the population. As the experiment 

continues , each of the redundant population will change the global best 

individual in a chaotic fashion causing the swarm to move in a chaotic pattern 

thus affecting the swarm’s ability to localize the source of leakage efficiently 

therefore increasing the failure percentage and high iteration percentage. 

 

From the population study of GiPSO, we can observe that as the 

population grows, the performance exhibits growth in successful 

localisation while reducing the rate of failure as well as the rate of high 

iteration success. This shows that GiPSO can perform localisation and 

achieve global optima within the available flight time of the DJI 

Phantom 4 battery available flight time of 35 minutes. While we can 

observe that GiPSO peaks out its’ performances at 14 drones’ 

population, the performance faces a performance bottleneck after 14 

drones. From a drone population of 16 drones onwards to 20 drones, the 

performance shows an increment in failure rate along with its’ high 

iteration rates. This indicates that GiPSO has begun to reduce its’ 

performances due to excessive population, which chaotically influences 
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the direction as well as the generation of the velocity for the swarm 

particles.    

To conclude the population study, we can observe that  GiPSO performances 

show positive growth in its’ performances as the population grows. The 

change of performances in successful optimisation with the low time taken 

extends perpendicular, along with the development of drone population sizes.  

As the swarm population grows to 14 drones, the performance begins to 

bottleneck and eventually decreases its performances in low time taken 

global optimisation. GiPSO can perform global optimisation with a low 

population count. GiPSO shows a high success rate in global 

optimisation within available flight time with DJI Phantom 4 as battery 

benchmark in the lower particle population count
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5. DISCUSSION 
The data and results obtained from the experiments suggest that GiPSO has 

better performance than PSO in successfully localising the source of leakage 

in a simulated environment. The optimisation problem for both PSO and 

GiPSO is developed based on the Gaussian plume model, representing a 

challenging problem with a realistic gas plume behaviour. The result indicates 

that with larger error ranges such as Q1 OFV (1.125 metres), PSO performs 

more competitively than GiPSO. However, when the satisfactory proximity 

criterion is reduced to Q3(0.325 metres) from the actual source of leakage, 

PSO fails to achieve any success within the provided battery threshold. On the 

other hand, GiPSO can achieve successful optimisations with such precision. 

In line with the research problem of investigating the drone 

population’s impact on the swarm algorithm for movement velocity 

control in the optimisation of dynamic problems, GiPSO indeed 

showed improvement in performances alongside the growth of the 

drone population. However, within this research, it is noted that the 

peak performance of GiPSO was achieved when the drone population 

was 14 drones, resulting in a 92% success rate in localising the leakage 

source within the 35-minute threshold with no proximity error from the 

actual source of leakage. As the population continued to increase to 16, 

18, and 20 drones, it is noticeable that GiPSO’s capability to localise 
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the source of leakage within the provided time limit began to 

deteriorate; simultaneously, the failure rate rose accordingly as the 

population increased from 14 drones to 20 drones. 

 

These results are relevant when considering dynamical optimisation problems 

such as gas plume dispersion. The challenge posed by such dynamical 

problems is that the dispersion characteristics of gas plumes detected by 

drones may not be fixed at every point in time. Instead, the dispersion of gas 

plumes may vary due to external factors such as wind direction and wind 

speed. 

 

The constraint of the methodological choices in this study is that the early 

search phases are purely based on the randomisation of velocity. Such 

randomisation in the early search phases may result in the algorithm falling 

into an extended early search phase, provided no drones have picked up gas 

traces. To overcome such a limitation, perhaps other methodologies such as 

Ant Colony Optimisation (ACO) and Artificial Bee Colony (ABC) can 

provide a strategic methodology to optimise dynamic problems such as gas 

plume dispersions. 
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5.1 CONCLUSION 
In Conclusion, this research aimed to investigate the adaptation of existing 

swarm intelligence with Gaussian Gas Plume model modification to optimize 

the source of gas leakage. The findings revealed using the control in Z-Axis 

coefficient clamping in movement velocity generations for the particles. Upon 

achieving the self-best threshold, the re-dispersion of the particles further 

improves the swarm performances in localizing the source of leakage with the 

shorter time required to localize the actual source of leakage.  

 

Regarding research questions to investigate the population impact on swarm 

intelligence in optimizing dynamic problems, GiPSO has shown peak 

performance at 14 drone populations as failure instance shows 0 instances and 

most of the success in localizing the source of leakage to be on the low time 

taken. This has proven that GiPSO can improve performance consistently 

when the population grows from 4 drones to 14 drones. Re-dispersion of the 

swarm particles shows the ability stated in the research objective to employ 

dynamical control for swarm intelligence in controlling the movement 

velocity of the drone swarm. Re-dispersion of the swarm particles in GiPSO 

allows the control of the swarm preventing the swarm from falling into local 

optima, which often exhibits in the original PSO.  
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The study contributes to the modification and adaption of PSO field research 

in oil and gas optimization via drone-based detection platform. The findings of 

this research suggest that swarm intelligence has the potential to improve and 

enhance the existing drone detection platform in the localization of gas 

leakage. As such, this study highlights the improvements and significance of 

introducing swarm intelligence into gas detection platforms and underscores 

the need for continued research in the oil and gas area.
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5.2 FUTURE WORK SUGGESTIONS 
Th modification performed on GiPSO exhibits improvements on original PSO 

platform with  integration of Drone based gas leakage detection  platform. The 

capability  to achieve higher success in localizing the source of leakage  with 

lower swarm population size and shorter time required to achieve localization 

of source of methane leakage. With  exhibition of  improvement of GiPSO in 

localizing the source of in randomized scenario such as wind direction, wind 

speed which would affect the optimizing problem.  

 

As such, future experiment suggestions such as localization of undersea 

natural gas leakage with  swarm intelligence enabled underwater drones would 

further challenges the capability of modification such as GiPSO.  This is 

because  when natural gas leaks under the seas, the direction  of the plume are 

different with the terrestrial  as it does not affect by wind factor, but instead by 

the water pressure , water depths as well as water flow direction.   
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Additionally , this suggestion would also be challenged by moon phase as it 

would affect the direction  of the sea current therefore additional affects the 

sizing of the optimization problem. This research can provide insights on how 

to simulate realistic plume behaviour with Gaussian Gas Plume Model as well 

as methods to encourage the detection platform to prevent PSO inspired 

methods to fall into local optima thus failing to localize the source of leakage.  

 

Researchers can benefit from this research work to understand as 

well as providing ideas to further improve PSO with Gas Related 

Optimization methods via simulations or realistic world 

optimization with  actual quad drone detection platform.
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