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IMPROVING THE SYNTHETIC COEFFICIENT OF VARIATION 

CHART BY INCORPORATING SIDE SENSITIVITY 

 

ABSTRACT 

The control chart is recognized as a crucial technique in Statistical Process Control. 

However, due to inconsistencies in the mean ( )  and/or standard deviation ( )  of some 

processes, traditional control charts monitoring the mean or standard deviation become 

inappropriate in such situations. Therefore, monitoring the coefficient of variation ( )  is 

selected as an alternative and it has been implemented in numerous industries, for 

example, in human and public sciences, environmental research, agricultural sciences, 

engineering, technology, finance and education. The synthetic chart that monitors the 

coefficient of variation, namely the synthetic-  chart, is a widely used control chart. 

Unlike the Shewhart-  chart, the synthetic-  chart does not immediately signal an out-

of-control condition when a sample coefficient of variation ( )̂  appears in the non-

conforming region, i.e. the region below the lower control limit (LCL) or the region above 

the upper control limit (UCL). Instead, it waits until a second sample coefficient of 

variation to appear in the non-conforming region, and if these successive points are close 

to each other, it generates an out-of-control signal. In the existing literature, the synthetic-

  chart performs better than the Shewhart-  chart at the same rate of false alarms, as 

waiting for the second sample coefficient of variation to appear in the non-conforming 

region allows for the adoption of tighter control limits without increasing the false alarm 

rate. However, the existing synthetic-  chart treats all points falling below the LCL or 

above the UCL as non-conforming samples. A side-sensitive synthetic-  chart is 

proposed in this thesis in order to monitor the coefficient of variation, where the non-

conforming samples must appear in the same non-conforming region, for instance, either 
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both samples must fall in the region above the UCL or both must fall in the region below 

the LCL, resulting in faster detection of out-of-control conditions. Markov chains are 

applied to compute various performance measures, for example, the Average Run Length 

(ARL), Standard Deviation of the Run Length (SDRL) and Expected Average Run Length 

(EARL). In order to evaluate the performance of the proposed chart accurately due to run 

lengths that may be skewed, the analysis of the entire run length distribution was 

conducted, together with the Median Run Length (MRL) and Expected Median Run 

Length (EMRL). Algorithms to obtain optimal chart parameters are also formulated. 

Based on the results obtained which had been validated using simulations, the proposed 

side-sensitive synthetic-  chart outperformed the Shewhart-  chart, the EWMA-
2  

chart and the existing synthetic-  chart without the side sensitivity feature for most cases 

and displayed a significant improvement. For instance, when 5n = , 1.3 =  and 

0 0.05, = the values of the ARL1 and MRL1 for the proposed chart were 10.18 and 4, 

respectively, whereas the values of the ARL1 and MRL1 were 30.61 and 14, respectively, 

for the Shewhart-  chart, 11.80 and 9, respectively, for the EWMA-
2  chart, and 16.38 

and 5, respectively, for the existing synthetic-  chart. The proposed chart was further 

implemented on actual industrial data and compared with the same existing coefficient of 

variation charts, showed better efficiency in detecting out-of-control conditions. 

 

Keywords – Average run length, Coefficient of variation, Median run length, Side-

sensitive, Synthetic chart  

(498 words) 
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CHAPTER 1: INTRODUCTION 

1.0 Introduction 

This chapter begins with the background of thesis that describes the types of control 

charts for monitoring the coefficient of variation,  , which are available in the literature, 

followed by the problem statement of the thesis. Next, it continues with the scope of the 

thesis and the research questions. Subsequently, all the research objectives are stated in 

Section 1.5. The significances of the thesis are explained in the next subsection. Lastly, 

the organization of the thesis according to each chapter is listed down as the final 

subsection of this chapter. 

 

1.1 Background of the Thesis 

According to Montgomery et al. (2009), statistical process control is one of the major 

areas in quality improvement which is useful in detecting quality problems and improving 

the performance of processes at the same time. In statistical process control, control charts 

are widely recognized as a useful tool to monitor product quality. An effective control 

chart should be capable of detecting assignable cause(s) with a small quantity of samples 

and producing few false alarms. The occurrence of assignable cause(s) indicates that the 

process is an out-of-control. Typically, a conventional control chart monitors the mean, 

  and/or standard deviation,  , where changes in these parameters signal the existence 

of assignable cause(s). Nevertheless, in certain procedures, the mean is predicted to 

fluctuate, with a proportional change in the standard deviation. For example, Lynn et al. 

(1996) conducted a study of enzyme-linked immunosorbent assays (ELISA) which were 

used for measuring human antibodies to Bordetella pertussis Antigens. It was found that 

the mean values of the repeated trials varied. In fact, the increase or decrease of the mean 

was also associated with an increase or decrease in the standard deviation. Therefore, for 

such processes, traditional mean and/or standard deviation charts are not recommended 
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as they require constant values of mean and standard deviation. In order to resolve this 

issue, monitoring the coefficient of variation,   is suggested as an alternative method. 

The coefficient of variation is the ratio of the standard deviation over the mean, i.e. 

.





=  Other than manufacturing industries, and human and public sciences, control 

charts monitoring the coefficient of variation are popular in many different industries such 

as engineering (Jiang et al., 2020) , technology (Singh and Singh, 2019), education (P 

Obite et al., 2020)  and pollution control (Sun et al., 2019). Yeong et al. (2018a) have 

reviewed several fields where monitoring the coefficient of variation is important. The 

importance of the coefficient of variation to the industries is described further in the next 

chapter of this thesis. 

 

Kang et al. (2007) proposed the Shewhart coefficient of variation chart, i.e. the 

Shewhart-  chart, as the first control chart to monitor the coefficient of variation. This 

chart used the present sample coefficient of variation, ˆ,  to determine if the process is 

in-control or out-of-control. However, it only considers the present sample, which 

requires many samples to detect small or moderate shifts. Therefore, several 

improvements are proposed. One of the popular coefficient of variation charts is the 

Exponentially Weighted Moving Average (EWMA) chart. Studies on the EWMA-  

chart was carried out by Hong et al. (2008), Castagliola et al. (2011), Yeong et al. (2017b), 

Zhang et al. (2018), Muhammad et al. (2018) and Giner-Bosch et al. (2019). Other studies 

on the coefficient of variation chart are the Hybrid Exponentially Weighted Moving 

Average (HEWMA) chart by Aslam et al. (2019); Adaptive Exponentially Weighted 

Moving Average (AEWMA) chart by Haq and Khoo (2019); Double Exponentially 

Weighted Moving Average (DEWMA) chart by Hu et al. (2022a); run rules chart by 

Castagliola et al. (2013a); run sum chart by Teoh et al. (2017); side-sensitive group runs 
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chart by You et al. (2016) and Saha et al. (2021); cumulative sum-type chart by Tran and 

Tran (2016); charts with variable chart parameters by Castagliola et al. (2013b), 

Castagliola et al. (2015), Khaw et al. (2017), Yeong et al. (2018a), Chew et al. (2019), 

Chew et al. (2022), Tran and Heuchenne (2021) and Yeong et al. (2023); charts with 

measurement errors by Yeong et al. (2017a) and Tran et al. (2019); charts with joint 

monitoring of mean and coefficient of variation by Noor-ul-Amin et al. (2019); and the 

 -type charts based on Phase-I performance by Dawod et al. (2018). 

 

The synthetic-  chart was introduced by Calzada and Scariano (2013) as an 

alternative to the Shewhart-  chart. This chart defines a sample as a conforming sample 

if the sample coefficient of variation, is between the upper and lower control limits (UCL 

and LCL), and non-conforming sample if the sample coefficient of variation falls below 

the LCL or above the UCL. When the quantity of conforming samples between two 

consecutive non-conforming samples is fewer than a predetermined threshold value, the 

chart produces an out-of-control signal. The outcomes show that the synthetic-  chart 

has demonstrated superior performance over the Shewhart-  chart which is created by 

Kang et al. (2007) but it is not as effective as the EWMA-
2  chart which is developed 

by Castagliola et al. (2011) in detecting small to moderate shift sizes. However, for large 

shift sizes, the synthetic-  chart outperforms the EWMA-
2  chart. 

 

The current synthetic-  chart is not restricted to have two consecutive non-

conforming samples appearing in the same region, since both the regions above the UCL 

and below the LCL are classified as non-conforming. As an example, if the first non-

conforming sample appears in the region below the LCL, the second non-conforming 

sample can either appear in the region below the LCL or the region above the UCL for 
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the sample to be considered non-conforming. This is referred to as non-side-sensitivity. 

An illustration of this feature is shown in Figure 1.1.  

 

Figure 1.1 Feature of non-side-sensitivity 

 

However, the drawback of this non-side-sensitivity is that it requires a narrower non-

conforming region in order to control the false alarm rate. As a result of a narrower non-

conforming region, the sensitivity of the chart towards shifts in the coefficient of variation 

will be reduced. In addition, when shifts happen, it will usually result in successive non-

conforming samples that fall in the same region, for instance, either both non-conforming 

samples will fall above the UCL or both will fall below the LCL, thus reducing the width 

of the non-conforming region so that successive samples that fall on opposite sides of the 

centerline can be considered non-conforming samples is less meaningful. Consequently, 

the goal of this thesis is to enhance the synthetic-  chart’s effectiveness by incorporating 

side sensitivity where the region above the UCL is classified as upper non-conforming 

and the region below the LCL is classified as lower non-conforming. An illustration of 

the feature of side-sensitivity is shown in Figure 1.2. 
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Figure 1.2 Feature of side-sensitivity 

 

The side-sensitive synthetic-  chart requires the two consecutive non-conforming 

samples to appear in the same non-conforming region for these samples to be classified 

as non-conforming samples. If the first non-conforming sample appears in the region 

above the UCL, then the second non-conforming sample must also appear in the region 

above the UCL, and vice versa. If the subsequent sample falls below the LCL, this sample 

is considered as a conforming sample since it does not fall in the same non-conforming 

region. This proposed chart is able to enhance the existing synthetic-  chart’s 

performance by enabling stricter control limits without raising the quantity of false 

alarms. This, in turn, allows for quicker detection of shifts in the coefficient of variation, 

and appropriate measures can be taken to eliminate the assignable cause(s) sooner, 

thereby decreasing the amount of time the process remains out-of-control and the quantity 

of faulty products or unsatisfactory service produced by the process. The suggested chart 

can be utilized to monitor any processes that require monitoring of the coefficient of 

variation. 
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In this thesis, a Markov chain approach is adopted for the development of the formulae 

to evaluate the Average Run Length (ARL), Standard Deviation of the Run Length 

(SDRL), Median Run Length (MRL), Expected Average Run Length (EARL), Expected 

Median Run Length (EMRL) and run length distribution of the side-sensitive synthetic-

  chart. ARL measures the average quantity of samples needed by the chart to produce 

an out-of-control signal, whereas SDRL measures the variability in the quantity of 

samples required to generate an out-of-control signal. As for MRL, it is defined as the 

median quantity of samples needed by the chart to generate an out-of-control signal (Gan, 

1993). 

 

However, relying solely on the ARL to evaluate the performance of a control chart can 

lead to a misinterpretation of its actual performance. Gan (1993) pointed out that for small 

shift sizes, the distribution of run length is likely to be positively skewed for both in-

control and out-of-control processes. When the distribution is positively skewed, the 

mean is always greater than the median, which means the ARL is greater than the MRL. 

In cases where the in-control MRL (MRL0) is less than the in-control ARL (ARL0), greater 

than half of the in-control run lengths will be less than the ARL0, resulting in false alarms 

occurring before the ARL0 more than 50% of the time. Thus, this thesis assesses the 

proposed side-sensitive synthetic-  chart’s performance based on the entire run length 

distribution to gain a better understanding of its real performance. Additionally, MRL is 

chosen as the alternative performance measure as it is not affected by the skewness of the 

distribution. 

 

The ARL, SDRL and MRL require an exact value for the shift size. However, it is not 

always possible in most practical scenarios because of insufficient data, especially for 

out-of-control data since assignable cause(s) are usually quickly removed as soon as they 
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are detected. Besides, shift size may vary according to some unknown stochastic models 

and may not be deterministic (Castagliola et al., 2011). Hence, in this thesis, the EARL 

and EMRL are selected as the performance measures for the proposed chart when the shift 

size is unknown and specific values of the shift size could not be determined. In fact, they 

only require the shift size to be stated as a possible range of values like ( )min max,    . 

Subsequently, optimization algorithms are proposed to obtain the optimal chart 

parameters. The optimal chart parameters refer to the chart parameters which optimize 

the performance measures. Next, a comparison was made between the performance of the 

proposed side-sensitive synthetic-  chart with existing coefficient of variation charts in 

the literature. Finally, the proposed chart was implemented on an actual industrial 

example and compared with the same existing coefficient of variation charts.      

      

1.2 Problem Statement 

The synthetic-  chart is attractive to practitioners as it waits until the second sample 

to fall beyond the control limits before determining whether to produce an out-of-control 

signal. This enables tighter control limits to be adopted without increasing the false alarm 

rate. Calzada and Scariano (2013) proved that the synthetic-  chart showed better 

performance compared to the Shewhart-  chart for all shift sizes and EWMA-
2  chart 

for large shift sizes. The synthetic-  chart showed inferior performance compared to the 

EWMA-
2  chart for small and moderate shift sizes.  

 

However, the existing synthetic-  chart does not have the feature of side sensitivity 

and this drawback has affected the chart in terms of controlling the false alarm rate as a 

narrower non-conforming region is required. The sensitivity of the chart towards shifts in 

the coefficient of variation will be reduced due to the outcome of a narrower non-
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conforming region. Machado and Costa (2014a) developed a side-sensitive synthetic- X  

chart and compared the performance with the existing synthetic- X  chart. The result 

showed that the proposed chart gave a quicker out-of-control signal than the existing 

synthetic- X  chart with 23% lesser samples on average to spot the out-of-control 

condition. Therefore, this thesis would like to improve the performance of the existing 

synthetic-  chart by incorporating side sensitivity as it is expected to show better 

performance than the existing synthetic-  chart by providing an earlier out-of-control 

signal due to more stringent control limits being adopted, without resulting in an increase 

in the number of false alarms.  

 

For studying the performance of the proposed side-sensitive synthetic-  chart, 

suitable performance measures to evaluate the sensitivity of the chart towards shifts in 

the coefficient of variation are needed. In this thesis, formulae to assess the ARL, SDRL, 

MRL, EARL and EMRL were developed, where these measures are based on the quantity 

of samples required to signal an out-of-control condition. Furthermore, to enhance the 

performance of the proposed chart, this thesis also developed the algorithms to obtain the 

optimal chart parameters of the proposed side-sensitive synthetic-  chart.  

 

As the skewness of the run length distribution will have an impact on the accuracy of 

the proposed performance measures, this thesis also studied the run length distribution of 

the proposed chart. It is important for practitioners to know how the proposed chart 

performs relative to the existing coefficient of variation charts, so that practitioners can 

decide whether to adopt the proposed chart. Thus, this thesis compared the performance 

of the proposed chart with existing coefficient of variation charts in the literature. 

Furthermore, this thesis also shows how the proposed chart was implemented to monitor 
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an actual industrial process, to guide practitioners to adopt the proposed chart for process 

monitoring. 

 

1.3 Scope of the Thesis 

The main scope of this thesis is to incorporate the feature of side-sensitivity into the 

existing synthetic-  chart. This thesis studied the side-sensitive synthetic-  chart’s 

operation, developed the respective formulae based on Markov chain approach in 

assessing the ARL, SDRL, MRL, EARL and EMRL of the proposed chart, and developed 

algorithms to enhance its’ performance. This thesis considered both known and unknown 

shift sizes as well as the designs for skewed run length distributions. 

 

1.4 Research Questions 

The research questions of this thesis are as follows: 

1. Does the proposed side-sensitive synthetic-  chart provides more stringent 

control limits and shows better performance? 

2. Is the run length distribution of the proposed side-sensitive synthetic-  chart 

skewed? 

3. Does the proposed side-sensitive synthetic-  chart outperforms the other 

existing coefficient of variation charts in terms of all performance measures? 

4. Does the proposed side-sensitive synthetic-  chart generates a quicker out-of-

control signal compared to existing coefficient of variation charts based on a 

real industrial example from an Italian company which manufactures sintered 

mechanical parts?    
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1.5 Research Objectives 

The goal of this thesis is to improve the existing synthetic-  chart by incorporating 

side sensitivity. The following are the research objectives: 

1. To evaluate whether the proposed side-sensitive synthetic-  chart adopts 

stricter control limits and shows better performance.  

2. To analyze the run length distribution of the proposed side-sensitive synthetic-

  chart. 

3. To compare the proposed side-sensitive synthetic-  chart with existing 

coefficient of variation charts based on all performance measures. 

4. To apply the proposed side-sensitive synthetic-  chart on a practical scenario 

using actual industrial data from an Italian company which manufactures 

sintered mechanical parts. 

  

1.6 Significance of the Thesis 

Incorporating the feature of side sensitivity on the existing synthetic-  chart is 

believed to provide significant contributions to the industries as it allows practitioners to 

adopt more stringent control limits, which results in a smaller difference between the UCL 

and LCL of the chart and hence improves the sensitivity of the chart in detecting shifts, 

without increasing the quantity of false alarms. Thus, the proposed side-sensitive 

synthetic-  chart is able to detect an out-of-control condition more rapidly than the 

existing synthetic-  chart. 

 

The study of the proposed side-sensitive synthetic-  chart’s run length distribution in 

this thesis offers practitioners enough insights on the skewness of the distribution. By 

doing so, they can select appropriate performance measures for the control chart. If the 
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run length distribution is shown to follow a right-skewed distribution, for instance, they 

can opt for MRL as the performance measure instead of ARL. 

 

One of the challenges that is usually faced by practitioners is to implement the 

synthetic-  chart on real industry examples because the shift sizes are difficult to be 

specified as specific values, which is required for performance measures like the ARL, 

SDRL and MRL. Therefore, the development of the EARL and EMRL formulae using 

Markov chain approach in this thesis has resolved the issue where the shift size need not 

be a specific value as it is only referred to as a possible range of values such as 

( )min max, .   This will help the industry to quickly detect out-of-control conditions, 

thereby reducing wastage due to defective products and ensuring the quality of the 

products produced. In addition, the proposed side-sensitive synthetic-  chart’s operation 

is not complicated compared to the existing synthetic-  and other coefficient of variation 

charts and it can be easily implemented and understood by practitioners, including those 

with little or no experience. Hence, it is believed that the proposed side-sensitive 

synthetic-  chart is able to provide numerous significant contributions to industries. 

 

1.7 Organization of the Thesis 

In this thesis, there will be a total of five chapters which starts with this current chapter, 

which describes the introduction, background of the thesis, problem statement, scope of 

the thesis, research questions, research objectives and significance of the thesis. The 

second chapter is the literature review. Next, the methodology will be explained in 

Chapter 3, where the operation of the proposed chart and the development of the formulae 

for the ARL, SDRL, MRL, EARL and EMRL based on Markov chain approach is 

explained. Subsequently, the next chapter shows the results for the optimal chart 

parameters and the corresponding ARL, SDRL, MRL, EARL and EMRL of the proposed 
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side-sensitive synthetic-  chart using the chosen sample sizes ( )n , in-control coefficient 

of variation ( )0  and shift sizes ( ) . The run length distribution’s percentiles of the 

proposed chart will also be analyzed in this chapter. Besides, a discussion will be carried 

out based on the comparison with the existing synthetic-  and other coefficient of 

variation charts. Furthermore, the proposed chart will be applied to a real life example 

and its performance will be compared with the same coefficient of variation charts. 

Finally, the last chapter is the conclusion of this thesis and suggestions for further studies 

are given. 
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CHAPTER 2: LITERATURE REVIEW 

2.0 Introduction 

As mentioned in the background of thesis in Chapter 1, this chapter starts with a 

detailed explanation on coefficient of variation and its applications in various fields. Next, 

a review of developments on charts monitoring the coefficient of variation is elaborated 

in the second subsection. Subsequently, the following subsection reviews the 

development of the synthetic chart. Lastly, the importance of the chosen performance 

measures in evaluating the control chart is described in the last subsection of this thesis. 

 

2.1 Coefficient of Variation and Its Applications 

The coefficient of variation ( )  was proposed by Pearson (1896). It is the ratio of the 

standard deviation over the mean, i.e. 





= . It is known as one of the commonly chosen 

measures of dispersion particularly for a distribution of repetitive measurements. 

According to Shechtman (2013), if the value of the coefficient of variation is large, it 

indicates greater variability between the recurring measures whereas a small value of the 

coefficient of variation shows the consistency of the measurements. 

 

The coefficient of variation has been widely used in inferential statistics. Banik and 

Kibria (2011) focused on the estimation of confidence intervals of the population 

coefficient of variation for symmetric and skewed distributions. They claimed that the 

main reason for them to choose the coefficient of variation was that the standard deviation 

is not an appropriate measure for comparing the variations of several variables with 

different units of measurement. Another study on the confidence intervals for the 

estimation of population coefficient of variation was conducted by Gulhar et al. (2012) 

based on parametric, nonparametric and modified methods using generated data with 
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 0.1,  0.3 and 0.5   and two real data sets from health sciences, for instance, child birth 

weight and cigarette smoking prevalence. Another study on the coefficient of variation 

was done by El-Din et al. (2019) who studied the estimation of the coefficient of variation 

using progressive first failure censored data for Lindley distribution with Bayesian and 

non-Bayesian approaches.  

 

Apart from inferential statistics, the coefficient of variation is also applied regularly in 

the field of human and public sciences. Babu and Sudha (2016) studied the speckle noise 

reduction in ultrasound images by applying an adaptive fuzzy logic approach on the 

coefficient of variation obtained from the noisy image. Tuovinen et al. (2017) focused on 

the effect of mapping blood oxygenation level dependent (BOLD) data using the 

coefficient of variation and the gray matter internal carotid artery (ICA) in order to detect 

the functional connectivity changes in Alzheimer’s disease and behavioral variant 

frontotemporal dementia (bvFTD). Rangasamy et al. (2020) compared the variability of 

blood glucose using two measurements, the coefficient of variation and blood glucose 

risk index based on the patients who undergo cardiac surgery. Kong et al. (2022) studied 

the coefficient of variation of children’s blood pressure and heart rate for the purpose of 

identifying those children with suspected orthostatic intolerance in a rapid way. 

 

In the field of environment research and public health, Zhao et al. (2017) explored the 

variability of particle grain size as it is a significant indicator for physical features and 

pollutants composition of road-deposited sediments by using the coefficient of variation 

of the particle size compositions, metal concentration, metal loads and grain size fraction 

load (GSFLoad) values. Sun et al. (2019) used the coefficient of variation to assess the 

influence of land use on groundwater pollution in Shuangliao City. 
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The coefficient of variation is adopted in many different fields as well. In the field of 

agricultural sciences, Doring and Reckling (2018) applied the coefficient of variation in 

detecting the global trend of cereal yield stability as it is the main objective in crop 

production and breeding, especially under the situations of climate change. Lopes et al. 

(2021) referred to a few experiments of eucalyptus growth and analyzed the distributions 

of coefficient of variation in order to identify the more appropriate classification ranges 

for eucalyptus seedlings cultures in either protected cultivation or greenhouses, compared 

to existing classification ranges. Xu et al. (2021) studied the contribution of features and 

selected the optimal features using a maximum feature tree embedded with the coefficient 

of variation and mutual information for the classification of bird sound. England et al. 

(2022) used the coefficient of variation to assess the performance response of the broilers 

that were being reared as mixed or single-sex to standard and reduced crude protein diet. 

At the same time, the authors also examined the uniformity of the broilers. 

 

In the field of engineering, Jiang et al. (2020) proposed an approach to detect the built-

up land change based on a single-channel synthetic aperture radar (SAR) by analyzing 

the coefficient of variation. In terms of technology, Singh and Singh (2019) introduced a 

submissive blind scheme that consisted of two different algorithms for detecting the video 

frame and regions of duplication forgery based on the coefficient of variation and 

correlation coefficient. In education, P Obite et al. (2020) used the coefficient of variation 

to assess the disparities in the applications of Higher Education, the Joint Admissions and 

Matriculation board in Nigeria. In the field of finance, Ma et al. (2021) chose the 

coefficient of variation to determine the time and the reason of a risk-averse firm for 

implementing the program of advance booking discount in the presence of a spot market. 

In the field of investment, Chaudhari and Thakkar (2023) applied the coefficient of 

variation on several selected features such as backpropagation neural network (BPNN), 
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long short-term memory (LSTM), gated recurrent unit (GRU), and convolutional neural 

network (CNN) for the stock price and trend prediction.  

 

The literature on the application of the coefficient of variation in numerous industries 

stated earlier is summarized in Table 2.1 below.    

 

Table 2.1 Meta-analysis of coefficient of variation in different fields 

Author(s) and Year Field Title of Article 

Banik and Kibria 

(2011) 

Inferential Statistics 

Estimating the population 

coefficient of variation by 

confidence intervals 

Gulhar et al. (2012) A comparison of some confidence 

intervals for estimating the 

population coefficient of 

variation: a simulation study 

El-Din et al. (2019) Estimation of the coefficient of 

variation for Lindley distribution 

based on progressive first failure 

censored data 

Babu and Sudha 

(2016) 

Human and Public 

Sciences 

Adaptive speckle reduction in 

ultrasound images using fuzzy 

logic on the coefficient of 

variation 

Tuovinen et al. 

(2017) 

The effect of gray matter ICA and 

coefficient of variation mapping 

of BOLD data on the detection of 

functional connectivity changes 

in Alzheimer’s disease and 

bvFTD 

Rangasamy et al. 

(2020) 

Comparison of glycemic 

variability indices blood glucose 

risk index and coefficient of 

variation in predicting adverse 

outcomes for patients undergoing 

cardiac surgery 

Kong et al. (2022) Coefficient of variation of heart 

rate and blood pressure in rapid 

identification of children with 

suspected orthostatic intolerance 

Zhao et al. (2017) 

Environment Research and 

Public Health 

Quantifying grain-size variability 

of metal pollutants in road-

deposited sediments using the 

coefficient of variation 
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Table 2.1, continued 

Author(s) and Year Field Title of Article 

Sun et al. (2019) Environment Research and 

Public Health 

Assessing the influence of land 

use on groundwater pollution 

based on the coefficient of 

variation weight method: a case 

study of shuangliao city 

Doring and 

Reckling (2018) 

Agricultural Sciences 

Detecting global trends of cereal 

yield stability by adjusting the 

coefficient of variation 

Lopes et al. (2021) Classification of the coefficient of 

variation for experiments with 

eucalyptus seedlings in 

greenhouse 

Xu et al. (2021) Feature selection using maximum 

feature tree embedded with 

mutual information and 

coefficient of variation for bird 

sound classification 

England et al. 

(2022) 

Rearing broilers as mixed or 

single-sex: relevance to 

performance, coefficient of 

variation, and flock uniformity 

Jiang et al. (2020) Engineering Delineation of built-up land 

change from SAR stack by 

analysing the coefficient of 

variation 

Singh and Singh 

(2019) 

Technology Video frame and region 

duplication forgery detection 

based on correlation coefficient 

and coefficient of variation 

P Obite et al. 

(2020) 

Education Assessment of the disparities in 

the applications to higher 

education in Nigeria: a coefficient 

of variation approach 

Ma et al. (2021) Finance Advance booking discount for 

risk-averse firms in the presence 

of spot market 

Chaudhari and 

Thakkar (2023) 

Investment Neural network systems with an 

integrated coefficient of variation-

based feature selection for stock 

price and trend prediction 

 

Considering the importance of the coefficient of variation in numerous industries that 

are elaborated above, a tool to monitor the stability of the coefficient of variation is 

needed. This results in the development of control charts to monitor the coefficient of 
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variation. The next subsection reviews existing control charts for monitoring the 

coefficient of variation. 

 

2.2 Control Charts on Monitoring the Coefficient of Variation 

The first coefficient of variation chart was a Shewhart-type chart. This chart was 

proposed by Kang et al. (2007) when the standard X , S and R charts could not be used 

due to inconsistent mean in some circumstances such as clinical chemistry. Rational 

subgroups of patients who were undergoing immunosuppressive treatment were taken as 

the samples for the development of the Shewhart-  chart. The performance of the 

proposed Shewhart-  chart was evaluated in terms of the ARL obtained for sample sizes, 

 5,  10, 15n , in-control coefficient of variation,  0 0.05,  0.10, 0.15   and shift 

sizes,  1,  1.25, 1.5, 2.0  . The Shewhart-  chart does not demonstrate good 

performance for small and moderate shift sizes because it only considers the present 

sample coefficient of variation. As a result, the chart requires a larger size of sample for 

better performance. 

 

Another commonly used control chart for monitoring the coefficient of variation is 

called the EWMA chart. EWMA-  chart was developed by Hong et al. (2008) to improve 

the performance of the Shewhart-  chart by Kang et al. (2007) in detecting small and 

moderate shift sizes. The EWMA-  chart takes the weighted average of all past and 

present samples. The ARL of the EWMA-  chart for  5,  10, 15n , 

 0 0.05,  0.10, 0.15   and  1.00,  1.25, 1.50   are shown. When a comparison was 

done between the proposed EWMA-  and the Shewhart-  charts, the results showed 

that the EWMA-  chart outperformed the Shewhart-  charts, where smaller out-of-

control ARL (ARL1) were shown for all cases. 
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Castogliola et al. (2011) proposed two one-sided EWMA charts by monitoring the 

coefficient of variation squared, i.e. the EWMA-
2  chart, and proposed the algorithm to 

obtain the optimal   and L, which is not available in Hong et al. (2008). The investigation 

on unknown shift size was conducted in the study as well through the EARL. The 

outcomes showed that the proposed two one-sided EWMA-
2  charts outperform the 

Shewhart-  charts in all cases by producing much smaller ARL1 and out-of-control EARL 

(EARL1), while compared to the EWMA-  chart, the proposed charts performed slightly 

better, although the difference between the two is small. 

 

Apart from the Shewhart-  and EWMA-  charts, there are many studies on other 

control charts monitoring the coefficient of variation. Castagliola et al. (2013a) 

introduced the run rules chart to monitor the coefficient of variation using three run rules 

strategies, which were the 2-out-of-3, 3-out-of-4 and 4-out-of-5 run rules. The 

performance of all three run rules charts was evaluated in terms of ARL1 and out-of-

control standard deviation of the run length (SDRL1) for  5,  7, 10, 15n , 

 0 0.05,  0.10, 0.15, 0.20   and 0.5,  0.6, 0.7, 0.8, 0.9, 1.1,  1.2,  1.5,  2.0, 2.5 . It 

can be observed that the three proposed run rules charts outperformed the Shewhart-  

chart for small and moderate shift sizes whereas the Shewhart-  chart showed better 

performance for larger shift sizes. 

 

Nevertheless, the EWMA-  chart still performs better than the run rules chart for 

small and moderate shift sizes. This is proven by Zhang et al. (2014), who modified the 

existing two one-sided EWMA-
2  charts by Castagliola et al. (2011) by using the 

information for all the former and current samples. The performance of the modified two 

one-sided EWMA-
2  charts was compared with the Shewhart-  chart with 
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supplementary run rules by Castagliola et al. (2013a), synthetic-  chart by Calzada and 

Scariano (2013) and the existing two one-sided EWMA-
2  charts by Castagliola et al. 

(2011). The outcomes showed that the proposed charts outperformed these charts for 

small and moderate shift sizes but not for large shift sizes. 

 

You et al. (2016) proposed the side-sensitive group runs chart to monitor the 

coefficient of variation. The proposed chart was evaluated in terms of the ARL1, SDRL1 

and EARL1 for  5,  10, 15 ,n   0 0.05,  0.10, 0.15, 0.20 ,   downward shift, 

 0.10,  0.25, 0.50, 0.80   and upward shift,  1.25,  1.50, 2.00, 2.50, 3.00, 4.00   

followed by comparison with the Shewhart- , 2-out-of-3 run rules, 4-out-of-5 run rules, 

synthetic-  and EWMA-  charts. Generally, the side-sensitive group runs-  chart 

outperformed all other charts in most cases excluding the small downward shift where 

the EWMA-  chart has the best performance. 

 

Tran and Tran (2016) presented two one-sided cumulative sum-type control charts that 

monitors the squared coefficient of variation (CUSUM-
2  chart) based on fixed and 

random shift sizes under zero-state assumptions. The performance of the proposed chart 

was compared with the EWMA-
2  chart by Castagliola et al. (2011) and the modified 

EWMA-
2  chart by Zhang et al. (2014) for  5, 7, 10, 15n , 

 0 0.05, 0.10, 0.15, 0.20   and  0.50, 0.65, 0.80, 0.90, 1.10, 1.25, 1.50, 2.00  . 

Overall, the proposed two one-sided CUSUM-
2  charts outperformed the EWMA-

2  

chart for most cases and the modified EWMA-
2  chart for  0.50, 0.65, 1.50, 2.00  . 

Furthermore, it was able to detect the assignable cause(s) quicker than the other two charts 

except for  0.65, 0.90, 1.50, 2.00  . 
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Run sum chart is known as one of the recent control charts to monitor the coefficient 

of variation which was established by Teoh et al. (2017). In the study, the authors 

considered four and seven regions run sum-  charts under both zero-state and steady-

state for 5n = ,  0 0.05, 0.10, 0.15, 0.20   and 

0.50,  0.65, 0.80, 0.90, 1.25, 1.50,  1.75,  2.00 . Based on the performance of ARL1, 

SDRL1 and EARL1, the seven regions run sum-  chart was also compared with the 

Shewhart-  and EWMA-  charts under zero-state and steady-state for the same values 

of n, 0   and  . The results of the ARL1 and SDRL1 showed that both run sum-  charts 

performed better than the Shewhart-  chart for all cases under both states. However, 

EWMA-  chart has the best performance compared to the two proposed run sum-  

charts in most cases except for 0.50 =  under both states and 2.00 =  under steady-

state. For the performance of EARL1, EWMA-  chart outperformed all three charts for 

all cases under both states. 

 

However, the study that was conducted by Zhang et al. (2018) showed different 

outcomes when EWMA-  chart was compared with the side-sensitive group runs-  

chart. The authors proposed a new two one-sided EWMA-
2  charts by resetting the 

negative normalized observations to zero for the purpose of overcoming the inertia issue 

of the traditional EWMA-  chart. These two one-sided EWMA-
2  charts were 

compared with the modified two one-sided EWMA-
2  charts by Zhang et al. (2014), 

existing two one-sided EWMA-
2  charts by Castagliola et al. (2011), Shewhart- chart 

with supplementary run rules by Castagliola et al. (2013a), synthetic-  chart by Calzada 

and Scariano (2013) and side-sensitive group runs-  chart by You et al. (2016) in terms 
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of the ARL1 performance. The outcomes showed that the proposed two one-sided EWMA-

2  charts outperformed the other four control charts for most cases. 

 

The attention to EWMA-  chart is continued with another new control chart, namely 

the HEWMA chart monitoring the coefficient of variation which is proposed by Aslam 

et al. (2019) using two EWMA statistics. The authors evaluated the performance of the 

proposed chart and compared it with the EWMA-
2  chart by Castagliola et al. (2011) 

and the modified EWMA-
2  chart by Zhang et al. (2014) for  5, 7, 10, 15n , 

 0 0.05, 0.10, 0.15, 0.20   and  1 2,  0.05, 0.10, 0.20, 0.30, 0.50   . The outcomes 

showed that the proposed chart outperformed the other two charts in most cases. Besides 

that, the proposed chart showed greater efficiency in perceiving the process shift for both 

simulated and real industry data. 

 

In the following year, Haq and Khoo (2019) introduced the AEWMA chart which is 

focused on infrequent changes in the coefficient of variation and compared it with the 

EWMA-
2  chart by Castagliola et al. (2011), the modified EWMA-

2  chart by Zhang 

et al. (2014) and CUSUM-
2  chart by Tran and Tran (2016) for  5, 7, 10, 15n , 

 0 0.05, 0.10, 0.15, 0.20   and 0.50,  0.65, 0.80, 0.90, 1.10,  1.25, 1.50, 2.00 . It 

can be observed that the proposed chart outperformed the other three charts for moderate 

to large shift sizes. Similar results were obtained based on real industry data. 

 

Saha et al. (2021) introduced a side-sensitive modified group runs chart to monitor the 

coefficient of variation and compared it with the existing EWMA- , run sum-  and 

side-sensitive group runs-  charts in terms of the ARL and SDRL performance for 
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 5, 7, 10n ,  0 0.05, 0.10, 0.15, 0.20   and  0.25, 0.50, 0.75, 1.25, 1.50, 2.00  . 

It is found that the proposed chart outperformed the other three control charts for 

increasing shift size, where 1  . However, for decreasing shift size, 1  , EWMA-  

and run sum-  charts still performed better. 

 

Hu et al. (2022a) developed two one-sided DEWMA charts for monitoring the 

coefficient of variation squared in order to improve the performance of the existing 

EWMA-
2  chart which was proposed by Castagliola et al. (2011). Monte Carlo 

simulations were chosen as the method to assess the performance of the proposed chart 

based on ARL for 5n = , 0.1 = ,  0 0.10,  0.20 ,   downward shift, 

 0.50, 0.65, 0.75, 0.80, 0.90, 0.95   and upward shift, 

 1.05, 1.10, 1.20, 1.25, 1.50, 2.00  . A comparison between these two charts was 

conducted and it is observed that the proposed DEWMA-
2  chart outperformed the 

EWMA-
2  chart for small shift sizes. Besides, the advantage of the proposed chart 

showed significant improvement over the EWMA-
2  chart when   increases. However, 

EWMA-
2  chart still outperformed DEWMA-

2  chart for large shift sizes. 

 

Hu et al. (2022b) proposed three one-sided DEWMA chart in monitoring the squared 

coefficient of variation, namely the DEWMA1-
2 , DEWMA2-

2 , and DEWMA3-
2  

charts. The proposed charts were assessed based on the ARL performance, where the ARL 

was obtained through Monte Carlo simulations, and compared among themselves as well 

as with the existing EWMA-
2  chart. It can be observed that DEWMA1-

2  

outperformed the other two proposed charts for small shift sizes whereas DEWMA2-
2  

performed the best for large shift sizes. For the comparison between the proposed charts 
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and the EWMA-
2  chart, the results showed that the proposed charts outperformed the 

existing EWMA-
2  chart for small shift sizes. However, for large shift sizes, the EWMA-

2  chart performed the best. 

 

Besides those coefficient of variation charts mentioned earlier, there are several studies 

regarding charts with variable chart parameters. Castagliola et al. (2013b) proposed an 

Adaptive Shewhart-  chart by implementing the strategy of the variable sampling 

interval (VSI). It is noticed that it outperformed the Shewhart-  chart for all cases in 

terms of the out-of-control average time to signal (ATS1) and out-of-control standard 

deviation of the time to signal (SDTS1). Castagliola et al. (2015) modified the Shewhart-

  chart by implementing the strategy of variable sample size (VSS) and compared the 

proposed chart with the fixed sampling rate and VSI Shewhart-  charts, and also the 

synthetic-  charts. In terms of ARL1, SDRL1 and out-of-control average sample size 

(ASS1) values, the proposed chart outperformed the fixed sampling rate Shewhart-  chart 

for all cases. It also showed better performance than the VSI Shewhart-  chart and 

synthetic-  chart for small and moderate shift sizes. Khaw et al. (2017) implemented the 

strategy of variable sample size and variable sampling interval (VSSI) on the Shewhart-

  chart and compared its performance with the fixed sampling rate and VSS Shewhart-

 , synthetic- , EWMA-
2  and 2-out-of-3 run rules charts. It can be observed that the 

proposed chart outperformed all other charts for moderate and large shift sizes in terms 

of ATS1 and SDTS1 values. Furthermore, it showed the best performance in terms of the 

out-of-control expected average time to signal (EATS1) values for all cases. Thus, for 

small shift sizes, EWMA-
2  chart outperformed all the charts based on the performance 

of ATS1. Yeong et al. (2018a) introduced the variable parameters (VP) chart for 

monitoring the coefficient of variation and compared it with the control charts mentioned 
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by Khaw et al. (2017) except for 2-out-of-3 run rules chart. The results showed that the 

VP-  chart outperformed all five control charts for all shift sizes. However, for small 

shift sizes, EWMA-
2  chart showed the best performance. Chew et al. (2022) introduced 

the economic and economic-statistical designs of the VSSI chart monitoring the 

coefficient of variation. It is found that the proposed chart was able to reduce the time in 

detecting the out-of-control condition, compared to the Shewhart-  chart. 

 

Apart from the Shewhart-  chart with variable chart parameters described in the 

preceding paragraph, variable chart parameters were also adopted on other more 

complicated coefficient of variation charts. Yeong et al. (2017b) proposed a VSI EWMA 

chart to monitor the coefficient of variation and compared it with the Shewhart- , 

synthetic- , EWMA-
2  and VSI-  charts. Based on the ATS1, SDTS1 and EATS1 

obtained, the results showed that the proposed chart outperformed the other four charts. 

Muhammad et al. (2018) developed a VSS EWMA chart monitoring the coefficient of 

variation. It can be noticed that the proposed chart outperformed the Shewhart- , 

synthetic- , EWMA-
2 , VSS-  and run rules-  charts in detecting small and moderate 

shift sizes. Tran and Heuchenne (2021) proposed a VSI CUSUM chart to monitor the 

coefficient of variation in order to overcome the issue of handling downward shifts in the 

coefficient of variation. It is found that the proposed chart outperformed the fixed 

sampling interval (FSI) CUSUM-
2  chart. Furthermore, it was also able to identify both 

increasing and decreasing shift sizes efficiently. 

 

Incorporating variable chart parameters into the existing coefficient of variation charts 

has attracted more attention from researchers lately. Hu et al. (2021) modified the three 

DEWMA-
2  charts which were proposed by Hu et al. (2022b) with the feature of VSI 
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and named them as VSI DEWMA1-
2 , VSI DEWMA2-

2  and VSI DEWMA3-
2  

charts. The performance of the proposed charts was evaluated using the method of Monte 

Carlo simulations and comparison within these three proposed charts was conducted. 

Besides, they were compared with other coefficient of variation charts based on FSI and 

VSI features like FSI DEWMA-
2 , FSI EWMA-

2 , VSI EWMA-
2  and AEWMA-

2  

charts. It is noticed that the three proposed charts outperformed all the coefficient of 

variation charts for small and moderate shift sizes. However, for larger shift sizes, VSI 

DEWMA2-
2  chart was inferior to the VSI EWMA-

2  chart. Hence, VSI DEWMA1-

2  and VSI DEWMA3-
2  showed better performance than the VSI DEWMA2-

2  chart 

and they were suggested as the recommendations for large 0  or smoothing parameter. 

 

Yeong et al. (2022a) introduced a run sum-  chart with the feature of VSI (VSI run 

sum- ) in order to reduce the required average time of identifying the shifts in the process 

and control the sampling cost as well. The performance of the proposed chart was 

assessed in terms of the ATS and EATS and it was compared with the Shewhart- , VSI-

 , synthetic- , EWMA-
2 , VSI EWMA-

2  and run sum-  charts. It is found that the 

proposed chart outperformed the Shewhart- , VSI- , synthetic-  and run sum-  charts 

for all cases as well as the EWMA-
2  chart for moderate and large shift sizes. 

Unfortunately, it did not outperform the VSI EWMA-
2  chart for all cases.  

 

In the same year, Yeong et al. (2022b) incorporated the feature of VSS into the run 

sum-  (VSS run sum- ) chart and evaluated the proposed chart in terms of the 

performance of ARL and EARL. The corresponding ARL and EARL of the proposed chart 

were also compared with the Shewhart- , VSS- , synthetic- , EWMA-
2 , VSS 
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EWMA-
2  and run sum-  charts. It is found that the proposed VSS run sum-  chart 

outperformed the run sum-  chart particularly for small sample and shift sizes. 

Generally, it also showed better results compared to the Shewhart- , VSS-  and 

synthetic-  charts for some cases. Nevertheless, the VSS EWMA-
2  chart outperformed 

the proposed chart for all cases whereas EWMA-
2  chart outperformed it for most cases. 

 

Yeong et al. (2023) implemented the features of VSSI and VP into the existing run 

sum chart for improving its sensitivity for the shifts in the coefficient of variation and the 

performance of the two proposed charts were evaluated in terms of the ATS, SDTS and 

EATS. The corresponding ATS, SDTS and EATS of the proposed charts were also 

compared with other existing coefficient of variation charts such as the VSI run sum- , 

VSS run sum- , VSSI- , VSS- , VSI- , VSS EWMA-
2 , and VSI EWMA-

2  charts. 

Based on the results obtained, it can be observed that the proposed VP run sum-  chart 

outperformed the proposed VSSI run sum-  chart. Besides, for moderate and large shift 

sizes, both proposed charts showed better performance compared to VSI run sum- , VSS 

run sum- , VSSI- , VSS- , VSI- , VSS EWMA-
2 , and VSI EWMA-

2  charts.   

 

Hu et al. (2023) proposed two one-sided Triple EWMA (TEWMA) charts with and 

without the feature of VSI for monitoring the coefficient of variation squared, namely FSI 

TEWMA-
2  and VSI TEWMA-

2  charts. The performance of the proposed charts for 

both zero-state and steady-state were evaluated using Monte Carlo simulations. 

Comparions between the proposed TEWMA-
2  charts and other EWMA charts such as 

the EWMA-
2 , DEWMA1-

2  and  DEWMA2-
2  charts were conducted for both FSI 

and VSI features. It is found that the proposed VSI TEWMA-
2  chart showed quicker 
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detection in shifts compared to the proposed FSI TEWMA-
2  chart. For small shift sizes, 

the VSI TEWMA-
2  chart also showed superior zero-state and steady-state performance 

compared to the EWMA-
2  and DEWMA-

2  charts. However, the VSI DEWMA2-
2  

chart outperformed all other charts for large shift sizes under zero-state whereas for 

steady-state, the VSI DEWMA1-
2  was the best chart for moderate shift sizes and the 

VSI EWMA-
2  showed the best performance for large shift sizes.          

 

In this subsection, several existing charts monitoring the coefficient of variation are 

reviewed, such as the Shewhart- , EWMA- , run rules- , run sum- , side-sensitive 

group runs- , CUSUM- ,  VP- , VSI- , VSS-  and VSSI-  charts. The summary of 

the literature described in this subsection is presented in Table 2.2. In the next subsection, 

a review of synthetic charts will be given. 

 

Table 2.2 Meta-analysis of control chart monitoring coefficient of variation 

Author(s) 

and Year 

Proposed 

Control Chart 

Competing Control 

chart 

Shift Size Best Method 

Kang et al. 

(2007) 
Shewhart - Small and large Shewhart 

Castagliola 

et al. 

(2013b) 

VSI Shewhart Shewhart Small and large VSI Shewhart 

Castogliola 

et al. 

(2015) 

VSS Shewhart 
Shewhart, VSI 

Shewhart, Synthetic 

Small VSS Shewhart 

Large Synthetic 

Khaw et al. 

(2017) 
VSSI Shewhart 

VSI Shewhart, VSS 

Shewhart, Shewhart 
Small and large VSSI Shewhart 

Yeong et 

al. (2018a) 
VP Shewhart 

VSSI Shewhart, 

VSI Shewhart, VSS 

Shewhart, EWMA, 

Synthetic Shewhart, 

Shewhart 

Small and large VP Shewhart 

Chew et al. 

(2022) 
VSSI Shewhart Shewhart  Small and large VSSI Shewhart 

Hong et al. 

(2008) 
EWMA Shewhart 

Small and 

moderate 
EWMA 

 

 



  

29 

Table 2.2, continued 

Author(s) and 

Year 

Control Chart Competing 

Control Chart 

Shift Size Best Method 

Castagliola et 

al. (2011) 
EWMA-

2  
Shewhart, 

EWMA 

Small and 

large 
EWMA-

2  

Zhang et al. 

(2014) 
EWMA-

2  

Run Rules 

Shewhart, 

Synthetic, 

EWMA  

Small EWMA-
2  

Large Synthetic 

Zhang et al. 

(2018) 
EWMA-

2  

EWMA, Run 

Rules 

Shewhart 

Synthetic, 

Side-sensitive 

Group Runs 

Small and 

large 
EWMA-

2  

Yeong et al. 

(2017b) 
VSI EWMA 

Shewhart, 

Synthetic, 

EWMA, VSI 

Small and 

large 
VSI EWMA 

Muhammad et 

al. (2018) 
VSS EWMA 

Shewhart, 

EWMA, 

Synthetic 

Shewhart, Run 

Rules 

Shewhart and 

VSS Shewhart 

Small and 

large 
VSS EWMA 

Aslam et al. 

(2019) 
HEWMA EWMA-

2  
Small and 

large 
HEWMA 

Haq and Khoo 

(2019) 
AEWMA Shewhart 

Small AEWMA 

Large Shewhart 

Hu et al. 

(2022a) 
DEWMA EWMA-

2  
Small DEWMA 

Large EWMA 

Hu et al. 

(2022b) 
DEWMA EWMA-

2  
Small DEWMA 

Large EWMA 

Hu et al. 

(2021) 
VSI DEWMA 

DEWMA, 

EWMA, VSI 

EWMA, 

AEWMA 

Small VSI DEWMA 

Large VSI EWMA 

Hu et al. 

(2023) 

FSI TEWMA-
2 , VSI 

TEWMA-
2  

FSI EWMA-
2 , VSI 

EWMA-
2 , 

FSI 

DEWMA1-
2 , 

VSI 

DEWMA1-
2 ,   

FSI 

DEWMA2-
2 , 

VSI 

DEWMA2-
2  

Small 
VSI TEWMA-

2  
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Table 2.2, continued 

Author(s) and 

Year 

Control Chart Competing 

Control Chart 

Shift Size Best Method 

Castagliola et 

al. (2013a) 
Run Rules Shewhart 

Small Run Rules 

Large Shewhart 

Teoh et al. 

(2017) 

Run Sum 

 

Shewhart, 

EWMA 

Small and 

large 
EWMA 

Yeong et al. 

(2022a) 
VSI Run Sum 

Shewhart, VSI, 

Synthetic, 

EWMA, VSI 

EWMA, Run 

Sum 

Small VSI EWMA 

Large VSI Run Sum 

Yeong et al. 

(2022b) 
VSS Run Sum 

Shewhart, 

VSS, 

Synthetic, 

EWMA, VSS 

EWMA, Run 

Sum 

Small and 

large 
VSS EWMA 

Yeong et al. 

(2023) 

VSSI Run 

Sum, VP Run 

Sum 

VSI Run Sum, 

VSS Run Sum, 

VSSI- , VSS-

 , VSI- , 

VSS EWMA-
2 , VSI 

EWMA-
2     

Moderate and 

large  

VSSI and VP 

Run Sum 

You et al. 

(2016) 

Side-sensitive 

Group Runs 

Shewhart, Run 

Rules, 

Synthetic, 

EWMA 

Small EWMA 

Large 
Side-sensitive 

Group Runs 

Saha et al. 

(2021) 

Side-sensitive 

Modified 

Group Runs 

EWMA, Run 

Sum, Side-

sensitive 

Group Runs 

Small EWMA 

Large 

Side-sensitive 

Modified 

Group Runs 

Tran and Tran 

(2016) 
CUSUM-

2  EWMA 
Small EWMA 

Large CUSUM-
2  

Tran and 

Heuchenne 

(2021) 

VSI CUSUM CUSUM-
2  

Small and 

large 
VSI CUSUM 

 

From Table 2.2, it can be observed that most of the studies are focused on the Shewhart 

and EWMA charts. For Shewhart charts, studies in the literature focused on improving 

its performance by varying its chart parameters, for example through the VSI Shewhart, 

VSS Shewhart, VSSI Shewhart and VP Shewhart charts. As for the EWMA chart, 

practitioners had proposed numerous charts such as the EWMA-
2 , VSI EWMA, VSS 
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EWMA, HEWMA, AEWMA, DEWMA, VSI DEWMA and VSI TEWMA charts. 

According to the best method shown in the last column in Table 2.2, Shewhart chart has 

the best performance for large shift sizes whereas the EWMA chart outperforms all 

control charts for small and moderate shifts size. Hence, in this thesis, the performance 

of the proposed side-sensitive synthetic-  chart is compared with the Shewhart-  and 

EWMA-
2  charts. Since the purpose of this thesis is to improve the existing synthetic-

  chart, therefore the existing synthetic-  chart is also being selected as one of the 

coefficient of variation charts for comparison. 

      

2.3 Development of Synthetic Charts 

Wu and Spedding (2000) were the pioneers for the synthetic chart, where a synthetic 

chart was proposed to monitor the process mean by combining the Shewhart X  and 

conforming run length (CRL) charts together. The authors found that the proposed 

synthetic chart produced a much smaller ARL1 compared to the existing Shewhart X  for 

all shift sizes. Furthermore, it also outperformed the standard EWMA and the joint X  

EWMA charts for large shift sizes. Subsequently, Wu et al. (2001) developed a new 

synthetic control chart for detecting the increase in the fraction non-conforming. The 

outcomes showed that the synthetic control chart had a greater power to detect the process 

shifts and produced a 50% or higher decrease in the out-of-control mean time to signal. 

 

Ever since then, the study on synthetic control chart began to attract a lot of attention 

from researchers. Calzada and Scariano (2001) studied the robustness of the synthetic 

chart when the normal assumptions are violated. Davis and Woodall (2002) used Markov 

chains to evaluate the ARL performance under both zero-state and steady-state. Scariano 

and Calzada (2003) focused on the lower-sided synthetic chart for exponential data. Song 

and Park (2005) developed a new VSI synthetic chart for the purpose of the convenience 
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of using the control chart in the field. Lee and Lim (2005) proposed a VSSI-CRL synthetic 

chart for improving the statistical characteristics of both CRL and the VSSI synthetic 

charts. Chen and Huang (2006) modified the existing VSI synthetic chart by combining 

the features of the max chart and CRL chart for jointly monitoring the shift in the process 

mean and/or standard deviation for normal distribution. Costa and Rahim (2006) 

proposed a synthetic chart that is focused on the non-central chi-square statistic for 

identifying the change in the process mean or variance due to assignable cause(s). Khoo 

et al. (2008) developed a synthetic chart based on the weighted variance method for 

monitoring the mean of the process from skewed populations. 

 

Due to the good reviews of synthetic control chart by the researchers mentioned above, 

the study of synthetic control chart became more aggressive. Aparisi and De Luna (2009) 

optimized the zero-state and steady-state performance of synthetic X  chart, while 

Castagliola and Khoo (2009) modified the existing synthetic chart that was developed by 

Khoo et al. (2008) with scaled weighted variance X  for monitoring the mean of the 

process of skewed population. Costa et al. (2009) proposed a synthetic control chart with 

two-stage testing for monitoring the process mean and standard deviation, and, Scariano 

and Calzada (2009) presented a generalized synthetic control chart by applying it to the 

EWMA and CUSUM charts. Subsequently, Khoo et al. (2010) proposed a synthetic 

double sampling chart for monitoring the process mean whereas Wu et al. (2010) 

combined the synthetic and X  charts (Syn- X  chart) to monitor the process mean. Next, 

Zhang et al. (2011) evaluated the performance of the existing synthetic X  chart using 

estimated process parameters from an in-control Phase I data set. Lastly, Khoo et al. 

(2012) developed an optimal design of the synthetic chart based on median run length for 

monitoring the process mean under the zero-state and steady-state modes. 
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The synthetic coefficient of variation chart, synthetic-  chart used in this thesis was 

developed by Calzada and Scariano (2013). The proposed synthetic-  chart’s 

performance was compared with the Shewhart-  and upward EWMA-
2  charts in terms 

of the  5, 10, 15n ,  0 0.05, 0.10, 0.15   and 

 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3  . The synthetic-  chart performed better 

than the Shewhart-  chart as it produced more stringent control limits, for instance, 

greater LCL and smaller UCL. Besides, in terms of ARL and EARL, the synthetic-  chart 

showed better performance than the Shewhart-  chart for all cases and EWMA-
2  chart 

for large shift sizes. Nevertheless, for small shift sizes, EWMA-
2  chart outperformed 

the proposed synthetic-  chart. 

 

Since there is no research regarding side-sensitive synthetic-  chart, therefore this 

thesis will refer to the past studies of the synthetic X  chart with the feature of side 

sensitivity in order to investigate the performances between the non-side-sensitive and 

side-sensitive synthetic X  charts in terms of detecting the out-of-control signal. Machado 

and Costa (2014b) proposed a side-sensitive synthetic X  chart by dividing the chart into 

five regions compared to the original synthetic X  chart which consists of conforming 

and non-conforming regions only. Those regions are the upper action (above the UCL), 

upper warning (above the upper warning limit, UWL), lower warning (below the lower 

warning limit, LWL), lower action (below the LCL) and central region (between the LWL 

and UWL). An illustration of this feature of side sensitivity is shown in Figure 2.1. 
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Figure 2.1 Feature of side-sensitivity with five regions 

 

The side-sensitive synthetic X  chart provides the out-of-control signal when a second 

point falls beyond the warning limits which is not far from the first point and at the same 

time falls on the same side of the centre line, CL. However, it does not provide the signal 

when the points fall beyond the warning limits but are not on the same side of the CL. 

Based on the results obtained, it can be concluded that the side-sensitive synthetic X  

chart outperformed the non-side-sensitive synthetic X  chart for both increasing and 

decreasing shift sizes. In fact, it was also able to give the out-of-control signal with 30% 

faster detection speed than the existing synthetic X  chart.  

 

Shongwe and Graham (2018) extended the work of Machado and Costa (2014b) by 

modifying a side-sensitive synthetic X  chart into four regions instead of five regions. 

The modified side-sensitive charting regions are upper non-conforming (above the UCL), 

upper conforming (between the CL and UCL), lower conforming (between the CL and 

LCL) and lower non-conforming (below the LCL). An illustration of the feature of side 

sensitivity with four regions is shown in Figure 2.2. 
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Figure 2.2 Feature of side-sensitivity with four regions 

 

It generates an out-of-control signal when all the consecutive points fall on the same 

side of the CL. The objective of the study was to compare the performance of the proposed 

chart with the existing synthetic X  chart for non-side-sensitive, standard side-sensitive 

(upper non-conforming, conforming and lower non-conforming) by Davis and Woodall 

(2002) and revised side-sensitive by Machado and Costa (2014b). Based on the results 

obtained, it can be observed that the modified side-sensitive synthetic X  chart 

outperformed the other three synthetic X  charts for zero-state and steady-state. Besides, 

it was also being recognized as a strong contender to real life applications where the 

existing synthetic X  charts are currently being applied. 

 

Yeong et al. (2018b) introduced the economic and economic-statistical designs of the 

synthetic-  chart for practitioners in order to minimize the implementation cost of using 

a control chart. The proposed synthetic-  chart of the zero-state was first compared with 

the synthetic-  chart using cyclical and condition steady-states followed by the 

comparison with another three control charts, the Shewhart- , EWMA-  and CUSUM-

  charts in terms of ARL and EARL based on the values of  1, 2, ..., 30L  and 

 2, 3, ..., 30n  for the purpose of saving costs. For the first comparison, the proposed 
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synthetic-  chart of the zero-state provided lower cost than the synthetic-  chart for 

cyclical and conditional steady-states. For the second comparison, both economic and 

economic statistical designs of the synthetic-  chart outperformed all three control charts 

in terms of the ARL performance. For the performance based on the EARL, the economic 

design of synthetic-  chart performed the best among the four control charts. However, 

the economic-statistical design of synthetic-  chart outperformed the Shewhart-  chart 

only. 

 

Guo and Wang (2018) proposed an ARL-unbiased Shewhart-  chart for monitoring 

the two-sided shifts in the coefficient of variation. Furthermore, the researchers also 

introduced another control chart, the ARL-unbiased synthetic-  chart where only a LCL 

was required in the CRL sub-chart for the purpose of improving the first proposed chart. 

A comparison between these two proposed charts was made in terms of ARL performance 

for  5, 10, 15n ,  0 0.05, 0.10, 0.15   and 

 0.50,  0.65, 0.80, 0.90, 1.00, 1.25, 1.50, 2.00, 2.50, 4.00  . Based on the values of 

the ARL obtained, the results showed that the proposed ARL-unbiased synthetic-  chart 

outperformed the proposed ARL-unbiased Shewhart-  chart. 

 

Tran et al. (2018) developed a one-sided synthetic control chart for monitoring the 

squared coefficient of variation with measurement errors for the purpose of improving 

the existing synthetic-  chart which was introduced by Calzada and Scariano (2013). 

The authors created two one-sided synthetic-
2  charts for detecting both increasing and 

decreasing shifts using  0 0.05, 0.10, 0.15   and 0.50, 0.75, 0.90, 1.10,  1.25, 

1.50 . In order to meet the requirements of practical application, the steady-state case was 
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also taken into consideration. It is observed that the precision error,   and the accuracy 

error,   had a negative effect on the charts in general. Furthermore, the increase in the 

quantity of repeated measurements on every item did not show a clear increase in the 

performance of the chart even though the standard error was associated with the ARL1. 

This explains that there was no significant reduction in the impact of measurement errors 

by the increase in the quantity of measurements of each item. 

 

The development of synthetic chart for monitoring the coefficient of variation does not 

just focus on univariate processes, it is also extended to multivariate processes when there 

are two or more than two quality variables to be monitored by the control chart. Khaw et 

al. (2019) introduced the synthetic chart by monitoring the multivariate coefficient of 

variation (MCV) and assessed the proposed chart in terms of ARL, SDRL and EARL 

criteria based on number of quality variables,  2,  3p ,  5,  10, 15n , 

 1.10,  1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 3.00   and  0 0.10,  0.30, 0.50  . A 

comparison was conducted between the proposed synthetic MCV chart with the Shewhart 

MCV and run sum MCV charts. The outcomes demonstrated that the synthetic MCV 

chart outperformed the other two MCV charts for most cases in terms of the performance 

of ARL and EARL. However, according to the SDRL performance, Shewhart MCV chart 

had the least value compared to the proposed chart particularly for large shift sizes. For 

the implementation of a control chart using an actual industrial example, a comparison 

was made between the proposed synthetic MCV and Shewhart MCV charts. The 

outcomes showed that the synthetic MCV chart was able to provide earlier detection of 

out-of-control conditions compared to the Shewhart MCV chart which was unable to 

detect any out-of-control condition. 
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Rakitzis et al. (2019) studied several kinds of synthetic charts that are available in the 

literature for both zero-state and steady-state. For example, synthetic charts monitoring 

the process mean, synthetic charts monitoring the variation, synthetic charts for joint 

monitoring of mean and variance, synthetic charts monitoring the mean time between 

events, economic and economic-statistical designs for synthetic charts, synthetic charts 

for attribute data and multivariate synthetic charts. Generally, it can be observed that a 

synthetic chart is very useful to practitioners in real life applications when they decide to 

wait for the second point to fall in the non-conforming region in order to give the out-of-

control signal. Besides, the synthetic charts with the feature of side sensitivity are found 

to perform better than those non-side-sensitive synthetic charts for normal processes even 

though there are not many studies regarding side sensitivity that has been done. 

 

Yeong et al. (2021) evaluated the synthetic-  chart based on different percentiles of 

the run length and proposed the MRL-based design for the synthetic-  chart. The results 

showed that the evaluation of synthetic-  chart’s actual performance should not solely 

rely on ARL as the variation of run length was large particularly for in-control and out-

of-control percentiles of small shift sizes. In addition, the synthetic-  chart outperformed 

the VSS-  and Shewhart-  charts for MRL-based designs for all shift sizes. 

Furthermore, for small shift sizes, it also outperformed the MRL-based design for the 

EWMA-  chart, although the ARL-based design for EWMA-  chart showed better 

performance than the ARL-based design for the synthetic-  chart.  

 

Yahaya et al. (2022) introduced the scheme of VSS for non-side-sensitive synthetic 

chart to monitor the coefficient of variation. The proposed chart was assessed in terms of 

the performance of ARL and EARL and compared with synthetic- , VSS- , VSS 

EWMA-
2 , EWMA-

2  and Shewhart-  charts. It is observed that the proposed chart 
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had shown significant improvement by outperforming synthetic- , VSS-  and 

Shewhart-  charts for all cases. It also showed better performance than VSS EWMA-
2  

and EWMA-
2  charts for moderate and large shift sizes but not for very small shift sizes. 

 

A summary of the development of synthetic chart which have been described in this 

subsection is presented in Table 2.3 below. 

 

Table 2.3 Classification of synthetic charts according to their use 

Synthetic Chart Quality Characteristic/Process 

Parameter/Design Type 

Author(s) and Year 

For variables 

(parametric 

setup) 

Mean 

Wu and Spedding (2000), 

Calzada and Scariano (2001), 

Davis and Woodall (2002), Khoo 

et al. (2008) Aparisi and De Luna 

(2009), Castagliola and Khoo 

(2009), Scariano and Calzada 

(2009), Wu et al. (2010), Zhang 

et al. (2011), Khoo et al. (2012), 

Rakitzis et al. (2019)  

Mean and variance (joint 

monitoring) 

Costa and Rahim (2006), Costa et 

al. (2009) 

Mean time between events Scariano and Calzada (2003) 

Variable charting parameters 

Song and Park (2005), Lee and 

Lim (2005), Chen and Huang 

(2006) 

Double sampling Khoo et al. (2010),  

Coefficient of variation 

Calzada and Scariano (2013), 

Guo and Wang (2018), Tran et al. 

(2018), Khaw et al. (2019), 

Yeong et al. (2021) 

Side-sensitive 
Machado and Costa (2014b), 

Shongwe and Graham (2018) 

Economic and economic-

statistical designs 

Yeong et al. (2018b), Yahaya et 

al. (2022) 

For attributes 
Fraction/number of 

nonconforming 
Wu et al. (2001) 

 

By referring to the outcomes of different control charts monitoring the coefficient of 

variation mentioned in Section 2.2 and the synthetic charts in the current subsection, it is 

proven that the synthetic chart outperforms most of the control charts for small, moderate 
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and large shift sizes except for EWMA chart which demonstrates better performance than 

the synthetic chart for small and moderate shift sizes. Conversely, a synthetic chart with 

the feature of side sensitivity performs better than the existing synthetic chart without the 

feature of side sensitivity for all shift sizes. However, there are no studies regarding the 

synthetic-  chart with the feature of side sensitivity that can be found in the literature. 

Therefore, the study of the side-sensitive synthetic chart for monitoring the coefficient of 

variation is proposed in this thesis. 

 

2.4 Performance Measures of Control Charts 

In order to evaluate the actual performance of a control chart, performance measures 

such as the ARL, SDRL, MRL, EARL and EMRL are commonly adopted in the literature. 

These performance measures are not only adopted by control charts monitoring the 

coefficient of variation, but are also commonly used by control charts monitoring other 

parameters. Adegoke et al. (2019) proposed a multivariate homogenously weighted 

moving average control chart (MHWMA) to monitor the mean vector and ARL was 

selected as the performance measure to evaluate the proposed chart. It was then compared 

with other multivariate control charts in terms of ARL performance. Li et al. (2019) chose 

ARL and SDRL to investigate the two one-sided CUSUM charts to monitor a process with 

dependent count data with inflation or deflation of zeros. Aly et al. (2022) introduced an 

AEWMA to monitor a process of zero-inflated Poisson distribution and the proposed 

chart was evaluated in terms of ARL and SDRL.  

 

Similar to the coefficient of variation charts, EARL is chosen as the alternative 

performance measure of the control chart for unknown shift size. Mim et al. (2019) 

selected the ARL and EARL as the performance measures for evaluating the proposed 

side-sensitive group runs control chart for detecting the shift in the process mean using 
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auxiliary information. You et al. (2020) studied the EWMA median chart with known and 

estimated process parameters based on the ARL and EARL. Abubakar et al. (2022) used a 

bivariate normal distribution to design a run sum control chart to monitor the ratio of 

population means and the performance of the proposed chart was assessed in terms of the 

ARL and EARL. Li et al. (2022) proposed a generally weighted moving average (GWMA) 

control chart with measurement errors by using two strategies which were the adjusted 

control limits and additive measurement error model to liaise with measurement errors. 

The performance of the proposed chart was evaluated in terms of the ARL and EARL 

through Monte Carlo simulations. Talordphop et al. (2022) introduced mixed Tukey 

modified EWMA – moving average control chart (MMEM-TCC) for monitoring the 

process mean under symmetric and non-symmetric distributions. ARL, SDRL, MRL and 

EARL were selected as the performance measures for assessing the performance of the 

proposed chart through Monte Carlo simulations. Malela-Majika et al. (2022a) chose 

ARL, SDRL, MRL and EARL as the performance measures to evaluate the performance of 

the proposed multivariate TEWMA (MTEWMA) chart using extensive simulations. Saha 

et al. (2023) assessed the proposed side-sensitive group runs t chart based on the 

performance of ARL and EARL and compared with other existing t charts. 

 

If the run length distribution of a control chart is skewed, evaluation in terms of ARL 

alone may generate a misleading interpretation of the chart’s real performance. Therefore, 

MRL is the appropriate performance measure for skewed run length distribution. Gao et 

al. (2019) studied a run sum S chart and selected the ARL and MRL as the performance 

measures to evaluate the chart. The performance measures ARL, SDRL and MRL were 

chosen by Taboran et al. (2020) for evaluating the proposed nonparametric MME-TCC 

chart for detecting the shifts in mean. De Araujo Lima-Filho & Mariano Bayer (2021) 

developed a Kumaraswamy control chart to monitor double bounded data for example 
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rates and proportions and its performance was evaluated based on the ARL, SDRL and 

MRL using Monte Carlo simulations. Taboran and Sukparungsee (2023) introduced the 

EWMA-double moving average control chart (EWMA-DMA) for detecting the shifts in 

mean with normal, laplace, exponential and gamma distributions. The proposed chart was 

evaluated based on the ARL and MRL by using Monte Carlo simulations.  

 

If the run length distribution of a control chart is skewed and the shift size is unknown, 

EMRL can be selected as an alternative performance measure. Tang et al. (2019) studied 

the performance of AEWMA median chart with measurement errors based on ARL, EARL 

and EMRL. Chong et al. (2022) evaluated an optimal EWMA median chart with known 

and estimated parameters in terms of MRL and EMRL performances. Qiao et al. (2022) 

studied two one-sided exponential EWMA charts and evaluated the proposed chart based 

on MRL and EMRL. Tuh et al. (2022) have chosen EMRL as the performance measure to 

evaluate the performance of the optimal statistical design of the double sampling np chart. 

Malela-Majika et al. (2022b) proposed the TEWMA with fixed and random explanatory 

variables to monitor the univariate and multivariate profiles. The performance of the 

proposed chart was evaluated based on the ARL, SDRL, MRL, EARL, EMRL and expected 

standard deviation of the run length (ESDRL). Lee et al. (2023) chose MRL and EMRL as 

the performance measures to evaluate the synthetic c charts with known and estimated 

process parameters. 

 

A summary of the selected performance measures for evaluating the performance of 

control charts which have been described in this subsection is presented in Table 2.4 

below. 
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Table 2.4 Usage of performance mesures for control chart 

Year Arthor(s) Control Chart Performance Measure 

2019 

Adegoke et al. MHWMA ARL 

Li et al. CUSUM ARL, SDRL 

Mim et al. Side-sensitive 

Group Runs 

ARL, EARL 

Gao et al. Run Sum ARL, MRL 

Tang et al. AEWMA ARL, EARL, EMRL 

2020 
You et al. EWMA ARL, EARL 

Taboran et al. MME-TCC ARL, SDRL, MRL 

2021 Lima-Filho & Bayer Kumuraswamy ARL, SDRL, MRL 

2022 

Aly et al. AEWMA ARL, SDRL 

Abubakar et al. Run Sum ARL, EARL 

Li et al. GWMA ARL, EARL 

Talordphop et al. MMEM-TCC ARL, SDRL, MRL, EARL 

Malela-Majika et al. TEWMA ARL, SDRL, MRL, EARL 

Chong et al. EWMA MRL, EMRL 

Qiao et al. EWMA MRL, EMRL 

Tuh et al. Double Sampling EMRL 

Malela-Majika et al. TEWMA ARL, SDRL, MRL, EARL, 

EMRL, ESDRL 

2023 

Saha et al. Side-sensitive 

Group Runs 

ARL, EARL 

Taboran & 

Sukparungsee 

EWMA-DMA ARL, MRL 

Lee et al. Synthetic MRL, EMRL 

 

Since ARL, SDRL, MRL, EARL and EMRL are the commonly used performance 

measures in evaluating control charts in general, therefore, these five performance 

measures are selected for assessing the performance of the side-sensitive synthetic-  

chart which is the proposed control chart in this thesis. 
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CHAPTER 3: METHODOLOGY 

3.0 Introduction 

This chapter commences with a thorough explanation of the sample coefficient of 

variation’s distributional characteristics follows by a detailed explanation of the 

characteristics of the competing control charts, the Shewhart-  and EWMA-
2  charts. It 

then delves into an exhaustive analysis of the side-sensitive synthetic-  chart. This is 

followed by a discussion on how Markov chains are used to assess the ARL, SDRL and 

EARL. The chapter then details the process of creating the designs based on ARL and 

EARL for the side-sensitive synthetic-  chart. Since the distribution of run length may 

be skewed, particularly for the in-control and out-of-control run lengths with small shift 

sizes, relying solely on ARL and SDRL to assess the chart performance may be 

insufficient. As a result, it is to investigate the run length distribution’s percentiles. This 

chapter presents the methodology to determine the side-sensitive synthetic-  chart’s run 

length percentiles. Finally, the chapter concludes with the design of the side-sensitive 

synthetic-  chart based on the MRL and EMRL. The procedure of simulation for 

validating the results obtained by the side-sensitive synthetic-  chart is also included in 

this chapter, after the description on the algorithms for each design. As a summary, a flow 

chart of the methodology for the side-sensitive synthetic-  chart is illustrated in Figure 

3.1 for a better view as well as to link the methodologies with the achievement of each 

research objective stated in Section 1.5. 
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Figure 3.1 Flow chart of the methodology of the side-sensitive synthetic-  chart  

Develop the operations of the side-sensitive synthetic-   chart and illustrate 

the required chart parameters 

Compute the optimal chart parameters, ARL1 and EARL, by implementing the 

algorithms developed on numerical examples with different input parameters, 

and analyze the results 

RO1 

Compute the percentiles and expected percentiles with optimal chart 

parameters from the ARL and EARL-based designs, and analyze the results. 
RO2 

Compute the optimal chart parameters, 
05l , MRL1, 95l , ( )05E l , EMRL and 

( )95E l , by implementing the algorithms developed on numerical examples 

with different input parameters, and analyze the results 

 

RO2 

Compare the ARL and EARL-based designs, with the MRL and EMRL-based 

designs 

RO2 

Implementation of the proposed chart on actual industrial data RO4 

Develop the formulae to compute the ARL, SDRL and EARL 

Develop the steps to determine the chart parameters that optimizes the 

ARL1, subject to constraints on the ARL0 

Develop the steps to determine the chart parameters that optimizes the 

EARL, subject to constraints on the ARL0 

 

Verify the results obtained through simulation 

Develop the formulae to compute the percentiles and expected percentiles 

of the run length 

Develop the steps to determine the chart parameters that optimizes the 

MRL1, subject to constraints on the MRL0 

 

Develop the steps to determine the chart parameters that optimizes the 

EMRL, subject to constraints on the MRL0 

 

Verify the results obtained through simulation 

 

Compare the performance of the ARL, EARL, MRL and EMRL-based 

designs of the proposed chart with existing charts in the literature. 
RO3 
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3.1 Sample Coefficient of Variation’s Distribution Properties 

Let X be a positive random variable that follows a normal distribution with mean,   

and variance, 2 . Suppose a sample of n identically distributed independent random 

variables are taken from X, and is defined as  1 2,  ,  ..., nX X X . The computation of the 

ˆ,  is shown below: 

 ˆ ,
S

X
 =  (3.1) 

where S represents the sample standard deviation and X  is the sample mean of n random 

variables taken from X,  1 2,  ,  ..., nX X X . The sample mean, X  and the sample standard 

deviation, S can be computed as follows: 
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 (3.3) 

where  1,  2,  3,...n  which is determined by the user. 

 

According to Castagliola et al. (2011), the computation of the cumulative distribution 

function (c.d.f) for the sample coefficient of variation, can be obtained as below: 

  ( )ˆ , 1 1, ,t

n n
F x n F n

x
 



 
= − − 

 
 

 (3.4) 

where   is the coefficient of variation and the c.d.f of the non-central t-distribution is 

represented by . 1,t

n
F n



 
− 

 
 

 with the degrees of freedom 1n −  and non-centrality 



  

47 

parameter 
n


. Regarding the inverse c.d.f of sample coefficient of variation, it is found 

by inverting the existing ( )ˆ ,F x n   as follows: 

 ( )1

ˆ

1

, ,

1 1,t

n
F n

n
F n

  




−

−

=
 
− − 

 

 (3.5) 

where 1 . 1,t

n
F n



−
 

− 
 
 

 is the inverse c.d.f of the non-central t-distribution with 1n −  

degrees of freedom and non-centrality parameter 
n


. The information on how the 

Equations (3.4) and (3.5) are being derived is demonstrated in the following paragraphs. 

 

 The distribution of 
ˆ

n


 is required in order to obtain Equations (3.4) and (3.5). 

Since ( )2~ ,  X N   , then 
2

~ ,  X N
n



 
 
 

 and 
( )

( )
2

2

2

1
~ 1

n S
n



−
− . With a few 

mathematical operations, 

ˆ

X
n n

n X
n

SS

 

 





 −  
+   

    = = 
 

 

              
( )

( )
2

2

ˆ

1
1

X n

n

n S
n







 −
+ 

 =
−

 −

. (3.6) 

 

By making use of the fact when 
Z

T
V

v

+
= , where ( )~ 0,  1Z N  and ( )2~V v , T will 

follow a non-central t-distribution with degrees of freedom v and non-centrality parameter 
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 , it can be observed from Equation (3.6) that 
ˆ

n


 follows a non-central t-distribution 

with degrees of freedom ( )1n −  and non-centrality parameter 
n


.  

 

 ( )ˆ ,F x n   in Equation (3.4) can be obtained as follows: 

( ) ( )ˆ
ˆ,F x n P x  =   

                        
ˆ

n n
P

x

 
=   

 
 

                                   1 1,t

n n
F n

x 

 
= − − 



, 

as displayed in Equation (3.4), since 
ˆ

n


 will follow a non-central t-distribution with 

degrees of freedom ( )1n −  and non-centrality parameter 
n


. In order to obtain 

( )1

ˆ ,F n  −
, define 

 ( )1

ˆ ,F n y  − =  (3.7) 

where  is the quantile of ̂  obtained from the c.d.f of ̂ . 

By referring to Equation (3.7), 

 ( )ˆ , .F y n  =  (3.8) 

By replacing Equation (3.4) into Equation (3.8), 

 1, 1t

n n
F n

y




 
− = − 

 
 

. (3.9) 

From Equation (3.9), 
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1 1 1,t

n n
F n

y




−
 

= − − 
 
 

 

 
1 1 1,t

n
y

n
F n



−

=
 
− − 

 
 

. (3.10) 

It is proven that ( )1

ˆ

1

,

1 1,t

n
F n

n
F n

  




−

−

=
 
− − 

 
 

 as demonstrated in Equation (3.5) 

since ( )1

ˆ ,y F n  −= . 

 

3.2 Shewhart-  and EWMA-
2  Charts 

The Shewhart-  chart is the first control chart to monitor the coefficient of variation 

which was proposed by Kang et al. (2007). The present sample coefficient of variation is 

used by the chart to determine whether the process is in-control or out-of-control. This 

chart consists of three lines, the CL, UCL and LCL. Kang et al. (2007) recommended to 

place the CL at the in-control target value of the coefficient of variation whereas the UCL 

and LCL are fixed using probability limits. The limits of the Shewhart-  chart are 

calculated as 

 
1 0

ˆ 0,
2

LCL F n


−  

=  
 

 (3.11) 

and 

 
1 0

ˆ 01 ,
2

UCL F n


−  

= − 
 

 (3.12) 

where ( )1

ˆ .F

−  is defined in Equation (3.5), 0 denotes the type I error rate set by the user 

and 0  is the in-control coefficient of variation. 
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Castagliola et al. (2011) introduced the EWMA-
2  charts which is one of the 

commonly used control charts to monitor the coefficient of variation. The EWMA-
2  

chart monitors the chart statistics kZ , defined as 

 ( ) 2

1
ˆ1k k kZ Z −= − +   (3.13)  

with k representing time that is defined as  1,  2,  3,...k  and   denotes the smoothing 

constant which is determined by the user. The control limits are calculated as 

 ( ) ( )2 2

0 0
ˆ ˆ

2
LCL K


   


= −

−
 (3.14) 

 ( ) ( )2 2

0 0
ˆ ˆ

2
UCL K


   


= +

−
 (3.15) 

where K denotes the control limit coefficient which is determined by the user. Since there 

is no closed form for ( )2

0
ˆ   and ( )2

0
ˆ  , the following approximations proposed by 

Breunig (2001) will be used, i.e. 

 ( )
2

2 2 0
0 0

3
ˆ 1

n


  

 
= − 

 
 (3.16) 

and 

  ( )
( )

( )( )
2

2
2 4 2 2 20

0 0 0 0 02

752 4 20
ˆ ˆ

1 1n n n n n


      

  
= + + + − −    − −  

. (3.17) 

 

3.3 Side-sensitive Synthetic-  Chart 

The synthetic-  chart without side sensitivity currently in use is designed to monitor 

a process by counting the quantity of conforming samples between two consecutive non-

conforming samples. The quantity of conforming samples which includes the ending non-

conforming sample, is referred to as the CRL. The synthetic-  chart will generate an out-
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of-control signal when the CRL is less than and equal to the threshold, L which is 

predetermined by the practitioner. 

 

The LCL and UCL of the synthetic-  chart are calculated as 

 ( ) ( )0 0
ˆ ˆ ,LCL K   = −  (3.18) 

and 

 ( ) ( )0 0
ˆ ˆ ,UCL K   = +  (3.19) 

where K denotes the control limit coefficient and K  , while ( )0
ˆ   and ( )0

ˆ   are 

the in-control mean and standard deviation of the sample coefficient of variation, 

respectively. Although ( )0
ˆ   and ( )0

ˆ   have no closed forms, the following 

approximations by Reh and Scheffler (1996) will be used, i.e. 

( )
2 4 2

2 4 60 0 0
0 0 0 0 02 3

3 71 1 1 7 1 19
ˆ 1 3 15 ,

4 4 32 4 32 128n n n

  
     

     
 + − + − − + − − −     

      
 (3.20) 

and 

( )
4 2

2 4 2 6 0 0
0 0 0 0 0 02 3

7 31 1 1 3 1 3
ˆ 8 69 .

2 8 2 4 16n n n

 
      

    
 + + + + + + + +    

     
 (3.21) 

 

For the existing synthetic-  chart without the feature of side sensitivity, a sample is 

classified as non-conforming when the sample coefficient of variation falls either below 

the LCL or above the UCL. The synthetic-  chart is comprised of two sub-charts: the 

coefficient of variation sub-chart and the CRL sub-chart. The coefficient of variation sub-

chart is constructed in a similar manner to the Shewhart-  chart, where the sample 

coefficient of variations are plotted against the LCL and UCL. Conversely, the CRL sub-

chart calculates the quantity of conforming samples between consecutive non-conforming 

samples.  
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An illustration of the CRL sub-chart of the existing synthetic-  chart is shown in 

Figure 3.2. The figure reveals that the 3rd and 7th samples are non-conforming samples 

because the sample coefficient of variation of these samples appear in the non-conforming 

region, where the 3rd sample appears in the region above the UCL and the 7th sample 

appears in the region below the LCL. The remaining samples are classified as conforming 

samples. CRL1, the quantity of conforming samples until the existence of the first non-

conforming sample occurs, is three, in order to give the chart a headstart. CRL2, on the 

other hand, captures the quantity of conforming samples between the 4th and 7th samples 

since the first non-conforming sample appears in the region above the UCL, whereas the 

second non-conforming sample is found in the region below the LCL. It is worth nothing 

that a synthetic-  chart without the feature of side sensitivity considers both 

aforementioned samples as non-conforming. 

 

 

Figure 3.2 CRL sub-chart of the existing synthetic-  chart 
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The side-sensitive synthetic-  chart which is proposed in this thesis has a different 

approach compared to the non-side-sensitive version. In the side-sensitive synthetic-  

chart, the second sample is classified as non-conforming only if it appears in the region 

below the LCL (above the UCL), just like the first non-conforming sample which appears 

in the region below the LCL (above the UCL). Otherwise, the second sample is treated as 

a conforming sample if it falls within the control limits (between the UCL and LCL) or 

above the UCL (below the LCL). The importance of defining non-conforming samples as 

samples that fall on the same side of the non-conforming region is it allows for more 

stringent control limits to be adopted without increasing the number of false alarms, 

compared to the existing synthetic-  chart where less stringent control limits needs to be 

adopted to control the number of false alarms, as false alarms from both sides of the non-

conforming region needs to be controlled. As a result of adopting more stringent control 

limits, the side-sensitive synthetic-  chart will require less samples to detect a shift. 

Furthermore, since processes usually experience either positive or negative shifts in 0 , 

and not both, successive non-conforming samples will either fall above the UCL or below 

the LCL, hence setting this requirement will not make process monitoring more 

restrictive. 

 

Figure 3.3 illustrates the CRL sub-chart of the side-sensitive synthetic-  chart. Like 

the existing synthetic-  chart, CRL1 calculates the quantity of conforming samples until 

the occurrence of the first non-conforming sample, which means CRL1 is two in Figure 

3.3. For the calculation of CRL2, only samples that appear in the region above the UCL 

are classified as non-conforming because the 2nd sample occurs in the region which is 

above the UCL. Therefore, the 5th sample is classified as a conforming sample despite 

appearing in the region below the LCL, whereas the 7th sample is classified as a non-
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conforming sample as it occurs in the same region as the 2nd sample, which is the region 

above the UCL. Thus, CRL2 is five, as demonstrated in Figure 3.3.  

 

 

Figure 3.3 CRL sub-chart of the side-sensitive synthetic-  chart 

 

Similarly, when the first non-conforming sample appears in the region which is below 

the LCL, the second sample must occur in the region below the LCL as well in order to 

be classified as non-conforming, otherwise this sample is deemed as a conforming 

sample. Therefore, following the same approach as illustrated in Figure 3.3, CRL 

calculates the quantity of samples between consecutive samples that appear in the region 

which is below the LCL. 
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3.4 Performance Measures 

A number of performance measures are chosen for evaluating the performance of the 

proposed side-sensitive synthetic-  chart. The in-control ARL (ARL0) measures the 

average quantity of samples required by the chart to produce a false alarm whereas the 

out-of-control ARL (ARL1) measures the average quantity of samples required by the chart 

to produce an actual out-of-control signal. For out-of-control SDRL (SDRL1), it measures 

the variability of the quantity of samples required to signal an out-of-control condition. If 

the proposed chart’s run length distribution is skewed, the MRL performance of the chart 

will be studied as the ARL performance alone does not show the true performance of the 

proposed chart (Gan, 1993). The in-control MRL (MRL0) measures the 50th percentile of 

the quantity of samples required to produce a false alarm while the out-of-control MRL 

(MRL1) measures the 50th percentile of the quantity of samples required to give an actual 

out-of-control signal. 

 

Shift size is required to be specified as an exact value for ARL, SDRL and MRL. 

However, it is not possible to specify the shift size in most practical scenarios due to a 

lack of data particularly for the out-of-control data since the assignable cause(s) are 

removed immediately once they are detected. Therefore, this thesis is considering another 

two performance criteria which are the EARL and EMRL. EARL1 measures the expected 

average quantity of samples required to produce the out-of-control signal whereas EMRL1 

measures the 50th expected percentile of the quantity of samples required to spot the out-

of-control condition. Hence, in this thesis, the proposed side-sensitive synthetic-  chart’s 

performance will be assessed based on the ARL, SDRL, MRL, EARL and EMRL as well 

as the run length distribution’s percentiles. 
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3.5 Markov Chain Approach 

For evaluating the performance of the proposed side-sensitive synthetic-  chart, 

Markov chains are adopted. In this approach, 0 denotes a sample that appears in the 

conforming region which is the region between the LCL and UCL, 1 denotes a sample 

that appears in the region below the LCL and 1 denotes a sample that appears in the region 

above the UCL. The Markov chain’s states are defined using a string of L samples as 

below: 

 

State 1  : 100..0 

State 2  : 010..0 

State 3  : 001..0 

 

State L  : 000..1 

State L + 1 : 00..00 

State L + 2 : 0..001 

State L + 3 : 0..010 

 

State 2L : 010..0 

State 2L + 1 : 100..0 

State 2L + 2 : Signalling state (for instance, the states where the chart generates an out-

of-control condition)  

 

Based on the defined states described in the previous paragraph, the formation of a 

transition probability matrix with dimension ( ) ( )2 2 2 2L L+  +  is shown below: 
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                                     1  2   1    1 2  3 4 2 1 2 2

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

0 0 0

1 0 0 0
                     

1 2 0 0 0

3 0 0 0

2 0 0 0

2 1 0 0 0

2 2 0 0 0 0

T

L L L L L L L L

A

A

A

L A

L B

L B

L B

L B

L B

L

−

−

−

−

−

− + + + + + +

+ 
= = 

+ 

+

+

+

Q r
P

0

0 0 0

0 0 0

0 0

0 0 0 0

0 0 0 0
                                          ,

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 1

B B

B B

B B

B B

A B

A B

A B

A B

A B

+ −

+ −

+ −

+ −

+

+

+

+

+

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(3.22) 

 

where 

( )ˆA P LCL UCL=    

   ( ) ( )ˆ ˆ, ,F UCL n F LCL n  = −  

   1, 1,t t

n n n n
F n F n

LCL UCL 

   
= − − −   

   
   

     (3.23) 

 

( )ˆB P UCL+ =   

 ( )ˆ1 ,F UCL n = −  

 1,t

n n
F n

UCL 

 
= − 

 
 

        (3.24) 

 

( )ˆB P LCL− =   

 ( )ˆ ,F LCL n =  

 1 1,t

n n
F n

LCL 

 
= − − 

 
 

        (3.25) 
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It is worth noting that the ( )ˆ .F  in Equations (3.23) to (3.25) is well-defined in Equation 

(3.4). 

 

In general, the transition probability matrix, P is defined as shown below: 

1. Every entry of column L + 2 contains B+  for rows 1 to L + 1. 

2. Every entry of column L contains B−  for rows L + 1 to 2L + 1.  

3. Every entry of column 2L + 2 contains B−  for rows 1 to L.  

4. Every entry of column 2L + 2 contains B+  for rows L + 2 to 2L + 1.  

5. Every entry below the diagonal contains A for rows 1 to L – 1. 

6. Every entry of rows 1, L + 1 and 2L + 1 contains A for column L + 1. 

7. Every entry above the diagonal contains A for rows L + 3 to 2L + 1. 

8. The entry of column 2L + 2 and row 2L + 2 is 1. 

9. The remaining entries are zero. 

 

The absorbing state of 2L + 2 in P is considered an out-of-control state. In order to 

obtain a matrix Q of transient probabilities, the last row and column in P can be removed. 

The computation of the ARL and SDRL involves the application of factorial moments for 

the quantity of steps needed for the process to reach the absorbing state. The factorial 

moments can be obtained from the works of Neuts (1984) or Latouche and Ramaswami 

(1999) to compute the ARL and SDRL as follows: 

 ( )
1

,TARL
−

= −q I Q 1   (3.26) 

and 

 ( )
2 22 ,TSDRL ARL ARL
−

= − − +q I Q Q1  (3.27) 

where q represents the ( )2 1   1L +   vector of initial probabilities associated with the 

transient states while I is an identity matrix, and 1 is a vector of ones. For this thesis, the 
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condition of zero-state is assumed, with q having a value of one for the ( )
th

2L+  element 

and zeros for the remaining elements. The ARL1 and SDRL1 can be obtained by 

substituting 0 =  into Equations (3.26) and (3.27) to yield the out-of-control Q. 

Similarly, the ARL0 and SDRL0 can be computed by substituting 0 =  into Equations 

(3.26) and (3.27) to yield the in-control Q. The derivation of Equations (3.26) and (3.27) 

is provided in the following paragraphs. 

 

The probability mass function (p.m.f) for the quantity of transitions until the transition 

probability matrix P arrives at the absorbing state needs to be derived in order to obtain 

the ARL and SDRL. The reason is each transition denotes a sample being taken, hence the 

quantity of transitions until arriving at the absorbing state shows the quantity of samples 

taken until it arrives at the out-of-control state. The time to absorption for P follows a 

distribution of discrete phase-type with the parameters (Q, q). 

 

By denoting ( ) ( )Prob
n

i np X i= =  as the probability that the Markov chain will be in 

State i after n transitions, with i being transient, these probabilities are then being 

collected in a vector 
( ) ( ) ( ) ( )( )0 1 2 1

n n n n

Lp p p +=p . For a discrete time Markov chain, 

it is known that 

 
( ) ( )1n n T n−
= =p p Q q Q . (3.28) 

 

The event that absorption appears at time x can be partitioned using the union of the 

events that the chain is in state ( )0,  1, , 2 1i i L= +  at time ( )1x − , and that absorption 

occurs at i at time x. The probability of the earlier event is denoted as 
( )1x

ip
−

 whereby the 
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probability of the second event is denoted as ir . Therefore, the p.m.f can be defined as 

follows: 

 ( ) ( ) ( ) ( )
2 1

1 1 1

0

L
x x xT

i i

i

f x p r
+

− − −

=

= = = p r q Q r , for 0x  . (3.29)  

 

By referring to the p.m.f in Equation (3.29), the generating function of X can be found 

as follows: 

( ) ( )
0

x

x

H z z f x


=

=  

                   ( )1

2 2

1

xx T

L

x

q z


−

+

=

= + q Q r , (3.30) 

where 2 2Lq +  denotes the initial probability for the Markov chain to begin in the absorbing 

state, i.e. the out-of-control state. From the geometric series 
0

1

1

i

i

x
x



=

=
−

 , Equation (3.30) 

can be deduced from the following equation: 

 ( ) ( )
11

2 2 2 2

1

xx T T

L L

x

q z q z z


−−

+ +

=

+ = + − q Q r q I Q r . (3.31) 

 

Next, the factorial moments can be found by the generating function’s consecutive 

differentiation as follow: 

( ) ( )( )
( )

1

1 1
H z

k

z

d k
E X X X k

dz
=

 − − − =   

                                                            ( ) ( )1
!

k kTk
− −

= −q I Q Q 1 . (3.32)  

From Equation (3.32), 
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   ( )
1TE X
−

= −q I Q 1 . (3.33) 

 ( ) ( )
2

1 2 TE X X
−

− = −   q I Q Q1 . (3.34) 

Since ARL and SDRL are equal to  E X  and  Var X , respectively, 

 ARL E X=  

             ( )
1T −

= −q I Q 1 , (3.35) 

whereas 

( )  ( )  
2

1SDRL E X X E X E X= − − +    

 ( )
2 22 1T ARL ARL
−

= − − +q I Q Q , (3.36) 

as described in Equations (3.26) and (3.27). 

 

To compute the ARL, knowing the exact value of shift size is necessary. However, 

estimating the exact value for shift size can be challenging in practical situations, 

according to Castagliola et al. (2011). To address this issue, this thesis proposes using the 

EARL criterion as an alternative performance measure when the exact value of shift size 

is unknown. When computing the EARL, the shift size can be estimated as a possible 

range of values ( )min max,    , rather than an exact value. 

 

The EARL can be calculated as shown below: 

 ( ) ( )
max

min

0 1 2 1 2, , , , , , ,  ds LEARL f ARL n n W W K K







   =   (3.37) 

where ( )f   represents the probability density function (p.d.f) of shift size. Ideally, the 

exact distribution of ( )f   is known to quality practitioners, but in reality, it is often 

problematic to obtain because of the lack of historical data. Besides, the distribution of 
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shift size is case-dependent and can change over time. In this thesis, a uniform distribution 

of ( )f   over ( )min max,     is assumed, which is suggested by Sparks (2003). This is 

because it is generally assumed explicitly (Domangue and Patch, 1991; Sparks, 2003) or 

implicitly (Reynolds Jr and Stoumbos, 2004) that all process shifts appear with equal 

probability. Siddall (1983) has also recommended using a uniform distribution if there is 

complete uncertainty about a random variable except for its bounds. The integral in 

Equation (3.37) cannot be solved analytically, so this thesis employs the Gauss-Legendre 

quadrature to solve it. Kovvali (2011) provides a detailed explanation of the Gauss-

Legendre quadrature. 

 

3.6 ARL and EARL-based Designs 

Moving forward, let’s examine how the proposed side-sensitive synthetic-  chart’s 

optimal chart parameters, including the optimal L, LCL and UCL, can be determined. This 

thesis considers two criteria for this purpose. Initially, the chart parameters are selected 

to minimize the ARL1. Nevertheless, this criterion needs the exact value of shift size to be 

identified, which may not always be available. Therefore, the chart parameters are 

selected to minimize the EARL in the second approach. In both approaches, the ARL0 

constraint must be met. 

 

For the first approach, the procedure to obtain the optimal chart parameters is defined 

as follows: 

1. Specify the values of n, 0 , ARL0 and  . 

2. Set L = 1. 

3. By using mathematical approaches, find K which provides ARL0 =  , where   

is decided by the practitioner, followed by the computation of the LCL and UCL 

from Equations (3.18) and (3.19), respectively.  
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4. Compute the ARL1 from Equation (3.26) based on the obtained LCL and UCL 

in Step 3.  

5. Increase L by 1. 

6. Repeat Steps 3 to 5 until the ARL1 for L + 1 is greater than the ARL1 for L. This 

combination of (L, LCL, UCL) will represent the optimal chart parameters for 

the side-sensitive synthetic-  chart. 

 

The procedure to obtain the optimal chart parameters (L, LCL, UCL) as described 

above can be summarized as 

 ( )
( )

( )* * *

1 0
, ,

, , arg min , , , , .
L LCL UCL

L LCL UCL ARL L LCL UCL n =  (3.38) 

subject to ( )0 0, , , .ARL L LCL UCL n  =  

 

In order to validate the performance of the side-sensitive synthetic-  chart with the 

optimal chart parameters ( )* * *, ,L LCL UCL , 10,000 simulation trials will be performed, 

where each trial consists of the following procedures: 

1. Initialize m = 1. 

2. Initialize i = 1 

3. Generate n values of X from a normal distribution with mean   and standard 

deviation  , such that 0





=  if the ARL0 is being validated, and 1





=  if 

the ARL1 is being validated.   

4. Compute the X  and S, and compute the ̂  as 
S

X
. 

5. If ˆLCL UCL  , add one to m and i, and return to Step 3. Else, proceed to 

Step 6. 
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6. If the current ̂  is the first sample that falls above the UCL or below the LCL, 

then: 

i. if i L , the run length is equals to m and the loop for this trial ends, 

ii. if i L , add one to m and return to Step 2. 

Else, if the current ̂  is not the first sample that falls above the UCL or below 

the LCL, then proceed to Step 7. 

7. If the most recent non-conforming sample falls above the UCL, then: 

i. if ˆ UCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

ii. if ˆ UCL   and i L , add one to m and return to Step 2, 

iii. if ˆ LCL  , add one to m and i, and return to Step 3. 

Conversely, if the most recent non-conforming sample falls below the LCL, 

i. if ˆ UCL  , add one to m and i, and return to Step 3, 

ii. if ˆ LCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

iii. if  ˆ LCL   and i L , add one to m and return to Step 2. 

 

The ARL is calculated by averaging the run lengths obtained for each trial whereas the 

SDRL is obtained by computing the standard deviation of the run lengths obtained from 

all trials. 

 

The optimal chart parameters based on the EARL criterion are found according to the 

procedure below:  

1. Specify the values of n and 0 . Instead of specifying the exact value of  , a 

possible range of values, the min  and max  are required to be specified.  
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2. Set L = 1. 

3. By using mathematical approaches, find K which provides ARL0 =  , where   

is decided by the practitioner, followed by the computation of the LCL and UCL 

from Equations (3.18) and (3.19), respectively. 

4. Compute the EARL1 from Equation (3.37) based on the obtained LCL and UCL 

in Step 3. 

5. Increase L by 1. 

6. Instead of finding the combination that minimizes the ARL1 value, the optimal 

(L, LCL, UCL) is the one that minimizes the value of EARL1.  

 

It is worth noting that all the steps described above are similar to the design based on 

ARL, except for the first, fourth and sixth steps. 

 

The procedure to obtain the optimal chart parameters (L, LCL, UCL) as described 

above can be summarized as 

 ( )
( )

( )** ** **

1 min max 0
, ,

, , arg min , , , , , .
L LCL UCL

L LCL UCL EARL L LCL UCL n  =  (3.39) 

subject to ( )0 0, , , .ARL L LCL UCL n  =  

 

In order to validate the performance of the side-sensitive synthetic-  chart with the 

optimal chart parameters ( )** ** **, ,L LCL UCL , 10,000 simulation trials will be performed, 

where each trial consists of the following procedures: 

1. Initialize m = 1. 

2. Initialize i = 1 
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3. Generate n values of X from a normal distribution with mean   and standard 

deviation  , such that 0





=  if the EARL0 is being validated, and 1





=  if 

the EARL1 is being validated. Shift size needs to be generated randomly from 

a uniform distribution between min and max , in order to obtain the 1 .   

4. Compute the X  and S, and compute the ̂  as 
S

X
. 

5. If ˆLCL UCL  , add one to m and i, and return to Step 3. Else, proceed to 

Step 6. 

6. If the current ̂  is the first sample that falls above the UCL or below the LCL, 

then: 

i. if i L , the run length is equals to m and the loop for this trial ends, 

ii. if i L , add one to m and return to Step 2. 

Else, if the current ̂  is not the first sample that falls above the UCL or below 

the LCL, then proceed to Step 7. 

7. If the most recent non-conforming sample falls above the UCL, then: 

i. if ˆ UCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

ii. if ˆ UCL   and i L , add one to m and return to Step 2, 

iii. if ˆ LCL  , add one to m and i, and return to Step 3. 

Conversely, if the most recent non-conforming sample falls below the LCL, 

i. if ˆ UCL  , add one to m and i, and return to Step 3, 

ii. if ˆ LCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

iii. if  ˆ LCL   and i L , add one to m and return to Step 2. 
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The EARL is calculated by averaging the run lengths obtained for each trial.  

 

However, there is another concern that should be taken into consideration. If the 

proposed side-sensitive synthetic-  chart’s distribution of run length in this thesis is 

found to be skewed, which may most likely show a skewness to the right especially for 

small shift size, then the ARL is not an appropriate performance measure for evaluation 

purposes. In such cases, the MRL will be a better performance measure as the skewness 

of the distribution of run length has minimal effects on MRL. Therefore, it is important to 

analyze the distribution of run length for the side-sensitive synthetic-  chart and 

implement both ARL and MRL as the performance measures. The next subsection 

describes how the distribution of the run length can be obtained. 

 

3.7 Run Length Distribution’s Percentiles 

To analyze the run length distribution’s percentiles for the side-sensitive synthetic-  

chart, it is necessary to determine the probability mass function (p.m.f) and c.d.f of the 

run length. These functions can be calculated as follows (Latouche and Ramaswami, 

1999): 

 ( ) ( ) ( )1 ,T l

RLf l P RL l −= = = q Q r  (3.40) 

and 

 ( ) ( ) ( )11 ,T l

RLF l P RL l −=  = −q Q 1  (3.41) 

where ( )1,  2, 3, ...l , q and 1 are well-defined in Equations (3.27) and (3.28), whereas 

Q and r are well-described in Section 3.3. 
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One way to determine the ( )
th

100  percentile of the distribution of run length for the 

side-sensitive synthetic-  chart is to find the values of l  in Equation (3.18) such that 

(Gan, 1993) 

 ( ) ( )1  and ,P RL l P RL l   −     (3.42) 

where 0 1  . For instance, the MRL can be derived from Equation (3.42) by setting 

0.5 = . When calculating the transition probabilities of Q through Equations (3.23) to 

(3.25), the in-control percentiles can be attained by fixing 0 =  while the out-of-control 

percentiles are attained by fixing 0 = , where   represents the shift size.  

 

To compute the run length’s percentiles when the value of shift size is uncertain, the 

run length distribution’s expected percentiles, ( )E l  are assessed. This is because the 

exact value of shift size may be unknown, and possibly will vary based on several 

stochastic models (Castagliola et al., 2011). The computation of ( )E l  requires shift size 

to be stated as a range of possible values, ( )min max,    , rather than a specific value. ( )E l  

can be calculated as shown below: 

 ( )
max

min

( ) ( ) ,E l f l d



  



  =   (3.43) 

where ( )f   is the p.d.f of shift size. One assumption made is that ( )f   follows a 

uniform distribution that is continuous over the interval ( )min max,    , as suggested by 

Castagliola et al. (2011). This thesis applies the Gauss-Legendre quadrature method for 

solving the integral in Equation (3.43). This method is explained in detail in Kovvali 

(2011). 
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3.8 MRL and EMRL-based Designs 

Since the implementation of the side-sensitive synthetic-  chart using the ARL and 

EARL may provide misleading results due to skewed run length distributions, thus, this 

subsection suggests an alternative approach that involves finding the optimal chart 

parameters that minimize the MRL1 and EMRL1, while meeting the constraints of the 

MRL0. 

 

In order to obtain the optimal chart parameters using the design based on MRL, the 

following algorithms are employed. 

1. Determine the values for 0 , n and  . 

2. Initialize L = 1. 

3. Solve Equation (3.41) for K by setting 0.5l =  and 1 = , followed by the 

computation of the LCL and UCL from Equations (3.18) and (3.19), 

respectively. This (LCL, UCL) combination will result in 0MRL = . 

4. 0.5l  that fulfills Equation (3.42) for the 0 , n and   determined in Step 1 is 

searched numerically based on the obtained (LCL, UCL) in Step 3. The 

1 0.5MRL l= . 

5. Increase L by 1. 

6. Repeat Steps 3 to 5 until the MRL1 for L + 1 is greater than the MRL1 for L. The 

optimal chart parameters for the side-sensitive synthetic-  chart that is designed 

based on MRL will be determined by this (L, LCL, UCL) combination. In case 

multiple (L, LCL, UCL) combinations result in the lowest MRL1, the 

combination with the minimum difference between the 5th and 95th percentiles 

of the out-of-control run length distribution, denoted by 0.05l  and 0.95l , 

respectively, will be selected as the optimal chart parameters. 
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The procedure to obtain the optimal chart parameters (L, LCL, UCL) as described 

above can be summarized as 

 ( )
( )

( )*** *** ***

1 0
, ,

, , arg min , , , , .
L LCL UCL

L LCL UCL MRL L LCL UCL n =  (3.44) 

subject to ( )0 0, , , .MRL L LCL UCL n  =  

 

In order to validate the performance of the side-sensitive synthetic-  chart with the 

optimal chart parameters ( )*** *** ***, ,L LCL UCL , 10,000 simulation trials will be 

performed, where each trial consists of the following procedures: 

1. Initialize m = 1. 

2. Initialize i = 1 

3. Generate n values of X from a normal distribution with mean   and standard 

deviation  , such that 0





=  if the ARL0 is being validated, and 1





=  if 

the ARL1 is being validated.   

4. Compute the X  and S, and compute the ̂  as 
S

X
. 

5. If ˆLCL UCL  , add one to m and i, and return to Step 3. Else, proceed to 

Step 6. 

6. If the current ̂  is the first sample that falls above the UCL or below the LCL, 

then: 

i. if i L , the run length is equals to m and the loop for this trial ends, 

ii. if i L , add one to m and return to Step 2. 

Else, if the current ̂  is not the first sample that falls above the UCL or below 

the LCL, then proceed to Step 7. 

7. If the most recent non-conforming sample falls above the UCL, then: 
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i. if ˆ UCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

ii. if ˆ UCL   and i L , add one to m and return to Step 2, 

iii. if ˆ LCL  , add one to m and i, and return to Step 3. 

Conversely, if the most recent non-conforming sample falls below the LCL, 

i. if ˆ UCL  , add one to m and i, and return to Step 3, 

ii. if ˆ LCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

iii. if  ˆ LCL   and i L , add one to m and return to Step 2. 

The MRL is obtained from the median of the run lengths obtained from all trials. 

 

The design based on MRL is only feasible when the value of shift size is known 

beforehand. To address situations where shift size cannot be specified, this thesis also 

investigates the design based on EMRL. In order to get the optimal chart parameters using 

the design based on EMRL, the following algorithms are employed.  

 

1. Determine the values for 0 , n, min  and max . 

2. Initialize L = 1. 

3. Solve Equation (3.42) for K by setting 0.5l =  and 1 = , followed by the 

computation of the LCL and UCL from Equations (3.18) and (3.19), 

respectively. This (LCL, UCL) combination will result in 0MRL = . 

4. Evaluate ( )0.5E l  from Equation (3.43) based on the obtained (LCL, UCL) in 

Step 3. The ( )0.5EMRL E l= . 

5. Increase L by 1. 
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6. Repeat Steps 3 to 5 until the EMRL for L + 1 is greater than the EMRL for L. 

This particular (L, LCL, UCL) combination is being selected as the best optimal 

chart parameters for the side-sensitive synthetic-  chart that is designed based 

on EMRL.     

 

It is worth noting that although many of the steps outlined in the previous paragraph 

for the design based on MRL remain the same, the first, fourth and sixth steps, are 

substituted with the steps described above. 

 

The procedure to obtain the optimal chart parameters (L, LCL, UCL) as described 

above can be summarized as 

  ( )
( )

( )**** **** ****

1 min max 0
, ,

, , arg min , , , , , .
L LCL UCL

L LCL UCL EMRL L LCL UCL n  =           (3.45) 

subject to ( )0 0, , , .MRL L LCL UCL n  =  

 

In order to validate the performance of the side-sensitive synthetic-  chart with the 

optimal chart parameters ( )**** **** ****, ,L LCL UCL , 10,000 simulation trials will be 

performed, where each trial consists of the following procedures: 

1. Initialize m = 1. 

2. Initialize i = 1 

3. Generate n values of X from a normal distribution with mean   and standard 

deviation  , such that 0





=  if the EARL0 is being validated, and 1





=  if 

the EARL1 is being validated. Shift size needs to be generated randomly from 

a uniform distribution between min and max , in order to obtain the 1 .   
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4. Compute the X  and S, and compute the ̂  as 
S

X
. 

5. If ˆLCL UCL  , add one to m and i, and return to Step 3. Else, proceed to 

Step 6. 

6. If the current ̂  is the first sample that falls above the UCL or below the LCL, 

then: 

i. if i L , the run length is equals to m and the loop for this trial ends, 

ii. if i L , add one to m and return to Step 2. 

Else, if the current ̂  is not the first sample that falls above the UCL or below 

the LCL, then proceed to Step 7. 

7. If the most recent non-conforming sample falls above the UCL, then: 

i. if ˆ UCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

ii. if ˆ UCL   and i L , add one to m and return to Step 2, 

iii. if ˆ LCL  , add one to m and i, and return to Step 3. 

Conversely, if the most recent non-conforming sample falls below the LCL, 

i. if ˆ UCL  , add one to m and i, and return to Step 3, 

ii. if ˆ LCL   and i L , the run length is equals to m and the loop for this 

trial ends, 

iii. if  ˆ LCL   and i L , add one to m and return to Step 2. 

The EMRL is obtained from the median of the run lengths obtained from all trials.  
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CHAPTER 4: ANALYSIS AND INTERPRETATION OF RESULT 

4.0 Introduction 

As described in the previous chapter, this chapter begins with the side-sensitive 

synthetic-  chart that is designed based on the ARL and EARL, where the optimal chart 

parameters (L, LCL, UCL) are obtained to minimize the ARL1 and EARL1. Next, the 

analysis of the run length distribution’s percentiles for the ARL and EARL-based designs 

is clearly shown in the second subsection. For a side-sensitive synthetic-  chart that is 

designed based on the MRL and EMRL, the optimal chart parameters (L, LCL, UCL) that 

minimizes the MRL1 and EMRL1 are obtained and elaborated in the following subsection 

after the analysis of the run length’s percentiles. The performance of the proposed side-

sensitive synthetic-  chart is then compared with other coefficient of variation charts in 

terms of the ARL, SDRL, EARL, MRL and EMRL. Lastly, the implementation of the 

proposed charts using a real industry example will be explained in the final subsection. 

 

4.1 ARL and EARL-based Designs 

This subsection presents the optimal values of L, LCL and UCL values for a given 

sample size,  5, 7, 10, 15, 20n , shift size, 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and in-control coefficient of variation, 

 0 0.05, 0.10, 0.15, 0.20  , as well as the corresponding ARL1, SDRL1 and EARL1. The 

ARL0 is set as 370.4 as it is commonly used in many studies (see, for example, Calzada 

and Scariano, 2013). Practitioners are welcomed to use the optimal chart parameters 

presented in this subsection for these values of sample size, shift size and in-control 

coefficient of variation, while for other values, the methodology described in Chapter 3 

can be used.  
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It is worth noting that these specific values of sample size, shift size and in-control 

coefficient of variation are being considered in this thesis since they are the frequently 

chosen values in numerous existing coefficient of variation charts, such as in Castagliola 

et al. (2013(b)), Zhang et al. (2014) and Muhammad et al. (2018), thereby facilitating 

comparison with other coefficient of variation charts. Furthermore, detecting a downward 

shift, 1  , is not so important as it shows a decrease in variability. Hence, this thesis 

focuses solely on detecting an upward shift, 1  , as it leads to a higher ratio of standard 

deviation to mean, i.e. a higher 



, indicating an increase in process variability caused 

by the presence of assignable cause(s).  

 

The optimal chart parameters, L, LCL, UCL, and the corresponding ARL1 and SDRL1 

values for  5, 7, 10, 15, 20n  and  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   are 

presented in Tables 4.1 and 4.2 for  0 0.05, 0.10   and  0 0.15, 0.20  , respectively. 

The results obtained were validated by simulation with 10,000 trials as described in 

Section 3.6.  
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Table 4.1 The optimal chart parameters (L, LCL, UCL) of the side-sensitive 

synthetic-  chart and the corresponding ARL1 and SDRL1 for  5, 7, 10, 15, 20n

,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and  0 0.05, 0.10   

 0 0.05 =  
0 0.10 =  

L LCL UCL ARL1 SDRL1 L LCL UCL ARL1 SDRL1 
  n = 5 

1.1 42 0.0017 0.0924 64.74 84.69 42 0.0021 0.1863 65.20 85.30 

1.2 23 0.0039 0.0902 21.35 27.11 23 0.0067 0.1817 21.58 27.43 

1.3 15 0.0055 0.0885 10.18 12.25 15 0.0100 0.1784 10.31 12.42 

1.4 11 0.0067 0.0873 6.07 6.83 11 0.0126 0.1758 6.15 6.94 

1.5 8 0.0080 0.0860 4.18 4.44 8 0.0152 0.1732 4.23 4.52 

1.6 7 0.0086 0.0855 3.16 3.09 7 0.0163 0.1721 3.20 3.15 

1.7 6 0.0092 0.0849 2.56 2.32 6 0.0176 0.1708 2.59 2.36 

1.8 5 0.0099 0.0841 2.17 1.85 5 0.0191 0.1692 2.20 1.89 

1.9 5 0.0099 0.0841 1.91 1.47 5 0.0191 0.1692 1.93 1.50 

2.0 4 0.0109 0.0832 1.72 1.27 4 0.0210 0.1674 1.74 1.30 
  n = 7 

1.1 37 0.0116 0.0843 52.13 67.97 36 0.0225 0.1696 52.56 68.58 

1.2 19 0.0136 0.0824 15.75 19.66 19 0.0264 0.1658 15.93 19.92 

1.3 12 0.0150 0.0810 7.30 8.47 12 0.0292 0.1629 7.39 8.60 

1.4 9 0.0158 0.0801 4.34 4.58 9 0.0310 0.1611 4.40 4.66 

1.5 7 0.0166 0.0794 3.02 2.89 7 0.0326 0.1595 3.06 2.95 

1.6 5 0.0176 0.0783 2.33 2.08 5 0.0347 0.1574 2.36 2.12 

1.7 5 0.0176 0.0783 1.93 1.49 5 0.0347 0.1574 1.95 1.53 

1.8 4 0.0183 0.0776 1.67 1.19 4 0.0362 0.1560 1.69 1.22 

1.9 4 0.0183 0.0776 1.50 0.94 4 0.0362 0.1560 1.52 0.97 

2.0 3 0.0192 0.0767 1.38 0.82 3 0.0380 0.1542 1.29 0.85 
  n = 10 

1.1 35 0.0193 0.0780 41.27 53.44 35 0.0379 0.1568 51.55 53.83 

1.2 16 0.0210 0.0762 11.43 13.91 16 0.0415 0.1532 11.56 14.08 

1.3 10 0.0221 0.0752 5.19 5.68 10 0.0438 0.1509 5.26 5.77 

1.4 7 0.0230 0.0743 3.12 3.02 7 0.0455 0.1492 3.16 3.08 

1.5 5 0.0238 0.0735 2.22 1.91 5 0.0472 0.1476 2.25 1.96 

1.6 4 0.0243 0.0730 1.76 1.33 4 0.0483 0.1464 1.78 1.36 

1.7 4 0.0243 0.0730 1.50 0.94 4 0.0483 0.1464 1.52 0.97 

1.8 3 0.0250 0.0723 1.34 0.75 3 0.0497 0.1450 1.35 0.77 

1.9 3 0.0250 0.0723 1.24 0.58 3 0.0497 0.1450 1.25 0.60 

2.0 3 0.0250 0.0723 1.17 0.47 3 0.0497 0.1450 1.18 0.48 
  n = 15 

1.1 31 0.0259 0.0724 31.15 39.93 31 0.0513 0.1453 31.33 40.17 

1.2 13 0.0274 0.0709 7.84 9.14 13 0.0544 0.1422 7.93 9.27 

1.3 7 0.0285 0.0697 3.53 3.61 7 0.0567 0.1399 1.65 1.16 

1.4 5 0.0286 0.0696 2.19 1.87 5 0.0580 0.1386 2.21 1.91 

1.5 4 0.0296 0.0687 1.63 1.13 4 0.0588 0.1378 1.65 1.16 

1.6 3 0.0301 0.0681 1.35 0.78 3 0.0600 0.1366 1.37 0.80 

1.7 3 0.0301 0.0681 1.21 0.54 3 0.0600 0.1366 1.22 0.56 

1.8 2 0.0309 0.0673 1.13 0.44 2 0.0616 0.1350 1.14 0.46 

1.9 2 0.0309 0.0673 1.08 0.32 2 0.0616 0.1350 1.08 0.34 

2.0 2 0.0309 0.0673 1.05 0.24 2 0.0616 0.1350 1.05 0.25 
  n = 20 

1.1 27 0.0296 0.0691 24.98 31.76 27 0.0589 0.1386 25.14 31.98 

1.2 10 0.0311 0.0676 5.92 6.72 10 0.0619 0.1356 6.00 6.82 

1.3 6 0.0319 0.0668 2.70 2.52 6 0.0635 0.1340 2.74 2.58 

1.4 4 0.0325 0.0662 1.74 1.30 4 0.0648 0.1327 1.76 1.33 

1.5 3 0.0330 0.0657 1.36 0.79 3 0.0658 0.1317 1.37 0.81 

1.6 3 0.0330 0.0657 1.19 0.50 3 0.0658 0.1317 1.19 0.51 

1.7 2 0.0337 0.0650 1.10 0.37 2 0.0672 0.1303 1.10 0.38 

1.8 2 0.0337 0.0650 1.05 0.25 2 0.0672 0.1303 1.05 0.26 

1.9 2 0.0337 0.0650 1.03 0.17 2 0.0672 0.1303 1.03 0.18 

2.0 2 0.0337 0.0650 1.01 0.12 2 0.0672 0.1303 1.02 0.13 



  

77 

Table 4.2 The optimal chart parameters (L, LCL, UCL) of the side-sensitive 

synthetic-  chart and the corresponding ARL1 and SDRL1 for  5, 7, 10, 15, 20n

,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and  0 0.15, 0.20   

 0 0.15 =  
0 0.20 =  

L LCL UCL ARL1 SDRL1 L LCL UCL ARL1 SDRL1 
  n = 5 

1.1 42 0.0042 0.2832 65.99 86.34 42 0.0059 0.3850 67.12 87.83 

1.2 23 0.0072 0.2761 21.97 37.96 24 0.0035 0.3756 22.54 28.67 

1.3 15 0.0125 0.2708 10.52 12.73 15 0.0118 0.3674 10.84 13.17 

1.4 11 0.0165 0.2669 6.29 7.14 11 0.0173 0.3618 6.48 7.42 

1.5 8 0.0206 0.2627 4.33 4.65 9 0.0210 0.3581 4.47 4.75 

1.6 7 0.0224 0.2610 3.28 3.25 7 0.0257 0.3534 3.38 3.40 

1.7 6 0.0244 0.2589 2.65 2.45 6 0.0286 0.3505 2.73 2.56 

1.8 5 0.0268 0.2565 2.25 1.96 5 0.0320 0.3471 2.32 2.06 

1.9 5 0.0268 0.2565 1.97 1.56 5 0.0320 0.3471 2.03 1.64 

2.0 4 0.0298 0.2535 1.78 1.36 4 0.0363 0.3428 1.83 1.43 
  n = 7 

1.1 36 0.0316 0.2572 53.33 69.62 36 0.0377 0.3483 54.48 71.15 

1.2 19 0.0376 0.2512 16.26 20.37 19 0.0463 0.3397 16.74 21.05 

1.3 12 0.0421 0.2467 7.56 8.83 12 0.0526 0.3334 7.80 9.18 

1.4 9 0.0449 0.2439 4.50 4.80 9 0.0567 0.3293 4.65 5.02 

1.5 7 0.0474 0.2414 3.13 3.05 7 0.0602 0.3258 3.24 3.19 

1.6 5 0.0507 0.2380 2.41 2.20 6 0.0624 0.3236 2.49 2.22 

1.7 5 0.0507 0.2380 1.99 1.59 5 0.0650 0.3210 2.05 1.67 

1.8 4 0.0530 0.2358 1.72 1.27 4 0.0682 0.3178 1.77 1.35 

1.9 4 0.0530 0.2358 1.54 1.01 4 0.0682 0.3178 1.59 1.07 

2.0 3 0.0559 0.2329 1.42 0.89 3 0.0722 0.3137 1.46 0.95 
  n = 10 

1.1 34 0.0555 0.2370 42.08 54.60 33 0.0711 0.3195 42.94 55.81 

1.2 16 0.0609 0.2315 11.78 14.40 16 0.0786 0.3120 12.13 14.88 

1.3 10 0.0645 0.2280 5.37 5.94 10 0.0835 0.3071 5.54 6.18 

1.4 7 0.0672 0.2253 3.23 3.18 7 0.0874 0.3032 3.33 3.33 

1.5 5 0.0697 0.2227 2.30 2.03 5 0.0910 0.2996 2.37 2.13 

1.6 4 0.0715 0.2210 1.82 1.41 4 0.0935 0.2972 1.87 1.49 

1.7 4 0.0715 0.2210 1.54 1.01 4 0.0935 0.2972 1.59 1.07 

1.8 3 0.0737 0.2188 1.37 0.81 3 0.0966 0.2941 1.41 0.87 

1.9 3 0.0737 0.2188 1.27 0.63 3 0.0966 0.2941 1.29 0.68 

2.0 3 0.0737 0.2188 1.19 0.51 3 0.0866 0.2941 1.22 0.55 
  n = 15 

1.1 30 0.0760 0.2191 31.67 40.71 30 0.0992 0.2948 32.24 41.49 

1.2 13 0.0806 0.2145 8.09 9.49 13 0.1057 0.2883 8.32 9.82 

1.3 8 0.0842 0.2109 3.66 3.80 7 0.1107 0.2833 3.78 3.97 

1.4 5 0.0862 0.2089 2.26 1.98 5 0.1135 0.2805 2.34 2.08 

1.5 4 0.0875 0.2076 1.68 1.21 4 0.1153 0.2787 1.73 1.28 

1.6 3 0.0893 0.2059 1.39 0.84 3 0.1177 0.2763 1.43 0.90 

1.7 3 0.0893 0.2059 1.24 0.59 3 0.1177 0.2763 1.26 0.63 

1.8 2 0.0918 0.2034 1.15 0.49 3 0.1177 0.2763 1.17 0.46 

1.9 2 0.0918 0.2034 1.09 0.36 2 0.1212 0.2728 1.11 0.39 

2.0 2 0.0918 0.2034 1.06 0.27 2 0.1212 0.2728 1.07 0.30 
  n = 20 

1.1 27 0.0875 0.2090 25.43 32.38 27 0.1149 0.2806 25.89 33.02 

1.2 10 0.0921 0.2043 6.13 7.01 11 0.1208 0.2748 6.31 7.18 

1.3 6 0.0946 0.2018 2.80 2.67 6 0.1249 0.2707 2.89 2.80 

1.4 4 0.0966 0.1998 1.80 1.39 4 0.1277 0.2679 1.85 1.47 

1.5 3 0.0981 0.1983 1.40 0.85 3 0.1297 0.2659 1.43 0.90 

1.6 3 0.0981 0.1983 1.21 0.54 3 0.1297 0.2659 1.23 0.58 

1.7 2 0.1002 0.1962 1.11 0.41 2 0.1326 0.2629 1.13 0.44 

1.8 2 0.1002 0.1962 1.06 0.28 2 0.1326 0.2629 1.07 0.31 

1.9 2 0.1002 0.1962 1.03 0.20 2 0.1326 0.2629 1.04 0.22 

2.0 2 0.1002 0.1962 1.02 0.15 2 0.1326 0.2629 1.02 0.16 
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Tables 4.1 and 4.2 highlight a significant reduction in both the ARL1 and SDRL1 values 

as the sample size increases. For instance, in Table 4.1, when 5n = , 1.1 =  and 

0 0.05, =  the ARL1 and SDRL1 values are 64.74 and 84.69, whereas, for 20n = with the 

same values of shift size and in-control coefficient of variation, the corresponding ARL1 

and SDRL1 values are 24.98 and 31.76, respectively. Thus, similar to other control charts, 

when the sample size increases, it results in better ARL1 and SDRL1 performances. Also, 

a greater sample size leads to smaller L and UCL, but greater LCL, particularly for small 

shift sizes. For instance, in Table 4.1, the optimal chart parameters, L, LCL, UCL, 

obtained are 42, 0.0017, 0.0924, respectively, for 5n = , 1.1 =  and 0 0.05, =  while the 

optimal chart parameters, L, LCL, UCL are 27, 0.0296, 0.0691, respectively, for 20n =  

with the same values of shift size and in-control coefficient of variation. This indicates 

that a greater sample size results in a tighter region between LCL and UCL and has a 

smaller maximum quantity of conforming samples between two consecutive non-

conforming samples for the control chart to provide an out-of-control signal. 

 

The data in Tables 4.1 and 4.2 reveals that both the ARL1 and SDRL1 values decrease 

when the shift size increases. For instance, in Table 4.1, when 5n = , 1.1 =  and 

0 0.05, =  the corresponding ARL1 and SDRL1 values are 64.74 and 84.69, respectively, 

while for 5n = , 2.0 =  and 0 0.05, =  the corresponding ARL1 and SDRL1 values are 

1.72 and 1.27, respectively. Furthermore, an increase in shift size results in smaller 

optimal chart parameters, L and UCL, but a greater LCL value. For instance, in Table 4.1, 

the optimal chart parameters, L, LCL, UCL, obtained are 42, 0.0017, 0.0924, respectively, 

for 5n = , 1.1 =  and 0 0.05 =  whereas for 5n = , 2.0 =  and 0 0.05, =  the obtained 

optimal chart parameters, L, LCL, UCL, are 4, 0.0109, 0.0832, respectively.  
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It is also worth noting that an increase in the in-control coefficient of variation leads 

to slightly greater LCL, UCL, ARL1 and SDRL1 values. For instance, in Table 4.1, when 

5n = , 1.1 =  and 0 0.05, =  the optimal chart parameters, LCL and UCL and the 

corresponding ARL1 and SDRL1 are 0.0017, 0.0924, 64.74 and 84.69, respectively, while 

for 5n = , 1.1 =  and 0 0.20 =  in Table 4.2, the optimal chart parameters, LCL and UCL 

and the corresponding ARL1 and SDRL1 are 0.0059, 0.3850, 67.12 and 87.83, 

respectively.  

 

The optimal chart parameters presented in Tables 4.1 and 4.2 require the specific value 

of shift size but often, its precise value is unknown. To address this issue, this subsection 

provides the optimal chart parameters (L, LCL, UCL) that minimize the EARL1 value. As 

discussed in Chapter 3, EARL1 only needs a range of possible values for the shift size, 

denoted by ( )min max,    , instead of an exact value as required by the ARL1. Following 

Castagliola et al. (2011), this thesis considers the range ( ) (min max,  1,  2  =  and the same 

values of sample size and in-control coefficient of variation as presented in Tables 4.1 

and 4.2. A range which excludes one and includes two is chosen as 1 =  denotes the in-

control condition, hence it is excluded as the EARL measures the average number of 

samples to detect an out-of-control condition, whereas 2 =  is included to consider a 

large range of possible shifts, as 2 =  denotes a 100% shift in 0 . Note that this thesis 

focuses solely on detecting an upward shift.  

 

Table 4.3 presents the optimal chart parameters, L, LCL, UCL, and the corresponding 

EARL1 values for  5, 7, 10, 15, 20n  and  0 0.05, 0.10, 0.15, 0.20  , where the 

range of ( )min max,     was set as (1,  2 . The results obtained were verified through 

simulation as described in Section 3.6. 
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Table 4.3 Optimal chart parameters (L, LCL, UCL) of the side-sensitive 

synthetic-  chart and the corresponding EARL1 for  5, 7, 10, 15, 20n , 

 0 0.05, 0.10, 0.15, 0.20   and ( ) (min max,  1,  2  =  

 L LCL UCL EARL1 

n 
0 0.05 =  

5 25 0.0036 0.0905 16.90 

7 25 0.0128 0.0832 13.73 

10 27 0.0199 0.0774 11.16 

15 29 0.0260 0.0723 8.85 

20 29 0.0295 0.0692 7.48 

n 
0 0.10 =  

5 25 0.0060 0.1824 17.03 

7 24 0.0250 0.1672 13.83 

10 27 0.0391 0.1556 11.22 

15 28 0.0517 0.1449 8.89 

20 28 0.0588 0.1387 7.50 

n 
0 0.15 =  

5 25 0.0062 0.2771 17.25 

7 24 0.0353 0.2534 14.02 

10 25 0.0577 0.2348 11.34 

15 27 0.0766 0.2186 8.96 

20 27 0.0875 0.2090 7.55 

n 
0 0.20 =  

5 25 0.0065 0.3763 17.56 

7 23 0.0437 0.3423 14.31 

10 24 0.0744 0.3163 11.54 

15 26 0.1003 0.2937 9.08 

20 26 0.1152 0.2804 7.64 

 

As indicated in Table 4.3, an increase in sample size leads to a decrease in the EARL1 

value. For instance, when n = 5 and 0 0.05 = , the corresponding EARL1 value is 16.90 

whereas for n = 20 and 0 0.05 = , the corresponding EARL1 is 7.48. Additionally, larger 

values of sample size result in slightly smaller optimal UCL but greater LCL. For instance, 

the optimal chart parameters, LCL and UCL, obtained are 0.0036 and 0.0905, respectively 

for n = 5 and 0 0.05 =  whereas for n = 20 and 0 0.05 = , the optimal chart parameters, 

LCL and UCL, obtained are 0.0295 and 0.0692, respectively.  
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Table 4.3 also demonstrates that larger values of the in-control coefficient of variation 

results in marginally larger LCL, UCL and EARL1 values. For instance, when n = 5 and 

0 0.05 = , the optimal chart parameters, LCL and UCL, and the corresponding EARL1 

obtained are 0.0036, 0.0905 and 16.90, respectively, whereas the optimal chart 

parameters, LCL and UCL, and the corresponding EARL1 obtained are 0.0065, 0.3763 

and 17.56, respectively for n = 5 and 0 0.20 = .   

 

4.2 Analysis of Run Length Distribution’s Percentiles 

ARL is frequently chosen as the performance measure for evaluating the control chart 

and this can be found in most studies. Gan (1993) suggests that the distribution of run 

length is heavily skewed to the right, particularly for small shift sizes. As such, in order 

to obtain an accurate understanding of a control chart’s performance, it is crucial to 

analyze all percentiles of the run length distribution. 

 

In this subsection, the analysis of both in-control and out-of-control percentiles of the 

run length distribution has been carried out using the optimal chart parameters (L, LCL, 

UCL) presented in Tables 4.1, 4.2 and 4.3. The 5th until 95th in-control percentiles of the 

ARL-based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n  and 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   are shown in Tables 4.4, 4.5, 4.6 and 

4.7 for 0 0.05 = , 0 0.10 = , 0 0.15 =  and 0 0.20 = , respectively while the 5th until 

95th out-of-control percentiles of the ARL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n  and  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   are shown in 

Table 4.8 for 0 0.05 = , Table 4.9 for 0 0.10 = , Table 4.10 for 0 0.15 =  and Table 4.11 

for 0 0.20 = .  
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The run length distribution’s percentiles was calculated using Equation (3.42), which 

involves the optimal chart parameters obtained from the side-sensitive synthetic-  chart 

which is designed based on the ARL in Tables 4.1 and 4.2. It is worth noting that the in-

control percentiles are determined using 1 =  for all cases, while the out-of-control 

percentiles are based on opt = . Besides, the results obtained were validated by 

simulation with 10,000 trials. 

 

Table 4.4 In-control percentiles of the run length distribution for the ARL-based 

side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

 
0 0.05 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 
  n = 5 

1.1 6 13 26 41 125 211 316 451 641 967 1293 

1.2 5 10 20 74 143 225 325 454 636 947 1258 

1.3 4 8 26 84 150 229 325 448 623 921 1220 

1.4 4 7 34 91 157 234 329 451 623 918 1212 

1.5 3 6 41 97 161 237 329 449 618 906 1194 

1.6 3 6 45 100 164 240 333 453 622 911 1199 

1.7 3 5 48 104 168 243 336 456 624 913 1201 

1.8 3 5 50 105 168 242 333 451 616 899 1181 

1.9 3 5 50 105 168 242 333 451 616 899 1181 

2.0 2 4 54 108 171 244 335 451 615 895 1176 
  n = 7 

1.1 6 12 24 55 128 211 313 445 631 948 1266 

1.2 5 9 18 80 148 225 326 453 631 936 1242 

1.3 4 7 34 90 156 233 328 450 622 917 1211 

1.4 3 6 40 95 160 235 328 448 616 904 1192 

1.5 3 6 46 102 166 242 336 456 625 914 1203 

1.6 3 5 51 106 168 242 332 448 612 893 1173 

1.7 3 5 51 106 168 242 332 448 612 893 1173 

1.8 2 8 55 108 170 243 332 447 609 886 1163 

1.9 2 8 55 108 170 243 332 447 609 886 1163 

2.0 2 12 59 111 172 244 332 446 606 880 1154 
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Table 4.4, continued  
 

0 0.05 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 
  n = 10 

1.1 6 12 24 63 133 216 318 449 634 950 1266 

1.2 4 8 27 84 150 228 323 446 619 915 1210 

1.3 4 7 41 98 164 242 337 460 633 928 1224 

1.4 3 6 47 102 165 240 331 449 616 900 1184 

1.5 3 5 53 107 170 243 334 450 614 895 1175 

1.6 3 10 58 112 175 249 340 457 622 904 1186 

1.7 3 10 58 112 175 249 340 457 622 904 1186 

1.8 2 14 62 116 178 251 341 457 621 900 1180 

1.9 2 14 62 116 178 251 341 457 621 900 1180 

2.0 2 14 62 116 178 251 341 457 621 900 1180 
  n = 15 

1.1 6 12 24 72 141 224 325 455 638 951 1265 

1.2 4 8 37 94 160 238 334 457 630 927 1223 

1.3 3 6 48 102 165 239 329 445 609 890 1170 

1.4 3 13 74 142 222 315 430 578 786 1142 1498 

1.5 3 11 58 111 173 246 335 450 612 888 1165 

1.6 2 15 61 113 174 246 333 446 606 878 1150 

1.7 2 15 61 113 174 246 333 446 606 878 1150 

1.8 2 20 65 117 177 247 334 446 603 872 1141 

1.9 2 20 65 117 177 247 334 446 603 872 1141 

2.0 2 20 65 117 177 247 334 446 603 872 1141 
  n = 20 

1.1 6 11 23 78 146 227 326 454 634 942 1250 

1.2 4 7 43 98 161 236 328 447 613 898 1183 

1.3 3 6 52 106 167 240 330 445 607 885 1163 

1.4 3 12 60 114 177 250 341 458 622 903 1184 

1.5 2 16 62 115 176 248 336 450 610 884 1158 

1.6 2 16 62 115 176 248 336 450 610 884 1158 

1.7 2 20 66 117 177 247 334 445 602 870 1138 

1.8 2 20 66 117 177 247 334 445 602 870 1138 

1.9 2 20 66 117 177 247 334 445 602 870 1138 

2.0 2 20 66 117 177 247 334 445 602 870 1138 
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Table 4.5 In-control percentiles of the run length distribution for the ARL-based 

side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =  

 
0 0.10 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 
  n = 5 

1.1 6 13 26 41 125 211 316 452 642 968 1295 

1.2 5 10 20 73 142 223 322 451 631 941 1250 

1.3 4 8 27 85 152 232 329 455 632 934 1237 

1.4 4 7 34 91 156 234 329 451 623 917 1211 

1.5 3 6 42 98 162 238 332 452 622 912 1202 

1.6 3 6 45 100 164 240 333 453 622 910 1199 

1.7 3 5 47 103 166 242 334 453 620 906 1193 

1.8 3 5 50 105 167 241 332 449 614 896 1179 

1.9 3 5 50 105 167 241 332 449 614 896 1179 

2.0 2 4 54 109 171 245 336 453 618 900 1181 
  n = 7 

1.1 6 12 24 59 130 214 317 450 637 957 1276 

1.2 5 9 18 80 148 228 327 454 633 939 1246 

1.3 4 7 33 90 156 233 328 451 623 918 1213 

1.4 3 6 40 96 161 237 330 451 621 911 1201 

1.5 3 6 45 100 164 239 331 450 617 903 1188 

1.6 3 5 52 106 169 243 334 451 617 899 1182 

1.7 3 5 52 106 169 243 334 451 617 899 1182 

1.8 2 8 55 109 172 245 335 451 615 895 1175 

1.9 2 8 55 109 172 245 335 451 615 895 1175 

2.0 2 13 60 113 175 248 338 453 616 894 1172 
  n = 10 

1.1 6 12 24 63 133 216 319 451 636 954 1272 

1.2 4 8 28 86 153 232 329 454 631 932 1233 

1.3 4 7 40 95 160 236 329 450 619 909 1199 

1.4 3 6 47 102 166 241 333 452 619 905 1191 

1.5 3 5 54 108 171 245 336 454 619 902 1185 

1.6 3 9 56 109 171 244 333 447 609 886 1162 

1.7 3 9 56 109 171 244 333 447 609 886 1162 

1.8 2 14 60 113 175 247 336 450 611 887 1163 

1.9 2 14 60 113 175 247 336 450 611 887 1163 

2.0 2 14 60 113 175 247 336 450 611 887 1163 
  n = 15 

1.1 6 11 24 70 140 222 322 452 635 947 1260 

1.2 4 8 36 93 158 235 330 452 624 917 1211 

1.3 3 6 49 104 167 241 333 451 617 901 1185 

1.4 3 5 54 108 170 243 333 448 611 889 1168 

1.5 3 11 58 112 175 248 338 455 618 898 1178 

1.6 2 15 61 113 174 246 333 446 606 878 1150 

1.7 2 15 61 113 174 246 333 446 606 878 1150 

1.8 2 20 65 118 178 249 336 448 606 876 1146 

1.9 2 20 65 118 178 249 336 448 606 876 1146 

2.0 2 20 65 118 178 249 336 448 606 876 1146 
  n = 20 

1.1 6 11 23 76 144 225 324 451 630 937 1243 

1.2 4 7 43 99 163 238 331 451 619 907 1195 

1.3 3 6 53 107 170 244 335 452 617 900 1182 

1.4 3 12 59 113 175 249 338 454 618 897 1176 

1.5 2 15 62 114 175 247 335 449 608 882 1155 

1.6 2 15 62 114 175 247 335 449 608 882 1155 

1.7 2 20 66 117 177 248 334 445 603 871 1139 

1.8 2 20 66 117 177 248 334 445 603 871 1139 

1.9 2 20 66 117 177 248 334 445 603 871 1139 

2.0 2 20 66 117 177 248 334 445 603 871 1139 
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Table 4.6 In-control percentiles of the run length distribution for the ARL-based 

side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

 
0 0.15 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 
  n = 5 

1.1 6 12 26 41 125 210 315 449 639 964 1289 

1.2 5 10 20 73 142 224 324 453 634 945 1255 

1.3 4 8 27 85 152 231 328 453 629 930 1231 

1.4 4 7 35 92 158 236 331 454 627 924 1220 

1.5 3 6 42 97 162 238 332 452 621 911 1201 

1.6 3 6 45 100 164 240 334 453 622 911 1200 

1.7 3 5 47 102 166 241 333 451 618 904 1190 

1.8 3 5 50 105 168 243 334 452 618 901 1185 

1.9 3 5 50 105 168 243 334 452 618 901 1185 

2.0 2 4 54 108 170 244 334 451 615 895 1175 
  n = 7 

1.1 6 12 24 59 130 214 318 451 638 958 1279 

1.2 5 9 18 79 147 228 327 454 633 939 1245 

1.3 4 7 33 90 156 234 330 453 626 922 1219 

1.4 3 6 40 97 162 239 333 454 625 918 1210 

1.5 3 6 46 101 165 241 334 454 622 911 1199 

1.6 3 5 51 106 169 243 334 452 617 900 1183 

1.7 3 5 51 106 169 243 334 452 617 900 1183 

1.8 2 7 55 109 172 245 336 452 616 896 1177 

1.9 2 7 55 109 172 245 336 452 616 896 1177 

2.0 2 12 59 112 174 246 335 450 612 888 1165 
  n = 10 

1.1 6 11 24 64 133 217 319 451 637 954 1272 

1.2 4 8 27 85 152 231 327 452 628 928 1228 

1.3 4 7 39 96 160 237 331 452 623 915 1206 

1.4 3 6 47 102 166 241 333 452 619 906 1192 

1.5 3 5 53 107 170 244 334 451 616 897 1179 

1.6 3 9 56 110 172 245 335 451 614 893 1171 

1.7 3 9 56 110 172 245 335 451 614 893 1171 

1.8 2 13 60 114 175 248 337 452 614 891 1168 

1.9 2 13 60 114 175 248 337 452 614 891 1168 

2.0 2 13 60 114 175 248 337 452 614 891 1168 
  n = 15 

1.1 6 11 23 70 139 221 321 450 632 943 1254 

1.2 4 8 35 92 158 236 331 453 626 921 1217 

1.3 3 6 39 88 144 211 293 399 548 802 1057 

1.4 3 5 54 108 170 243 333 448 612 891 1169 

1.5 3 10 57 111 173 246 335 450 613 891 1168 

1.6 2 14 61 114 175 248 336 450 611 886 1161 

1.7 2 14 61 114 175 248 336 450 611 886 1161 

1.8 2 19 65 118 178 249 337 449 608 879 1150 

1.9 2 19 65 118 178 249 337 449 608 879 1150 

2.0 2 19 65 118 178 249 337 449 608 879 1150 
  n = 20 

1.1 6 11 23 76 145 226 325 454 635 944 1253 

1.2 4 7 43 98 162 238 331 450 619 907 1195 

1.3 3 6 52 106 168 242 333 449 614 894 1175 

1.4 3 11 58 112 174 247 336 452 614 892 1170 

1.5 2 15 62 114 175 247 335 449 609 882 1156 

1.6 2 15 62 114 175 247 335 449 609 882 1156 

1.7 2 20 66 118 178 250 337 449 608 879 1150 

1.8 2 20 66 118 178 250 337 449 608 879 1150 

1.9 2 20 66 118 178 250 337 449 608 879 1150 

2.0 2 20 66 118 178 250 337 449 608 879 1150 
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Table 4.7 In-control percentiles of the run length distribution for the ARL-based 

side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =  

 
0 0.20 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 
  n = 5 

1.1 6 12 26 41 125 210 315 450 640 964 1289 

1.2 5 10 20 72 141 223 323 452 634 945 1257 

1.3 4 8 27 85 152 231 328 454 630 932 1233 

1.4 4 7 35 92 157 235 331 453 626 922 1218 

1.5 3 6 39 95 160 237 331 453 624 916 1208 

1.6 3 6 44 100 164 240 332 452 620 908 1196 

1.7 3 5 47 102 166 241 333 452 619 904 1190 

1.8 3 5 50 105 168 243 334 452 618 902 1186 

1.9 3 5 50 105 168 243 334 452 618 902 1186 

2.0 2 4 54 108 170 244 334 451 615 895 1176 
  n = 7 

1.1 6 12 24 58 130 215 318 451 639 960 1281 

1.2 5 9 18 79 147 227 325 452 630 935 1240 

1.3 4 7 33 90 156 235 330 454 627 924 1222 

1.4 3 6 40 96 160 237 331 452 622 913 1204 

1.5 3 6 45 101 165 241 333 453 622 910 1198 

1.6 3 5 48 103 167 242 334 452 620 905 1191 

1.7 3 5 51 106 169 243 334 452 617 900 1184 

1.8 2 6 55 108 171 244 334 450 614 894 1174 

1.9 2 6 55 108 171 244 334 450 614 894 1174 

2.0 2 12 59 112 173 246 335 450 611 888 1164 
  n = 10 

1.1 6 11 23 64 133 217 319 450 636 952 1269 

1.2 4 8 26 84 151 230 326 451 627 927 1227 

1.3 4 7 39 95 161 238 332 454 626 919 1212 

1.4 3 6 46 101 165 240 332 451 618 904 1190 

1.5 3 5 52 107 169 244 334 451 616 898 1181 

1.6 3 8 56 110 172 245 335 451 614 894 1173 

1.7 3 8 56 110 172 245 335 451 614 894 1173 

1.8 2 13 60 113 175 248 337 452 614 891 1167 

1.9 2 13 60 113 175 248 337 452 614 891 1167 

2.0 2 13 60 113 175 248 337 452 614 891 1167 
  n = 15 

1.1 6 11 23 69 139 221 322 453 636 950 1264 

1.2 4 8 35 92 158 236 331 454 628 925 1221 

1.3 3 6 48 103 167 242 334 453 620 907 1193 

1.4 3 5 54 108 170 244 334 450 615 895 1176 

1.5 3 10 57 111 173 247 337 453 616 895 1175 

1.6 2 14 61 114 176 249 338 453 614 891 1168 

1.7 2 14 61 114 176 249 338 453 614 891 1168 

1.8 2 14 61 114 176 249 338 453 614 891 1168 

1.9 2 19 65 117 178 249 336 449 608 879 1150 

2.0 2 19 65 117 178 249 336 449 608 879 1150 
  n = 20 

1.1 5 11 22 74 142 223 323 451 631 939 1247 

1.2 4 7 40 96 161 237 331 452 622 914 1205 

1.3 3 6 52 106 169 243 334 451 616 898 1181 

1.4 3 11 58 111 173 246 336 451 613 891 1169 

1.5 2 15 62 115 176 249 338 452 614 890 1165 

1.6 2 15 62 115 176 249 338 452 614 890 1165 

1.7 2 19 65 118 178 249 336 448 607 877 1148 

1.8 2 19 65 118 178 249 336 448 607 877 1148 

1.9 2 19 65 118 178 249 336 448 607 877 1148 

2.0 2 19 65 118 178 249 336 448 607 877 1148 
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Table 4.8 Out-of-control percentiles of the run length distribution for the ARL-

based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

 
0 0.05 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

  n = 5  

1.1 3 5 10 15 21 29 38 73 109 175 240 

1.2 1 2 4 6 9 12 15 20 35 56 78 

1.3 1 1 2 3 5 6 8 10 13 26 35 

1.4 1 1 2 2 3 4 5 6 8 14 21 

1.5 1 1 1 2 2 3 4 4 6 8 14 

1.6 1 1 1 1 2 2 3 3 4 6 10 

1.7 1 1 1 1 1 2 2 3 4 5 6 

1.8 1 1 1 1 1 2 2 2 3 4 5 

1.9 1 1 1 1 1 1 2 2 3 4 4 

2.0 1 1 1 1 1 1 2 2 2 3 4 

  n = 7 

1.1 2 4 8 13 18 24 32 57 86 139 191 

1.2 1 2 3 5 7 9 12 15 23 41 57 

1.3 1 1 2 3 3 5 6 8 10 18 25 

1.4 1 1 1 2 2 3 4 5 6 9 14 

1.5 1 1 1 1 2 2 3 3 4 6 9 

1.6 1 1 1 1 1 2 2 2 3 4 5 

1.7 1 1 1 1 1 1 2 2 3 4 4 

1.8 1 1 1 1 1 1 1 2 2 3 4 

1.9 1 1 1 1 1 1 1 2 2 3 2 

2.0 1 1 1 1 1 1 1 1 2 2 3 

  n = 10 

1.1 2 3 7 11 15 20 27 35 69 110 152 

1.2 1 1 2 4 5 7 9 11 15 29 40 

1.3 1 1 1 2 3 3 4 6 7 10 18 

1.4 1 1 1 1 2 2 3 3 4 6 9 

1.5 1 1 1 1 1 2 2 2 3 4 5 

1.6 1 1 1 1 1 1 2 2 2 3 4 

1.7 1 1 1 1 1 1 1 2 2 3 3 

1.8 1 1 1 1 1 1 1 1 2 2 3 

1.9 1 1 1 1 1 1 1 1 1 2 2 

2.0 1 1 1 1 1 1 1 1 1 2 2 

  n = 15 

1.1 2 3 6 9 12 16 21 28 52 83 115 

1.2 1 1 2 3 4 5 6 8 11 20 27 

1.3 1 1 1 1 2 2 3 4 5 7 11 

1.4 1 1 1 1 1 2 2 2 3 4 5 

1.5 1 1 1 1 1 1 1 2 2 3 4 

1.6 1 1 1 1 1 1 1 1 2 2 3 

1.7 1 1 1 1 1 1 1 1 1 2 2 

1.8 1 1 1 1 1 1 1 1 1 2 2 

1.9 1 1 1 1 1 1 1 1 1 1 2 

2.0 1 1 1 1 1 1 1 1 1 1 1 

  n = 20 

1.1 1 2 5 7 10 13 18 23 41 65 91 

1.2 1 1 2 2 3 4 5 6 8 14 20 

1.3 1 1 1 1 2 2 2 3 4 5 8 

1.4 1 1 1 1 1 1 2 2 2 3 4 

1.5 1 1 1 1 1 1 1 1 2 2 3 

1.6 1 1 1 1 1 1 1 1 1 2 2 

1.7 1 1 1 1 1 1 1 1 1 1 2 

1.8 1 1 1 1 1 1 1 1 1 1 1 

1.9 1 1 1 1 1 1 1 1 1 1 1 

2.0 1 1 1 1 1 1 1 1 1 1 1 
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Table 4.9 Out-of-control percentiles of the run length distribution for the ARL-

based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =  

 
0 0.10 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

  n = 5 

1.1 3 5 10 15 22 29 38 74 110 176 242 

1.2 1 2 4 6 9 12 15 20 35 56 79 

1.3 1 1 2 3 5 6 8 10 14 27 36 

1.4 1 1 2 2 3 4 5 6 8 14 21 

1.5 1 1 1 2 2 3 4 5 6 8 14 

1.6 1 1 1 1 2 2 3 3 4 6 10 

1.7 1 1 1 1 1 2 2 3 4 5 6 

1.8 1 1 1 1 1 2 2 2 3 4 5 

1.9 1 1 1 1 1 1 2 2 3 4 4 

2.0 1 1 1 1 1 1 2 2 2 3 4 

  n = 7 

1.1 2 4 8 13 18 24 32 58 88 141 194 

1.2 1 2 3 5 7 9 12 15 24 41 58 

1.3 1 1 2 3 4 5 6 8 10 18 25 

1.4 1 1 1 2 2 3 4 5 6 9 14 

1.5 1 1 1 1 2 2 3 3 4 6 9 

1.6 1 1 1 1 1 2 2 3 3 4 7 

1.7 1 1 1 1 1 1 2 2 3 4 5 

1.8 1 1 1 1 1 1 1 2 2 3 4 

1.9 1 1 1 1 1 1 1 2 2 3 3 

2.0 1 1 1 1 1 1 1 1 2 2 3 

  n = 10 

1.1 2 4 7 11 15 20 27 35 69 111 153 

1.2 1 1 3 4 5 7 9 11 15 30 41 

1.3 1 1 1 2 3 3 4 6 7 10 18 

1.4 1 1 1 1 2 2 3 3 4 6 10 

1.5 1 1 1 1 1 2 2 2 3 4 5 

1.6 1 1 1 1 1 1 2 2 2 3 4 

1.7 1 1 1 1 1 1 1 2 2 3 3 

1.8 1 1 1 1 1 1 1 1 2 2 3 

1.9 1 1 1 1 1 1 1 1 1 2 2 

2.0 1 1 1 1 1 1 1 1 1 2 2 

  n = 15 

1.1 2 3 6 9 12 16 21 28 52 83 115 

1.2 1 1 2 3 4 5 6 8 11 20 27 

1.3 1 1 1 1 2 2 3 4 5 7 12 

1.4 1 1 1 1 1 2 2 2 3 4 5 

1.5 1 1 1 1 1 1 1 2 2 3 4 

1.6 1 1 1 1 1 1 1 1 2 2 3 

1.7 1 1 1 1 1 1 1 1 1 2 2 

1.8 1 1 1 1 1 1 1 1 1 2 2 

1.9 1 1 1 1 1 1 1 1 1 1 2 

2.0 1 1 1 1 1 1 1 1 1 1 1 

  n = 20 

1.1 1 2 5 7 10 13 18 23 41 66 92 

1.2 1 1 2 2 3 4 5 6 8 15 20 

1.3 1 1 1 1 2 2 2 3 4 5 8 

1.4 1 1 1 1 1 1 2 2 2 3 4 

1.5 1 1 1 1 1 1 1 1 2 2 3 

1.6 1 1 1 1 1 1 1 1 1 2 2 

1.7 1 1 1 1 1 1 1 1 1 1 2 

1.8 1 1 1 1 1 1 1 1 1 1 1 

1.9 1 1 1 1 1 1 1 1 1 1 1 

2.0 1 1 1 1 1 1 1 1 1 1 1 
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Table 4.10 Out-of-control percentiles of the run length distribution for the ARL-

based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

 
0 0.15 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

  n = 5 

1.1 3 5 10 15 22 29 39 74 111 178 244 

1.2 1 2 4 6 9 12 15 20 36 58 80 

1.3 1 1 2 3 5 6 8 10 14 27 37 

1.4 1 1 2 2 3 4 5 7 9 15 22 

1.5 1 1 1 2 2 3 4 5 6 8 14 

1.6 1 1 1 1 2 2 3 4 5 6 10 

1.7 1 1 1 1 2 2 2 3 4 5 6 

1.8 1 1 1 1 1 2 2 2 3 4 5 

1.9 1 1 1 1 1 1 2 2 3 4 5 

2.0 1 1 1 1 1 1 2 2 2 3 4 

  n = 7 

1.1 2 4 8 13 18 24 32 59 89 143 197 

1.2 1 2 3 5 7 9 12 15 25 42 59 

1.3 1 1 2 3 4 5 6 8 10 19 26 

1.4 1 1 1 2 2 3 4 5 6 9 15 

1.5 1 1 1 1 2 2 3 3 4 6 9 

1.6 1 1 1 1 1 2 2 3 3 4 7 

1.7 1 1 1 1 1 1 2 2 3 4 5 

1.8 1 1 1 1 1 1 2 2 2 3 4 

1.9 1 1 1 1 1 1 1 2 2 3 3 

2.0 1 1 1 1 1 1 1 1 2 2 3 

  n = 10 

1.1 2 4 7 11 15 20 27 42 70 113 155 

1.2 1 1 3 4 5 7 9 12 15 30 42 

1.3 1 1 1 2 3 3 4 6 7 10 18 

1.4 1 1 1 1 2 2 3 4 5 6 10 

1.5 1 1 1 1 1 2 2 2 3 4 5 

1.6 1 1 1 1 1 1 2 2 2 3 4 

1.7 1 1 1 1 1 1 1 2 2 3 3 

1.8 1 1 1 1 1 1 1 1 2 2 3 

1.9 1 1 1 1 1 1 1 1 2 2 2 

2.0 1 1 1 1 1 1 1 1 1 2 2 

  n = 15 

1.1 2 3 6 9 12 16 21 28 53 84 116 

1.2 1 1 2 3 4 5 6 8 11 20 28 

1.3 1 1 1 2 2 2 3 4 5 7 11 

1.4 1 1 1 1 1 2 2 2 3 4 5 

1.5 1 1 1 1 1 1 1 2 2 3 4 

1.6 1 1 1 1 1 1 1 1 2 2 3 

1.7 1 1 1 1 1 1 1 1 1 2 2 

1.8 1 1 1 1 1 1 1 1 1 2 2 

1.9 1 1 1 1 1 1 1 1 1 1 2 

2.0 1 1 1 1 1 1 1 1 1 1 2 

  n = 20 

1.1 1 2 5 7 10 14 18 23 42 67 93 

1.2 1 1 2 2 3 4 5 6 8 15 21 

1.3 1 1 1 1 2 2 2 3 4 5 8 

1.4 1 1 1 1 1 1 2 2 2 3 4 

1.5 1 1 1 1 1 1 1 1 2 2 3 

1.6 1 1 1 1 1 1 1 1 1 2 2 

1.7 1 1 1 1 1 1 1 1 1 1 2 

1.8 1 1 1 1 1 1 1 1 1 1 2 

1.9 1 1 1 1 1 1 1 1 1 1 1 

2.0 1 1 1 1 1 1 1 1 1 1 1 
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Table 4.11 Out-of-control percentiles of the run length distribution for the ARL-

based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =  

 
0 0.20 =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

   

1.1 3 5 10 15 22 30 39 76 113 181 248 

1.2 1 2 4 6 9 12 16 21 37 59 82 

1.3 1 1 2 4 5 6 8 11 14 28 38 

1.4 1 1 2 2 3 4 5 7 9 16 22 

1.5 1 1 1 2 2 3 4 5 6 9 15 

1.6 1 1 1 1 2 2 3 4 5 7 11 

1.7 1 1 1 1 2 2 2 3 4 5 8 

1.8 1 1 1 1 1 2 2 2 3 4 5 

1.9 1 1 1 1 1 1 2 2 3 4 5 

2.0 1 1 1 1 1 1 2 2 2 3 4 

   

1.1 2 4 8 13 18 25 32 61 92 147 202 

1.2 1 2 3 5 7 9 12 16 26 43 61 

1.3 1 1 2 3 4 5 6 8 10 20 27 

1.4 1 1 1 2 2 3 4 5 6 9 16 

1.5 1 1 1 1 2 2 3 4 5 6 10 

1.6 1 1 1 1 1 2 2 3 3 5 6 

1.7 1 1 1 1 1 1 2 2 3 4 5 

1.8 1 1 1 1 1 1 2 2 2 3 4 

1.9 1 1 1 1 1 1 1 2 2 3 3 

2.0 1 1 1 1 1 1 1 1 2 2 3 

   

1.1 2 4 7 11 15 20 27 45 71 115 158 

1.2 1 1 3 4 5 7 9 12 16 31 43 

1.3 1 1 1 2 3 4 5 6 8 13 19 

1.4 1 1 1 1 2 2 3 4 5 6 11 

1.5 1 1 1 1 1 2 2 3 3 4 7 

1.6 1 1 1 1 1 1 2 2 2 3 4 

1.7 1 1 1 1 1 1 1 2 2 3 3 

1.8 1 1 1 1 1 1 1 1 2 2 3 

1.9 1 1 1 1 1 1 1 1 2 2 2 

2.0 1 1 1 1 1 1 1 1 1 2 2 

   

1.1 2 3 6 9 12 16 22 28 54 86 119 

1.2 1 1 2 3 4 5 7 9 11 21 29 

1.3 1 1 1 2 2 3 3 4 5 7 12 

1.4 1 1 1 1 1 2 2 3 3 4 6 

1.5 1 1 1 1 1 1 2 2 2 3 4 

1.6 1 1 1 1 1 1 1 1 2 2 3 

1.7 1 1 1 1 1 1 1 1 2 2 2 

1.8 1 1 1 1 1 1 1 1 1 2 2 

1.9 1 1 1 1 1 1 1 1 1 1 2 

2.0 1 1 1 1 1 1 1 1 1 1 2 

   

1.1 1 2 5 7 10 14 18 24 42 68 94 

1.2 1 1 2 2 3 4 5 7 9 15 22 

1.3 1 1 1 1 2 2 2 3 4 6 9 

1.4 1 1 1 1 1 1 2 2 2 3 4 

1.5 1 1 1 1 1 1 1 1 2 2 3 

1.6 1 1 1 1 1 1 1 1 1 2 2 

1.7 1 1 1 1 1 1 1 1 1 2 2 

1.8 1 1 1 1 1 1 1 1 1 1 2 

1.9 1 1 1 1 1 1 1 1 1 1 1 

2.0 1 1 1 1 1 1 1 1 1 1 1 
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By referring to Tables 4.4 to 4.7, it is noticeable that the MRL0 or in-control 50th 

percentiles fall between 210 to 251 for all cases when the optimal chart parameters from 

the designs based on ARL are applied. These values not only show a significant difference 

between the obtained MRL0 and ARL0 of 370.4, but they also indicate that the false alarm 

should occur much earlier. For example, in Table 4.4, the MRL0 obtained is 211 for n = 

5, 1.1 =  and 0 0.05 = . This indicates that around half of the time, one false alarm will 

occur by the 211th sample in reality, although there will be an average of 1 false alarm for 

every 370 samples. In addition, the value of 370 falls between the 60th and 70th percentiles 

for all cases, indicating that the distribution of the in-control run length is positively 

skewed. Therefore, it is not advisable to evaluate the side-sensitive synthetic-  chart’s 

actual performance solely based on the ARL, as it may result in a misrepresentation of the 

actual frequency of false alarms.  

 

Tables 4.4, 4.5, 4.6 and 4.7 also show that as the sample size and shift size increase, 

the MRL0 is increased as well. For instance, in Table 4.4, the MRL0 obtained is 227 for n 

= 20, 1.1 =  and 0 0.05 =  which is greater than the value of MRL0 of 211 for n = 5, 

1.1 =  and 0 0.05 = . For the increase in shift size, it can be observed that larger shift 

sizes result in larger MRL0. For example, in Table 4.4, when n = 5, 2.0 =  and 0 0.05, =

MRL0 is 244, which is larger than the MRL0 of 211 for n = 5, 1.1 =  and 0 0.05 = . 

However, there is not much difference in the MRL0 as the in-control coefficient of 

variation increases, for example, the MRL0 obtained is 210 for n = 5, 1.1 =  and 

0 0.20 =  in Table 4.7 which shows minimal difference compared to MRL0 = 211 for n = 

5, 1.1 =  and 0 0.05 =  in Table 4.4 

 



  

92 

Apart from studying the MRL0, the smaller percentiles like the 5th, 10th and 20th 

percentiles and larger percentiles such as the 80th, 90th and 95th percentiles can offer 

valuable insights about the side-sensitive synthetic-  chart’s run length characteristics to 

practitioners. For example, in Table 4.4, the 5th percentile is 6 for n = 5, 1.1 =  and 

0 0.05 = . This means that for an in-control process, there is a 5% chance of an early 

false alarm occurring by the 6th sample. The 95th percentile for the same case is 1293, 

indicating that there is a 95% chance that a false alarm will occur by the 1293rd sample 

for an in-control process. This information allows practitioners to make accurate 

decisions for both short and long run lengths without experiencing any assignable 

cause(s). 

 

Another important analysis for a control chart is the difference between the in-control 

5th and 95th percentiles of the run length. This provides valuable information to 

practitioners about the spread, variation, and skewness of the run length distribution. 

According to Tables 4.4 to 4.7, it is found that the differences between two extreme 

percentiles are generally very large, which are between 1136 and 1495 for all cases. This 

indicates that the distribution of in-control run length has a huge spread and is very 

skewed. Furthermore, as sample size and shift size increase, the differences between the 

5th and 95th percentiles display a decreasing pattern. For instance, in Table 4.4, the 

difference is 1287 for n = 5, 1.1 =  and 0 0.05 =  whereas the difference is 1136 for n = 

20, 2.0 =  and 0 0.05. =  Similar to the analysis of MRL0, the differences between the 

extreme percentiles are similar for different in-control coefficient of variation. For 

instance, the difference is 1283 for n = 5, 1.1 =  and 0 0.20 =  in Table 4.7 compared to 

1287 for n = 5, 1.1 =  and 0 0.05 =  in Table 4.4. 

 



  

93 

Next, from Tables 4.8 to 4.11, it can be observed that the out-of-control percentiles 

show similar patterns as the in-control percentiles in terms of MRL and the difference 

between the 5th and 95th percentiles. Generally, the MRL1 is smaller than the ARL1 for all 

cases. For example, the obtained MRL1 is 29 for n = 5, 1.1 =  and 0 0.05 =  in Table 4.8 

whereas the ARL1 is 64.74 in Table 4.1 for the same case. This explains that there will be 

an out-of-control signal by the 29th sample for about 50% of the time, although there will 

be 1 signal in every 64th sample on average. In fact, the values of ARL1 for most of the 

cases fall between the 60th and 70th percentiles. Therefore, the side-sensitive synthetic-  

chart’s actual performance is not advisable to be assessed solely based on the ARL1 as it 

will mislead practitioners to the wrong conclusion since the out-of-control condition is 

often spotted earlier than the ARL1 for almost all cases.  

 

Furthermore, the differences between MRL1 and ARL1 are smaller for larger shift sizes. 

For instance, the difference (MRL1 = 29 in Table 4.8 and ARL1 =64.74 in Table 4.1) is 

35.74 for n = 5, 1.1 =  and 0 0.05 =  whereas the difference (MRL1 = 1 in Table 4.8 and 

ARL1 = 1.72 in Table 4.1) is 0.72 for n = 5, 2.0 =  and 0 0.05 = . It is also observed that 

the differences between MRL1 and ARL1 in Tables 4.8, 4.9, 4.10 and 4.11 are smaller than 

the differences between MRL0 and ARL0 in Tables 4.4, 4.5, 4.6 and 4.7. For instance, the 

differences between MRL1 and ARL1 fall between 0.01 and 37.12 for all cases whereas 

the differences between MRL0 and ARL0 fall between 119 and 160 for all cases.  

 

By referring to Tables 4.8 to 4.11, it is observed that when sample size and shift size 

increase, there is a decreasing trend for the difference between the 5th and 95th percentiles 

for all cases. For instance, in Table 4.8, the difference between the 5th and 95th percentiles 

is 237 for n = 5, 1.1 =  and 0 0.05 =  whereas the difference between the 5th and 95th 
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percentiles is 2 for n = 20, 1.5 =  and 0 0.05 = . Besides, the results also show similar 

differences between the extreme percentiles for a different in-control coefficient of 

variation. For instance, the difference is 245 for n = 5, 1.1 =  and 0 0.20 =  in Table 

4.11 compared with the difference of 237 for n = 5, 1.1 =  and 0 0.05 =  in Table 4.8. 

This shows that the run length distribution’s out-of-control percentiles is positively 

skewed for small shift size but the run length is approximately symmetrical when the shift 

size is large. 

 

Note that the in-control and out-of-control percentiles in Tables 4.4 until 4.11 are 

obtained based on the specific values of shift size. However, it is always a challenge for 

practitioners to estimate shift size in practical scenarios. Hence, in this subsection, the run 

length distribution’s expected percentiles for the proposed side-sensitive synthetic-  

chart was studied using a range of ( )min max,     which was fixed as ( 1,  2 .  

 

Tables 4.12 and 4.13 display the expected percentiles of the side-sensitive synthetic-

  chart which is designed based on EARL for both in-control and out-of-control 

scenarios, from the 5th to the 95th percentiles, for the values of  5, 7, 10, 15, 20n  and 

 0 0.05, 0.10, 0.15, 0.20  , respectively. The optimal chart parameters in Table 4.3 

were used to calculate the expected percentiles through Equation (3.43). All results were 

verified using simulation with 10,000 trials. 
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Table 4.12 In-control expected percentile of the run length distribution for the 

EARL-based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 0 0.05, 0.10, 0.15, 0.20   and ( ) ( min max,  1,  2  =  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

n 
0 0.05 =  

5 5 10 21 71 140 222 323 452 635 947 1259 

7 5 10 21 71 140 222 322 451 633 943 1254 

10 5 10 22 70 139 219 318 446 625 932 1239 

15 6 11 24 74 144 226 327 458 641 955 1268 

20 6 11 24 75 144 225 324 452 632 940 1248 

n 
0 0.10 =  

5 5 10 21 71 141 223 324 453 636 949 1262 

7 5 10 20 73 142 223 323 452 634 944 1255 

10 5 10 22 71 140 221 321 450 632 942 1253 

15 6 11 23 72 140 221 320 447 627 934 1240 

20 6 11 23 75 144 225 324 452 632 940 1247 

n 
0 0.15 =  

5 5 10 21 71 140 222 323 452 635 947 1259 

7 5 10 20 72 141 223 323 452 633 944 1254 

10 5 10 21 73 142 224 324 452 634 945 1255 

15 5 11 22 74 143 225 325 454 636 947 1259 

20 6 11 23 75 144 225 324 452 632 940 1248 

n 
0 0.20 =  

5 5 10 21 71 140 222 323 452 635 947 1259 

7 5 10 20 73 142 223 323 451 632 942 1251 

10 5 10 20 74 143 224 324 453 635 945 1256 

15 5 10 22 73 142 224 324 453 634 945 1255 

20 5 11 22 75 144 225 324 452 632 940 1248 

 

 

 

Table 4.13 Out-of-control expected percentile of the run length distribution for 

the EARL-based side-sensitive synthetic-  chart for  5, 7, 10, 15, 20n , 

 0 0.05, 0.10, 0.15, 0.20   and ( ) ( min max,  1,  2  =   

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

n 
0 0.05 =  

5 1.24 1.65 2.56 3.82 5.84 9.02 13.58 18.85 27.82 43.04 57.82 

7 1.15 1.49 2.29 3.32 4.96 7.33 10.90 15.56 22.63 34.49 47.04 

10 1.15 1.39 2.15 2.87 4.07 6.06 8.71 12.61 18.02 27.81 37.37 

15 1.12 1.36 1.90 2.59 3.24 4.76 7.14 9.83 14.63 22.05 29.92 

20 1.07 1.24 1.70 2.31 3.03 4.12 5.94 8.28 11.77 18.27 24.33 

n 
0 0.10 =  

5 1.24 1.65 2.56 3.92 5.84 9.10 13.63 19.33 28.08 43.42 58.70 

7 1.15 1.48 2.29 3.43 4.99 7.38 11.06 15.68 22.82 34.72 47.49 

10 1.15 1.39 2.15 2.94 4.27 6.25 8.76 12.79 18.18 28.06 37.69 

15 1.12 1.36 1.90 2.59 3.23 4.73 7.01 9.74 14.48 21.68 29.54 

20 1.07 1.24 1.65 2.31 3.02 4.17 5.97 8.28 11.93 18.25 24.59 
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Table 4.13, continued  

 5th 10th 20th 30th 40th 50th 60th 70th 80th 90th 95th 

n 
0 0.15 =  

5 1.24 1.65 2.56 4.01 5.84 9.21 13.80 19.43 28.47 43.98 59.51 

7 1.15 1.49 2.29 3.43 4.98 7.56 11.21 15.87 23.12 35.09 48.06 

10 1.15 1.39 2.12 2.85 4.26 6.39 8.81 12.94 18.33 28.46 38.19 

15 1.12 1.36 1.89 2.59 3.45 4.73 7.13 9.80 14.65 22.17 30.01 

20 1.07 1.24 1.65 2.28 3.02 4.27 6.16 8.32 12.14 18.49 24.79 

n 
0 0.20 =  

5 1.24 1.65 2.65 4.01 6.01 9.41 13.92 20.18 29.02 44.64 60.50 

7 1.15 1.48 2.29 3.43 4.99 7.71 11.49 16.13 23.49 36.09 48.79 

10 1.15 1.39 2.12 2.92 4.28 6.44 8.86 13.16 18.54 29.09 39.12 

15 1.12 1.36 1.89 2.58 3.43 4.81 7.22 9.92 14.82 22.32 30.56 

20 1.07 1.24 1.73 2.26 3.00 4.27 6.16 8.32 12.23 18.58 25.35 

 

Tables 4.12 and 4.13 reveal that the trend of the expected percentiles for both in-

control and out-of-control cases in the design based on EARL is comparable to that of the 

design based on ARL shown in Tables 4.4 to 4.11. In Table 4.12, the values of MRL0 are 

smaller than ARL0 = 370.4 for all cases and these values fall between 219 and 226. For 

instance, the MRL0 is 222 for 5n =  and 0 0.05 = . Besides, the ARL0 of 370.4 also falls 

between the 60th and 70th percentiles, similar to the ARL-based design. As the sample size 

increases, the MRL0 increases for most cases. For instance, the MRL0 is 222 for 5n =  and 

0 0.05 =  whereas when 20n = , the MRL0 is 225 for 0 0.05 = . As for the larger in-

control coefficient of variation, it shows minimal effect on MRL0. For instance, when 

7n =  and 0 0.05 = , the MRL0 is 222 while the MRL0 is 223 for 7n =  and 0 0.20 = .  

 

In Table 4.13, it is found that the EMRL1 is smaller compared to the EARL1 in Table 

4.3 for all cases. For example, the EMRL1 is 9.02 for n = 5 and 0 0.05 =  in Table 4.13 

whereas the EARL1 is 16.90 in Table 4.3 for the same values of n and 0 . Similar to ARL-

based design, EMRL1 shows a decreasing trend as sample size increases. For instance, the 

EMRL1 is 9.02 for n = 5 and 0 0.05 =  while for n = 20 and 0 0.05 = , the EMRL1 is 4.12. 

Besides, minimal differences in the values of EMRL1 are observed for different in-control 
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coefficient of variation. For instance, the EMRL1 is 9.02 for n = 5 and 0 0.05 =  whereas 

when n = 5 and 0 0.20 = , the EMRL1 is 9.41.  

 

Apart from the MRL0 and EMRL1, the difference between two extreme expected in-

control percentiles demonstrates a large variation while the difference between two 

extreme expected out-of-control extreme percentiles shows lesser variation. For instance, 

in Table 4.12, the differences between two extreme expected in-control percentiles fall 

between 1234 and 1262 while the differences between two extreme expected out-of-

control percentiles fall between 20.21 and 51.09 in Table 4.13.   

 

Furthermore, both differences are found to follow a decreasing trend as the sample 

size increases. For instance, in Table 4.12, when 0 0.05 = , the difference between two 

extreme expected in-control percentiles is 1254 for n = 5 whereas for n = 20, the 

difference between two extreme expected in-control percentiles is 1242. For the 

difference between two extreme expected out-of-control percentiles in Table 4.13, the 

value is 56.58 when n = 5 and 0 0.05 =  while for n = 20 and 0 0.05 = , the value is 

23.26. When the in-control coefficient of variation increases, the differences between the 

5th and 95th expected in-control and out-of-control percentiles for all cases have minimal 

differences. 

 

4.3 MRL and EMRL-based Designs 

In this subsection, the aim is to get the optimal chart parameters (L, LCL, UCL) for the 

side-sensitive synthetic-  chart which is designed based on the MRL and EMRL. The 

objective is to minimize the MRL1 and EMRL1 while satisfying the constraints in the 
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MRL0. This approach is taken because the previous subsection demonstrated that the 

distribution of the run length is positively skewed. 

 

In order to assess the side-sensitive synthetic-  chart’s performance between the 

designs based on ARL and MRL fairly, the in-control 50th percentile of the design based 

on ARL is chosen as the MRL0. For example, the in-control 50th percentile of the ARL-

based design is 211 for n = 5, 1.1 =  and 0 0.05 =  in Table 4.4. This value of 211 is 

used as the MRL0 for n = 5, 1.1 =  and 0 0.05 =  to get the optimal chart parameters of 

the design based on MRL which minimize the MRL1.  

 

The optimal chart parameters (L, LCL, UCL) and the corresponding 5th percentile 

( )05 ,l  MRL1, 95th percentile ( )95 ,l  ARL1 and ARL0 values for  the side-sensitive synthetic-

  chart that is designed based on the MRL for  5, 7, 10, 15, 20n  and 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   are shown in Table 4.14 for 0 0.05 = , 

Table 4.15 for 0 0.10 = , Table 4.16 for 0 0.15 =  and Table 4.17 for 0 0.20 = . All 

results obtained were validated through simulation as described in Section 3.8. 
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Table 4.14 Optimal chart parameters and the corresponding 05l , MRL1, 95l , 

ARL1 and ARL0 for the MRL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n ,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

 
0 0.05 =  

 L LCL UCL 
05l  MRL1 95l  ARL1 ARL0 

  n = 5 

1.1 22 0.0043 0.0898 2 22 231 63.38 350.42 

1.2 8 0.0083 0.0858 1 8 81 22.58 350.87 

1.3 4 0.0111 0.0829 1 4 42 11.78 348.18 

1.4 6 0.0093 0.0847 1 3 22 6.77 449.52 

1.5 4 0.0110 0.0831 1 2 15 4.44 360.02 

1.6 10 0.0070 0.0870 1 2 8 3.23 376.95 

1.7 1 0.0166 0.0775 1 1 13 3.91 358.78 

1.8 3 0.0121 0.0820 1 1 7 2.25 364.63 

1.9 5 0.0099 0.0841 1 1 4 1.91 369.90 

2.0 4 0.0109 0.0832 1 1 4 1.89 392.54 

  n = 7 

1.1 18 0.0140 0.0820 2 18 186 51.10 344.30 

1.2 6 0.0173 0.0787 1 6 62 17.42 350.38 

1.3 3 0.0194 0.0766 1 3 31 8.93 350.55 

1.4 3 0.0194 0.0766 1 2 17 4.94 353.50 

1.5 13 0.0146 0.0814 1 2 8 3.19 384.04 

1.6 2 0.0206 0.0754 1 1 8 2.65 360.73 

1.7 5 0.0177 0.0783 1 1 4 1.92 368.97 

1.8 23 0.0128 0.0832 1 1 4 1.90 399.81 

1.9 10 0.0154 0.0806 1 1 3 1.58 380.50 

2.0 3 0.0193 0.0767 1 1 3 1.58 420.07 

  n = 10 

1.1 16 0.0212 0.0761 2 15 151 41.38 347.30 

1.2 7 0.0231 0.0742 1 5 43 12.04 351.20 

1.3 11 0.0219 0.0754 1 3 17 5.23 379.19 

1.4 11 0.0219 0.0754 1 2 8 3.21 376.18 

1.5 3 0.0251 0.0722 1 1 7 2.29 364.56 

1.6 12 0.0216 0.0757 1 1 4 1.90 391.36 

1.7 9 0.0223 0.0750 1 1 3 1.57 386.27 

1.8 58 0.0177 0.0796 1 1 3 1.58 447.40 

1.9 9 0.0223 0.0750 1 1 2 1.29 389.26 

2.0 2 0.0260 0.0713 1 1 2 1.29 434.75 

  n = 15 

1.1 13 0.0275 0.0708 1 12 117 32.12 353.27 

1.2 3 0.0302 0.0681 1 3 34 9.64 356.54 

1.3 9 0.0280 0.0702 1 2 9 3.55 369.80 

1.4 2 0.0304 0.6781 1 1 8 2.53 466.56 

1.5 3 0.0301 0.0681 1 1 3 1.63 368.30 

1.6 40 0.0252 0.0730 1 1 3 1.58 417.73 

1.7 13 0.0273 0.0710 1 1 2 1.28 386.47 

1.8 100 0.2350 0.0748 1 1 2 1.27 469.89 

1.9 100 0.0235 0.0748 1 1 2 1.18 469.89 

2.0 1 0.0324 0.0659 1 1 1 1.05 369.78 

  n = 20 

1.1 9 0.0313 0.0674 1 9 96 26.68 350.95 

1.2 7 0.0317 0.0670 1 3 21 5.97 361.14 

1.3 1 0.0350 0.0637 1 1 13 3.92 353.25 

1.4 12 0.0307 0.0680 1 1 4 1.90 389.86 

1.5 34 0.0291 0.0696 1 1 3 1.58 412.22 

1.6 22 0.0298 0.0689 1 1 2 1.29 399.54 

1.7 100 0.0275 0.0712 1 1 2 1.22 463.76 

1.8 2 0.0337 0.0650 1 1 1 1.05 366.74 

1.9 26 0.0295 0.0692 1 1 1 1.05 402.45 

2.0 100 0.0275 0.0712 1 1 1 1.04 463.76 
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Table 4.15 Optimal chart parameters and the corresponding 05l , MRL1, 95l , 

ARL1 and ARL0 for the MRL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n ,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =    

 
0 0.10 =  

 L LCL UCL 
05l  MRL1 95l  ARL1 ARL0 

  n = 5 

1.1 22 0.0075 0.1809 2 22 232 63.83 350.44 

1.2 8 0.0158 0.1726 1 8 82 22.70 347.93 

1.3 4 0.0215 0.1669 1 4 43 11.98 352.69 

1.4 3 0.0179 0.1705 1 3 22 6.34 360.33 

1.5 4 0.0212 0.1671 1 2 15 4.50 361.57 

1.6 10 0.0132 0.1752 1 2 8 3.27 376.98 

1.7 1 0.0328 0.1555 1 1 13 3.96 357.37 

1.8 3 0.0236 0.1648 1 1 7 2.27 363.24 

1.9 5 0.0192 0.1692 1 1 4 1.93 368.48 

2.0 14 0.0101 0.1783 1 1 4 1.89 391.05 

  n = 7 

1.1 18 0.0271 0.1650 2 18 189 66.88 349.08 

1.2 6 0.0340 0.1582 1 6 63 17.65 282.95 

1.3 3 0.0384 0.1538 1 3 32 9.03 350.68 

1.4 3 0.0383 0.1539 1 2 17 5.02 356.58 

1.5 12 0.0291 0.1631 1 2 8 3.19 378.08 

1.6 1 0.0453 0.1469 1 1 11 3.47 358.42 

1.7 4 0.0362 0.1559 1 1 4 1.95 368.15 

1.8 19 0.0259 0.1663 1 1 4 1.89 397.68 

1.9 8 0.0316 0.1606 1 1 3 1.57 379.96 

2.0 31 0.0226 0.1696 1 1 3 1.58 417.48 

  n = 10 

1.1 16 0.0419 0.1528 2 15 151 41.57 347.66 

1.2 7 0.0457 0.1490 1 5 44 12.26 357.39 

1.3 11 0.0433 0.1514 1 3 18 5.27 370.45 

1.4 10 0.0437 0.1510 1 2 8 3.23 376.30 

1.5 2 0.0519 0.1429 1 1 8 2.52 364.67 

1.6 10 0.0436 0.1511 1 1 4 1.88 380.80 

1.7 8 0.0448 0.1500 1 1 3 1.58 377.21 

1.8 48 0.0357 0.1591 1 1 3 1.58 432.04 

1.9 7 0.0454 0.1493 1 1 2 1.28 379.76 

2.0 34 0.0374 0.1573 1 1 2 1.29 417.35 

  n = 15 

1.1 13 0.0546 0.1420 1 12 117 32.11 350.62 

1.2 8 0.0563 0.1403 1 4 29 8.06 362.41 

1.3 8 0.0562 0.1404 1 2 11 3.59 371.37 

1.4 3 0.0600 0.1366 1 1 7 2.27 364.01 

1.5 3 0.0599 0.1366 1 1 3 1.66 371.37 

1.6 33 0.0507 0.1459 1 1 3 1.58 411.33 

1.7 11 0.0549 0.1417 1 1 2 1.29 383.81 

1.8 97 0.0465 0.1501 1 1 2 1.29 472.52 

1.9 100 0.0464 0.1502 1 1 2 1.19 474.78 

2.0 2 0.0616 0.1350 1 1 1 1.05 370.04 

  n = 20 

1.1 9 0.0624 0.1351 1 9 96 26.71 348.23 

1.2 6 0.0636 0.1339 1 3 22 6.16 362.56 

1.3 11 0.0615 0.1360 1 2 7 2.87 379.74 

1.4 10 0.0617 0.1357 1 1 4 1.88 385.70 

1.5 29 0.0584 0.1391 1 1 3 1.58 406.31 

1.6 17 0.0601 0.1374 1 1 2 1.28 392.49 

1.7 100 0.0545 0.1430 1 1 2 1.23 467.28 

1.8 2 0.0672 0.1303 1 1 1 1.05 368.29 

1.9 18 0.0599 0.1376 1 1 1 1.05 395.28 

2.0 100 0.0545 0.1430 1 1 1 1.05 467.28 
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Table 4.16 Optimal chart parameters and the corresponding 05l , MRL1, 95l , 

ARL1 and ARL0 for the MRL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n ,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

 
0 0.15 =  

 L LCL UCL 
05l  MRL1 95l  ARL1 ARL0 

  n = 5 

1.1 22 0.0086 0.2747 2 22 234 64.41 348.92 

1.2 8 0.0214 0.2619 1 8 84 23.16 349.48 

1.3 4 0.0305 0.2528 1 4 43 12.19 351.31 

1.4 5 0.0272 0.2561 1 3 24 6.68 361.14 

1.5 3 0.0341 0.2493 1 2 17 4.91 358.92 

1.6 9 0.0189 0.2644 1 2 8 3.31 375.23 

1.7 6 0.0244 0.2589 1 2 6 2.65 370.80 

1.8 2 0.0392 0.2441 1 1 8 2.54 363.05 

1.9 4 0.0298 0.2535 1 1 4 1.98 369.06 

2.0 11 0.0159 0.2674 1 1 4 1.89 384.73 

  n = 7 

1.1 18 0.0387 0.2500 2 18 181 52.57 349.34 

1.2 6 0.0495 0.2392 1 6 64 17.85 350.77 

1.3 3 0.0564 0.2324 1 3 32 9.22 352.33 

1.4 3 0.0562 0.2326 1 2 18 5.15 359.71 

1.5 11 0.0426 0.2461 1 2 8 3.24 379.66 

1.6 1 0.0672 0.2216 1 1 12 3.56 358.51 

1.7 4 0.0530 0.2357 1 1 4 1.99 368.35 

1.8 15 0.0392 0.2495 1 1 4 1.89 392.10 

1.9 6 0.0488 0.2400 1 1 3 1.57 376.07 

2.0 22 0.0352 0.2535 1 1 3 1.58 403.49 

  n = 10 

1.1 15 0.0619 0.2305 2 15 153 42.25 348.29 

1.2 6 0.0687 0.2237 1 5 46 12.78 354.23 

1.3 10 0.0645 0.2280 1 3 18 5.37 370.70 

1.4 9 0.0652 0.2273 1 2 8 3.27 374.94 

1.5 2 0.0770 0.2154 1 1 8 2.58 363.36 

1.6 8 0.6596 0.2265 1 1 4 1.88 379.07 

1.7 6 0.0682 0.2242 1 1 3 1.57 375.06 

1.8 34 0.0544 0.2381 1 1 3 1.58 419.58 

1.9 5 0.0696 0.2229 1 1 2 1.29 377.31 

2.0 22 0.0578 0.2346 1 1 2 1.29 405.10 

  n = 15 

1.1 13 0.0810 0.2141 1 12 118 32.32 349.67 

1.2 8 0.0835 0.2116 1 4 29 8.24 364.31 

1.3 8 0.0842 0.2109 1 2 11 3.56 326.92 

1.4 2 0.0919 0.2032 1 1 8 2.52 361.40 

1.5 18 0.0784 0.2167 1 1 4 1.90 394.51 

1.6 24 0.0766 0.2185 1 1 3 1.58 405.19 

1.7 8 0.0832 0.2119 1 1 2 1.29 382.23 

1.8 62 0.0710 0.2242 1 1 2 1.29 445.28 

1.9 100 0.0681 0.2270 1 1 2 1.21 477.04 

2.0 1 0.0962 0.1989 1 1 1 1.10 366.66 

  n = 20 

1.1 12 0.0914 0.2050 1 10 95 26.16 354.67 

1.2 6 0.0947 0.2017 1 3 22 6.30 362.90 

1.3 10 0.0920 0.2044 1 2 7 2.90 375.74 

1.4 8 0.0930 0.2034 1 1 4 1.88 379.89 

1.5 22 0.0880 0.2084 1 1 3 1.58 399.44 

1.6 12 0.0910 0.2054 1 1 2 1.28 386.27 

1.7 100 0.0805 0.2159 1 1 2 1.26 473.42 

1.8 1 0.1040 0.1924 1 1 1 1.10 367.95 

1.9 10 0.0918 0.2046 1 1 1 1.05 387.69 

2.0 87 0.0812 0.2152 1 1 1 1.05 463.42 
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Table 4.17 Optimal chart parameters and the corresponding 05l , MRL1, 95l , 

ARL1 and ARL0 for the MRL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n ,  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =  

 
0 0.20 =  

 L LCL UCL 
05l  MRL1 95l  ARL1 ARL0 

  n = 5 

1.1 23 0.0054 0.3737 2 23 239 65.53 350.16 

1.2 8 0.0245 0.3546 1 8 85 23.70 348.03 

1.3 4 0.0373 0.3418 1 4 44 12.53 351.41 

1.4 5 0.0326 0.3465 1 3 24 6.89 359.74 

1.5 3 0.0425 0.3367 1 2 18 5.07 357.56 

1.6 11 0.0169 0.3622 1 2 9 3.47 378.75 

1.7 12 0.0152 0.3640 1 2 7 2.88 381.90 

1.8 2 0.0498 0.3293 1 1 8 2.62 363.18 

1.9 5 0.0320 0.3471 1 1 5 2.03 371.59 

2.0 8 0.0227 0.3564 1 1 4 1.89 379.37 

  n = 7 

1.1 20 0.0463 0.3397 2 19 196 53.69 353.75 

1.2 6 0.0633 0.3227 1 6 65 18.25 349.54 

1.3 3 0.0729 0.3131 1 3 33 9.50 354.03 

1.4 2 0.0786 0.3074 1 2 21 6.00 353.82 

1.5 9 0.0564 0.3296 1 2 8 3.28 376.36 

1.6 1 0.0882 0.2978 1 1 12 3.69 357.18 

1.7 5 0.0650 0.3210 1 1 5 2.05 371.07 

1.8 11 0.0533 0.3327 1 1 4 1.89 384.40 

1.9 4 0.0682 0.3178 1 1 3 1.59 370.07 

2.0 14 0.0496 0.3364 1 1 3 1.58 392.30 

  n = 10 

1.1 15 0.0800 0.3106 2 15 156 42.92 348.86 

1.2 6 0.0896 0.3010 1 5 47 13.08 353.13 

1.3 8 0.0860 0.3046 1 3 19 5.56 369.05 

1.4 8 0.0859 0.3047 1 2 8 3.35 372.04 

1.5 1 0.1090 0.2816 1 1 11 3.42 359.77 

1.6 6 0.0889 0.3017 1 1 4 1.89 375.45 

1.7 4 0.0934 0.2972 1 1 3 1.59 370.79 

1.8 22 0.0742 0.3165 1 1 3 1.58 405.72 

1.9 3 0.0965 0.2941 1 1 2 1.29 372.53 

2.0 13 0.0801 0.3105 1 1 2 1.29 392.74 

  n = 15 

1.1 13 0.1062 0.2878 1 12 119 32.80 350.37 

1.2 7 0.1109 0.2831 1 4 31 8.60 362.98 

1.3 6 0.1120 0.2820 1 2 13 3.80 369.94 

1.4 2 0.1214 0.2726 1 1 8 2.61 363.06 

1.5 13 0.1053 0.2887 1 1 4 1.89 389.66 

1.6 17 0.1029 0.2910 1 1 3 1.58 398.55 

1.7 5 0.1133 0.2807 1 1 2 1.28 378.20 

1.8 35 0.0969 0.2971 1 1 2 1.29 420.50 

1.9 100 0.0880 0.3060 1 1 2 1.24 479.46 

2.0 100 0.0880 0.3060 1 1 2 1.17 479.46 

  n = 20 

1.1 11 0.1212 0.2744 1 10 97 26.64 349.34 

1.2 5 0.1263 0.2692 1 3 24 6.67 359.81 

1.3 8 0.1228 0.2727 1 2 7 2.93 374.45 

1.4 7 0.1237 0.2719 1 1 4 1.91 377.11 

1.5 15 0.1183 0.2773 1 1 3 1.58 394.40 

1.6 8 0.1227 0.2729 1 1 2 1.28 383.41 

1.7 94 0.1056 0.2900 1 1 2 1.29 470.39 

1.8 100 0.1051 0.2904 1 1 2 1.18 475.02 

1.9 5 0.1260 0.2696 1 1 1 1.05 377.59 

2.0 36 0.1122 0.2834 1 1 1 1.05 419.33 
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Tables 4.14 until 4.17 demonstrate that the optimal chart parameters (L, LCL, UCL) 

for the side-sensitive synthetic-  chart which is designed based on MRL are relatively 

smaller than those for the ARL-based design, especially for small shift sizes such as 

 1.1, 1.2   for all sample sizes and in-control coefficients of variations. In the design 

based on MRL, the optimal L is smaller than the optimal L in the design based on ARL. 

For instance, in Table 4.14, when n = 5, 1.1 =  and 0 0.05 = , the design based on MRL 

suggests an optimal L, of 22 while the design based on ARL in Table 4.1 suggests an 

optimal L, of 42. This smaller L also results in a tighter conforming region, i.e. the region 

between the LCL and UCL. For instance, in Table 4.14, when n = 5, 1.1 =  and 0 0.05, =  

the design based on MRL suggests optimal LCL and UCL of 0.0043 and 0.0898, 

respectively, while the design based on ARL in Table 4.1 suggests an optimal LCL and 

UCL of 0.0017 and 0.0924, respectively. Consequently, it is evident that the side-sensitive 

synthetic-  chart that is designed based on MRL generates a tighter conforming region 

than the design based on ARL for small shift sizes. 

 

Upon comparing Tables 4.8 until 4.11 for the side-sensitive synthetic-  chart that is 

designed based on ARL with Tables 4.14 until 4.17 for the design based on MRL of the 

same chart, it is noticeable that the design based on MRL yields smaller MRL1 than the 

design based on ARL, particularly for smaller shift sizes. For instance, in Table 4.14, 

when n = 5, 1.1 =  and 0 0.05 = , the MRL1 for the design based on MRL is 22 while in 

Table 4.8, the MRL1 is 29 for the design based on ARL. This indicates that the design 

based on MRL performs better than the ARL-based design in terms of MRL1, while both 

have the same MRL0. Additionally, the design based on MRL provides a smaller 

difference between the 5th and 95th percentiles for smaller shift sizes, suggesting that it 

has less spread and variation than the design based on ARL. For instance, the difference 
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for n = 5, 1.1 =  and 0 0.05 =  is 229 in Table 4.14 for the design based on MRL and 

237 in Table 4.8 for the design based on ARL.  

 

In terms of the performance of ARL1 obtained in Tables 4.1 and 4.2, and 4.14 to 4.17, 

it can be observed that both MRL and ARL-based designs provide similar results in 

general. In fact, the design based on MRL is found to have a smaller ARL1 compared to 

the design based on ARL for small shift sizes. For instance, when n = 5, 1.1 =  and 

0 0.05 =  for both designs, the MRL-based design produces an ARL1 of 63.38 in Table 

4.14 while the ARL-based design produces an ARL1 of 64.74 in Table 4.1. This result 

suggests that the design based on MRL is superior in detecting shifts compared to the 

ARL-based design because it generates a similar average quantity of samples to spot the 

shift, but with a smaller MRL1.  

 

The side-sensitive synthetic-  chart that is designed based on MRL does not have a 

fixed value of ARL0, unlike the design based on ARL for the same chart which is fixed at 

370.4 for all cases. The values of ARL0 for the design based on MRL are calculated by 

inputting the optimal chart parameters (L, LCL, UCL) into Equation (3.42). Note that the 

shift size is set as 1 for all cases. By referring to the columns of ARL0 in Tables 4.14 to 

4.17, it is observed that the obtained ARL0 for MRL-based design generally lies between 

282.95 and 479.46. The ARL0 values for the design based on MRL are generally observed 

to be slightly lower than those for the design based on ARL in most cases, although the 

difference is not significant. 

 

Both designs based on MRL and ARL need to specify the values of shift size to obtain 

the optimal chart parameters. However, in practical scenarios, it can be difficult to do so. 

To address this issue, the side-sensitive synthetic-  chart which is designed based on 
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EMRL is introduced in this thesis, with a range of shift sizes fixed as ( ) ( min max,  1,  2  =  

since this thesis focuses solely on detecting an upward shift as explained in Section 4.1 

for EARL. For the design based on EMRL, the in-control 50th expected percentile of the 

side-sensitive synthetic-  chart from Table 4.12, which is obtained by adopting the 

optimal chart parameters that minimize the EARL, is selected as the MRL0. Table 4.18 

presents the optimal chart parameters (L, LCL, UCL), and the corresponding 5th expected 

percentile ( )( )05E l , EMRL1, 95th expected percentile ( )( )95E l , EARL1 and ARL0 values 

for  5, 7, 10, 15, 20n  and  0 0.05, 0.10, 0.15, 0.20  .    

 

Table 4.18 Optimal chart parameters and the corresponding ( )05E l , EMRL1, 

( )95E l , EARL and ARL0 for the EMRL-based side-sensitive synthetic-  chart for 

 5, 7, 10, 15, 20n ,  0 0.05, 0.10, 0.15, 0.20   and ( ) ( min max,  1,  2  =  

 L LCL UCL ( )05E l  EMRL1 ( )95E l  EARL1 ARL0 

n 
0 0.05 =  

5 7 0.0089 0.0852 1.10 9.90 57.99 17.20 344.46 

7 15 0.0144 0.0816 1.12 7.49 46.17 13.58 356.84 

10 14 0.0215 0.0758 1.12 5.90 37.05 11.02 349.06 

15 12 0.0276 0.0706 1.05 5.03 29.72 8.97 354.87 

20 14 0.0306 0.0681 1.05 4.25 24.54 7.48 354.92 

n 
0 0.10 =  

5 6 0.0183 0.1701 1.05 10.09 59.04 17.59 343.97 

7 14 0.0285 0.1636 1.12 7.65 46.57 13.71 357.06 

10 14 0.0424 0.1523 1.12 5.95 37.42 11.12 352.43 

15 12 0.0549 0.1417 1.05 4.96 29.43 8.88 347.68 

20 10 0.0621 0.1354 1.05 4.37 25.05 7.65 349.74 

n 
0 0.15 =  

5 6 0.0255 0.2578 1.05 10.16 59.60 17.73 342.56 

7 13 0.0417 0.2470 1.12 7.70 47.08 13.89 355.78 

10 14 0.0622 0.2302 1.12 6.02 38.15 11.30 357.46 

15 11 0.0819 0.2132 1.05 5.03 30.26 9.07 352.74 

20 13 0.0911 0.2053 1.05 4.29 24.79 7.58 354.54 

n 
0 0.20 =  

5 12 0.0167 0.3624 1.12 9.58 59.36 17.37 353.33 

7 12 0.0533 0.3327 1.12 7.86 47.96 14.16 354.46 

10 8 0.0867 0.3039 1.05 6.71 39.46 11.79 348.10 

15 7 0.1113 0.2826 1.05 5.54 31.25 9.47 345.07 

20 12 0.1205 0.2750 1.05 4.34 25.07 7.68 353.83 
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Table 4.18 displays that the optimal L for the design based on EMRL is consistently 

smaller than the design based on EARL in Table 4.3. For instance, when n = 5 and 

0 0.05 = , the optimal L is 7 for EMRL-based design in Table 4.18 whereas it is 25 for 

EARL-based design in Table 4.3. In addition, EMRL-based design generates a smaller 

conforming region with a larger LCL and a smaller UCL than EARL-based design for all 

cases. For example, in Table 4.18, the optimal chart parameters, LCL, UCL for EMRL-

based design are 0.0089 and 0.0852, respectively, while in Table 4.3, the optimal chart 

parameters, LCL, UCL is 0.0036 and 0.0905, respectively, for EARL-based design. 

However, Tables 4.13 and 4.18 do not show any obvious difference between EMRL1, 

( )05E l , and ( )95E l  for both designs. Also, the ARL0 of the EMRL-based design in the 

last column of Table 4.18 is a little smaller than that of the design based on EARL, which 

is 370.4, but the difference is not significant. Thus, both designs of the side-sensitive 

synthetic-  chart based on EMRL and EARL shows similar performance. 

 

4.4 Comparison with Other Coefficient of Variation Charts 

The effectiveness of the proposed side-sensitive synthetic-  chart was evaluated 

against three frequently used control charts based on the coefficient of variation, namely 

the Shewhart- , EWMA-
2  and non-side-sensitive synthetic-  charts. To compare 

these charts, five criteria were employed in this subsection. Initially, the optimal chart 

parameters of the side-sensitive synthetic-  chart which is designed based on ARL were 

compared with those of the non-side-sensitive synthetic-  chart. Then, the performance 

of all four control charts was evaluated based on their ARL1 and SDRL1. The EARL1 

performance of the charts was compared in the third comparison, followed by a fourth 

comparison based on the performance of the 5th percentile, 95th percentile and MRL1. 

Lastly, the performance of the charts was assessed in terms of the EMRL1. 
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Evaluation between the design based on ARL of the side-sensitive synthetic-  and the 

non-side-sensitive synthetic-  charts in terms of the optimal chart parameters (L, LCL, 

UCL) obtained for  5, 7, 10, 15, 20n  and 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   are shown in Table 4.19 for 0 0.05 = , 

Table 4.20 for 0 0.10 = , Table 4.21 for 0 0.15 =  and Table 4.22 for 0 0.20 = . All 

results obtained were validated using simulation with 10,000 trials. 

 

Table 4.19 Comparison of the optimal chart parameters (L, LCL, UCL) of the 

ARL-based design of the side-sensitive synthetic-  (SS Syn) and non-side-sensitive 

synthetic-  charts (NSS Syn) for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

  
0 0.05 =  

SS Syn NSS Syn 

L LCL UCL L LCL UCL 

 n = 5 

1.1 42 0.0017 0.0924 74 0.0103 0.0995 

1.2 23 0.0039 0.0902 39 0.0111 0.0974 

1.3 15 0.0055 0.0885 24 0.0117 0.0957 

1.4 11 0.0067 0.0873 16 0.0123 0.0943 

1.5 8 0.0080 0.0860 12 0.0128 0.0933 

1.6 7 0.0086 0.0855 9 0.0132 0.0922 

1.7 6 0.0092 0.0849 7 0.0137 0.0912 

1.8 5 0.0099 0.0841 6 0.0139 0.0906 

1.9 5 0.0099 0.0841 6 0.0139 0.0906 

2.0 4 0.0109 0.0832 5 0.0143 0.0899 

 n = 7 

1.1 37 0.0116 0.0843 67 0.0158 0.0901 

1.2 19 0.0136 0.0824 32 0.0167 0.0882 

1.3 12 0.0150 0.0810 18 0.0176 0.0866 

1.4 9 0.0158 0.0801 12 0.0182 0.0854 

1.5 7 0.0166 0.0794 8 0.0189 0.0842 

1.6 5 0.0176 0.0783 7 0.0191 0.0838 

1.7 5 0.0176 0.0783 5 0.0197 0.0828 

1.8 4 0.0183 0.0776 5 0.0197 0.0828 

1.9 4 0.0183 0.0776 4 0.0201 0.0821 

2.0 3 0.0192 0.0767 4 0.0201 0.0821 
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Table 4.19, continued 

  
0 0.05 =  

SS Syn NSS Syn 

L LCL UCL L LCL UCL 

 n = 10 

1.1 35 0.0193 0.0780 56 0.0212 0.0823 

1.2 16 0.0210 0.0762 24 0.0223 0.0805 

1.3 10 0.0221 0.0752 13 0.0232 0.0791 

1.4 7 0.0230 0.0743 8 0.0239 0.0780 

1.5 5 0.0238 0.0735 6 0.0244 0.0773 

1.6 4 0.0243 0.0730 5 0.0246 0.0768 

1.7 4 0.0243 0.0730 4 0.0250 0.0763 

1.8 3 0.0250 0.0723 3 0.0255 0.0755 

1.9 3 0.0250 0.0723 3 0.0255 0.0755 

2.0 3 0.0250 0.0723 3 0.0255 0.0755 

 n = 15 

1.1 31 0.0259 0.0724 47 0.0265 0.0756 

1.2 13 0.0274 0.0709 17 0.0277 0.0738 

1.3 7 0.0285 0.0697 9 0.0285 0.0727 

1.4 5 0.0286 0.0696 6 0.0291 0.0719 

1.5 4 0.0296 0.0687 4 0.0297 0.0711 

1.6 3 0.0301 0.0681 3 0.0301 0.0705 

1.7 3 0.0301 0.0681 3 0.0301 0.0705 

1.8 2 0.0309 0.0673 3 0.0301 0.0705 

1.9 2 0.0309 0.0673 2 0.0307 0.0697 

2.0 2 0.0309 0.0673 2 0.0307 0.0697 

 n = 20 

1.1 27 0.0296 0.0691 39 0.0298 0.0717 

1.2 10 0.0311 0.0676 13 0.0310 0.0700 

1.3 6 0.0319 0.0668 7 0.0317 0.0690 

1.4 4 0.0325 0.0662 4 0.0324 0.0681 

1.5 3 0.0330 0.0657 3 0.0328 0.0676 

1.6 2 0.0330 0.0657 3 0.0328 0.0676 

1.7 2 0.0337 0.0650 2 0.0333 0.0669 

1.8 2 0.0337 0.0650 2 0.0333 0.0669 

1.9 2 0.0337 0.0650 2 0.0333 0.0669 

2.0 2 0.0337 0.0650 2 0.0333 0.0669 
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Table 4.20 Comparison of the optimal chart parameters (L, LCL, UCL) of the 

ARL-based design of the side-sensitive synthetic-  (SS Syn) and non-side-sensitive 

synthetic-  charts (NSS Syn) for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =  

  
0 0.10 =  

SS Syn NSS Syn 

L LCL UCL L LCL UCL 

 n = 5 

1.1 42 0.0021 0.1863 74 0.0205 0.2009 

1.2 23 0.0067 0.1817 41 0.0220 0.1969 

1.3 15 0.0100 0.1784 24 0.0234 0.1932 

1.4 11 0.0126 0.1758 16 0.0246 0.1902 

1.5 8 0.0152 0.1732 12 0.0255 0.1880 

1.6 7 0.0163 0.1721 9 0.0264 0.1858 

1.7 6 0.0176 0.1708 8 0.0268 0.1849 

1.8 5 0.0191 0.1692 6 0.0278 0.1827 

1.9 5 0.0191 0.1692 6 0.0278 0.1827 

2.0 4 0.0210 0.1674 5 0.0285 0.1812 

 n = 7 

1.1 36 0.0225 0.1696 67 0.0315 0.1816 

1.2 19 0.0264 0.1658 32 0.0334 0.1777 

1.3 12 0.0292 0.1629 18 0.0351 0.1744 

1.4 9 0.0310 0.1611 12 0.0363 0.1720 

1.5 7 0.0326 0.1595 8 0.0377 0.1695 

1.6 5 0.0347 0.1574 7 0.0381 0.1687 

1.7 5 0.0347 0.1574 5 0.0393 0.1665 

1.8 4 0.0362 0.1560 5 0.0393 0.1665 

1.9 4 0.0362 0.1560 4 0.0401 0.1651 

2.0 3 0.0380 0.1542 4 0.0401 0.1651 

 n = 10 

1.1 35 0.0379 0.1568 56 0.0423 0.1657 

1.2 16 0.0415 0.1532 25 0.0444 0.1622 

1.3 10 0.0438 0.1509 13 0.0462 0.1591 

1.4 7 0.0455 0.1492 8 0.0477 0.1568 

1.5 5 0.0472 0.1476 6 0.0486 0.1553 

1.6 4 0.0483 0.1464 5 0.0492 0.1544 

1.7 4 0.0483 0.1464 4 0.0499 0.1532 

1.8 3 0.0497 0.1450 3 0.0509 0.1517 

1.9 3 0.0497 0.1450 3 0.0509 0.1517 

2.0 3 0.0497 0.1450 3 0.0509 0.1517 

 n = 15 

1.1 31 0.0513 0.1453 47 0.0529 0.1519 

1.2 13 0.0544 0.1422 17 0.0553 0.1483 

1.3 7 0.0567 0.1399 9 0.0569 0.1459 

1.4 5 0.0580 0.1386 6 0.0580 0.1443 

1.5 4 0.0588 0.1378 4 0.0592 0.1427 

1.6 3 0.0600 0.1366 3 0.0600 0.1415 

1.7 3 0.0600 0.1366 3 0.0600 0.1415 

1.8 2 0.0616 0.1350 3 0.0600 0.1415 

1.9 2 0.0616 0.1350 2 0.0613 0.1398 

2.0 2 0.0616 0.1350 2 0.0613 0.1398 

 n = 20 

1.1 27 0.0589 0.1386 39 0.0594 0.1439 

1.2 10 0.0619 0.1356 14 0.0616 0.1408 

1.3 6 0.0635 0.1340 7 0.0633 0.1386 

1.4 4 0.0648 0.1327 4 0.0647 0.1367 

1.5 3 0.0658 0.1317 3 0.0655 0.1357 

1.6 3 0.0658 0.1317 3 0.0655 0.1357 

1.7 2 0.0672 0.1303 2 0.0666 0.1342 

1.8 2 0.0672 0.1303 2 0.0666 0.1342 

1.9 2 0.0672 0.1303 2 0.0666 0.1342 

2.0 2 0.0672 0.1303 2 0.0666 0.1342 
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Table 4.21 Comparison of the optimal chart parameters (L, LCL, UCL) of the 

ARL-based design of the side-sensitive synthetic-  (SS Syn) and non-side-sensitive 

synthetic-  charts (NSS Syn) for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

  
0 0.15 =  

SS Syn NSS Syn 

L LCL UCL L LCL UCL 

 n = 5 

1.1 42 0.0001 0.2832 74 0.0307 0.3063 

1.2 23 0.0072 0.2761 41 0.0329 0.3000 

1.3 15 0.0125 0.2708 24 0.0350 0.2941 

1.4 11 0.0165 0.2669 16 0.0368 0.2894 

1.5 8 0.0206 0.2627 12 0.0381 0.2860 

1.6 7 0.0224 0.2610 9 0.0395 0.2825 

1.7 6 0.0244 0.2589 8 0.0401 0.2811 

1.8 5 0.0268 0.2565 7 0.0408 0.2795 

1.9 5 0.0268 0.2565 6 0.0416 0.2775 

2.0 4 0.0298 0.2535 5 0.0425 0.2752 

 n = 7 

1.1 36 0.0316 0.2572 67 0.0470 0.2760 

1.2 19 0.0376 0.2512 32 0.0499 0.2698 

1.3 12 0.0421 0.2467 18 0.0524 0.2646 

1.4 9 0.0449 0.2439 12 0.0543 0.2609 

1.5 7 0.0474 0.2414 9 0.0557 0.2581 

1.6 5 0.0507 0.2380 7 0.0569 0.2557 

1.7 5 0.0507 0.2380 6 0.0577 0.2542 

1.8 4 0.0530 0.2358 5 0.0587 0.2524 

1.9 4 0.0530 0.2358 4 0.0599 0.2501 

2.0 3 0.0559 0.2329 4 0.0599 0.2501 

 n = 10 

1.1 34 0.0555 0.2370 56 0.0632 0.2511 

1.2 16 0.0609 0.2315 25 0.0663 0.2456 

1.3 10 0.0645 0.2280 13 0.0691 0.2409 

1.4 7 0.0672 0.2253 9 0.0707 0.2381 

1.5 5 0.0697 0.2227 6 0.0726 0.2350 

1.6 4 0.0715 0.2210 5 0.0735 0.2335 

1.7 4 0.0715 0.2210 4 0.0746 0.2317 

1.8 3 0.0737 0.2188 4 0.0746 0.2317 

1.9 3 0.0737 0.2188 3 0.0761 0.2294 

2.0 3 0.0737 0.2188 3 0.0761 0.2294 

 n = 15 

1.1 30 0.0760 0.2191 48 0.0789 0.2297 

1.2 13 0.0806 0.2145 18 0.0824 0.2244 

1.3 8 0.0842 0.2109 9 0.0851 0.2204 

1.4 5 0.0862 0.2089 6 0.0868 0.2180 

1.5 4 0.0875 0.2076 4 0.0885 0.2155 

1.6 3 0.0893 0.2059 4 0.0885 0.2155 

1.7 3 0.0893 0.2059 3 0.0898 0.2136 

1.8 2 0.0918 0.2034 3 0.0898 0.2136 

1.9 2 0.0918 0.2034 2 0.0916 0.2110 

2.0 2 0.0918 0.2034 2 0.0916 0.2110 

 n = 20 

1.1 27 0.0875 0.2090 39 0.0888 0.2172 

1.2 10 0.0921 0.2043 14 0.0921 0.2125 

1.3 6 0.0946 0.2018 7 0.0946 0.2090 

1.4 4 0.0966 0.1998 5 0.0959 0.2073 

1.5 3 0.0981 0.1983 3 0.0979 0.2046 

1.6 3 0.0981 0.1983 3 0.0979 0.2046 

1.7 2 0.1002 0.1962 2 0.0995 0.2024 

1.8 2 0.1002 0.1962 2 0.0995 0.2024 

1.9 2 0.1002 0.1962 2 0.0995 0.2024 

2.0 2 0.1002 0.1962 2 0.0995 0.2024 
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Table 4.22 Comparison of the optimal chart parameters (L, LCL, UCL) of the 

ARL-based design of the side-sensitive synthetic-  (SS Syn) and non-side-sensitive 

synthetic-  charts (NSS Syn) for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =  

  
0 0.20 =  

SS Syn NSS Syn 

L LCL UCL L LCL UCL 

 n = 5 

1.1 42 0.0059 0.3850 76 0.0406 0.4186 

1.2 24 0.0035 0.3756 42 0.0435 0.4053 

1.3 15 0.0118 0.3674 25 0.0462 0.4012 

1.4 11 0.0173 0.3618 17 0.0485 0.3949 

1.5 9 0.0210 0.3581 12 0.0506 0.3890 

1.6 7 0.0257 0.3534 10 0.0517 0.3859 

1.7 6 0.0286 0.3505 8 0.0532 0.3820 

1.8 5 0.0320 0.3471 7 0.0541 0.3796 

1.9 5 0.0320 0.3471 6 0.0552 0.3769 

2.0 4 0.0363 0.3428 5 0.0565 0.3737 

 n = 7 

1.1 36 0.0377 0.3483 67 0.0623 0.3750 

1.2 19 0.0463 0.3397 33 0.0660 0.3665 

1.3 12 0.0526 0.3334 19 0.0692 0.3595 

1.4 9 0.0567 0.3293 12 0.0720 0.3534 

1.5 7 0.0602 0.3258 9 0.0739 0.3496 

1.6 6 0.0624 0.3236 7 0.0756 0.3461 

1.7 5 0.0650 0.3210 6 0.0766 0.3440 

1.8 4 0.0682 0.3178 5 0.0779 0.3414 

1.9 4 0.0682 0.3178 4 0.0795 0.3383 

2.0 3 0.0722 0.3137 4 0.0795 0.3383 

 n = 10 

1.1 33 0.0711 0.3195 60 0.0835 0.3404 

1.2 16 0.0789 0.3120 26 0.0877 0.3324 

1.3 10 0.0835 0.3071 14 0.0912 0.3261 

1.4 7 0.0874 0.3032 9 0.0938 0.3214 

1.5 5 0.0910 0.2996 6 0.0964 0.3170 

1.6 4 0.0935 0.2972 5 0.0975 0.3150 

1.7 4 0.0935 0.2972 4 0.0990 0.3125 

1.8 3 0.0966 0.2941 4 0.0990 0.3125 

1.9 3 0.0966 0.2941 3 0.1010 0.3093 

2.0 3 0.0966 0.2941 3 0.1010 0.3093 

 n = 15 

1.1 30 0.0992 0.2948 48 0.1047 0.3097 

1.2 13 0.1057 0.2883 18 0.1093 0.3023 

1.3 7 0.1107 0.2833 10 0.1124 0.2976 

1.4 5 0.1135 0.2805 6 0.1151 0.2933 

1.5 4 0.1153 0.2787 5 0.1162 0.2918 

1.6 3 0.1177 0.2763 4 0.1175 0.2898 

1.7 3 0.1177 0.2763 3 0.1192 0.2873 

1.8 3 0.1177 0.2763 3 0.1192 0.2873 

1.9 2 0.1212 0.2728 2 0.1216 0.2837 

2.0 2 0.1212 0.2728 2 0.1216 0.2837 

 n = 20 

1.1 27 0.1149 0.2806 42 0.1175 0.2928 

1.2 11 0.1208 0.2748 14 0.1223 0.2857 

1.3 6 0.1249 0.2707 7 0.1256 0.2809 

1.4 4 0.1277 0.2679 5 0.1273 0.2785 

1.5 3 0.1297 0.2659 4 0.1285 0.2769 

1.6 3 0.1297 0.2659 3 0.1300 0.2748 

1.7 2 0.1326 0.2629 3 0.1300 0.2748 

1.8 2 0.1326 0.2629 2 0.1322 0.2717 

1.9 2 0.1326 0.2629 2 0.1322 0.2717 

2.0 2 0.1326 0.2629 2 0.1322 0.2717 
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Tables 4.19 to 4.22 indicate the side-sensitive synthetic-  chart that is designed based 

on ARL has smaller optimal chart parameters, namely L, LCL and UCL, compared to 

those optimal chart parameters of the non-side-sensitive synthetic-  chart, particularly 

for small shift sizes. For the side-sensitive synthetic-  chart, the values of optimal L, 

LCL and UCL are 42, 0.0017 and 0.0924, respectively, when n = 5, 1.1 =  and 0 0.05, =  

while for the non-side-sensitive synthetic-  chart, those optimal values are 74, 0.0103 

and 0.0995, respectively (see Table 4.19). In addition, the conforming region which is the 

region between the LCL and UCL of the side-sensitive synthetic-  chart, is also tighter 

compared to that of the non-side-sensitive synthetic-  chart. These observations indicate 

that the side-sensitive synthetic-  chart which is designed based on the ARL has a tighter 

conforming region compared to the non-side-sensitive synthetic-  chart. 

 

Next, a comparison of the ARL1 and SDRL1 of the Shewhart- , EWMA-
2 , non-side-

sensitive synthetic- , and side-sensitive synthetic-  charts with the same values of 

 5, 7, 10, 15, 20n  and  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   is presented 

in Table 4.23 for 0 0.05 = , Table 4.24 for 0 0.10 = , Table 4.25 for 0 0.15 =  and Table 

4.26 for 0 0.20 = . All results obtained were verified through simulation with 10,000 

trials. 
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Table 4.23 The ARL1 and SDRL1 of the ARL-based design of the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

  
0 0.05 =  

Best Chart Shewhart EWMA NSS Syn SS Syn 

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1   ARL1 SDRL1 

 n = 5  

1.1 159.86 159.36 51.03 37.11 115.42 151.33 64.74 84.69 EWMA 

1.2 64.69 64.19 20.38 14.63 37.67 48.39 21.35 27.11 EWMA 

1.3 30.61 30.10 11.80 8.10 16.38 20.11 10.18 12.25 SS Syn 

1.4 16.92 16.41 7.86 5.38 8.97 10.44 6.07 6.83 SS Syn 

1.5 10.57 10.06 5.76 3.93 5.76 6.29 4.18 4.44 SS Syn 

1.6 7.26 6.74 4.49 3.05 4.12 4.27 3.16 3.09 SS Syn 

1.7 5.36 4.84 3.66 2.48 3.13 3.13 2.56 2.32 SS Syn 

1.8 4.19 3.65 3.09 2.07 2.62 2.40 2.17 1.85 SS Syn 

1.9 3.42 2.88 2.67 1.77 2.24 1.86 1.91 1.47 SS Syn 

2.0 2.89 2.34 2.36 1.54 1.97 1.56 1.72 1.27 SS Syn 

 n = 7  

1.1 141.22 140.71 39.32 28.67 97.69 127.96 52.13 67.97 EWMA 

1.2 50.26 40.76 15.44 10.58 27.65 35.11 15.75 19.66 EWMA 

1.3 22.09 21.58 8.81 5.83 11.35 13.60 7.30 8.47 SS Syn 

1.4 11.74 11.23 5.84 3.84 6.12 6.80 4.34 4.58 SS Syn 

1.5 7.21 6.69 4.26 2.80 3.95 4.11 3.02 2.89 SS Syn 

1.6 4.93 4.40 3.34 2.17 2.88 2.68 2.33 2.08 SS Syn 

1.7 3.66 3.12 2.73 1.76 2.28 2.00 1.93 1.49 SS Syn 

1.8 2.89 2.34 2.32 1.46 1.91 1.47 1.67 1.19 SS Syn 

1.9 2.39 1.83 2.02 1.25 1.67 1.19 1.50 0.94 SS Syn 

2.0 2.05 1.48 1.80 1.08 1.51 0.95 1.38 0.82 SS Syn 

 n = 10  

1.1 102.27 119.77 30.09 21.37 78.87 103.16 41.27 53.44 EWMA 

1.2 37.09 36.59 11.60 7.65 19.24 24.10 11.43 13.91 SS Syn 

1.3 15.17 14.67 6.54 4.17 7.57 8.76 5.19 5.68 SS Syn 

1.4 7.82 7.31 4.33 2.74 4.10 4.33 3.12 3.02 SS Syn 

1.5 4.77 4.25 3.16 1.99 2.71 2.53 2.22 1.91 SS Syn 

1.6 3.30 2.76 2.49 1.54 2.04 1.66 1.76 1.33 SS Syn 

1.7 2.50 1.93 2.06 1.24 1.67 1.20 1.50 0.94 SS Syn 

1.8 2.02 1.44 1.76 1.02 1.46 0.95 1.34 0.75 SS Syn 

1.9 1.72 1.12 1.56 0.86 1.32 0.72 1.24 0.58 SS Syn 

2.0 1.52 0.89 1.41 0.73 1.22 0.56 1.17 0.47 SS Syn 

 n = 15  

1.1 95.85 95.35 22.46 15.32 58.48 76.18 31.15 39.93 EWMA 

1.2 25.03 24.53 8.43 5.33 12.24 14.95 7.84 9.14 SS Syn 

1.3 9.57 9.05 4.71 2.89 4.74 5.14 3.53 3.61 SS Syn 

1.4 4.86 4.33 3.13 1.90 2.66 2.46 2.19 1.87 SS Syn 

1.5 3.02 2.47 2.30 1.38 1.86 1.47 1.63 1.13 SS Syn 

1.6 2.16 1.58 1.83 1.05 1.48 0.99 1.35 0.78 SS Syn 

1.7 1.71 1.10 1.53 0.83 1.28 0.66 1.21 0.54 SS Syn 

1.8 1.45 0.80 1.35 0.66 1.17 0.47 1.13 0.44 SS Syn 

1.9 1.29 0.61 1.23 0.52 1.11 0.39 1.08 0.32 SS Syn 

2.0 1.19 0.48 1.15 0.42 1.07 0.29 1.05 0.24 SS Syn 

 n = 20  

1.1 78.98 78.48 18.62 12.10 45.46 59.03 24.98 31.76 EWMA 

1.2 18.37 17.86 6.79 4.14 8.71 10.37 5.92 6.72 SS Syn 

1.3 6.78 6.26 3.75 2.24 3.43 3.46 2.70 2.52 SS Syn 

1.4 3.47 2.93 2.50 1.47 2.02 1.71 1.74 1.30 SS Syn 

1.5 2.22 1.65 1.85 1.06 1.49 0.99 1.36 0.79 SS Syn 

1.6 1.66 1.05 1.50 0.79 1.25 0.60 1.19 0.50 SS Syn 

1.7 1.37 0.71 1.29 0.59 1.13 0.45 1.10 0.37 SS Syn 

1.8 1.22 0.51 1.17 0.44 1.07 0.30 1.05 0.25 SS Syn 

1.9 1.13 0.38 1.10 0.33 1.04 0.21 1.03 0.17 SS Syn 

2.0 1.07 0.28 1.06 0.25 1.02 0.15 1.01 0.12 SS Syn 
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Table 4.24 The ARL1 and SDRL1 of the ARL-based design of the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =  

  
0 0.10 =   

Best 

Chart Shewhart EWMA NSS Syn SS Syn 

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 

 n = 5  

1.1 160.64 160.14 51.34 37.41 116.07 152.31 65.20 85.30 EWMA 

1.2 65.33 64.82 20.99 14.80 38.09 48.86 21.58 27.43 EWMA 

1.3 31.02 30.52 11.92 8.19 16.62 20.44 10.31 12.42 SS Syn 

1.4 17.19 16.68 7.95 5.45 9.11 10.64 6.15 6.94 SS Syn 

1.5 10.76 10.25 5.83 3.98 5.85 6.42 4.23 4.52 SS Syn 

1.6 7.40 6.88 4.54 3.09 4.19 4.36 3.20 3.15 SS Syn 

1.7 5.47 4.94 3.71 2.51 3.25 3.12 2.59 2.36 SS Syn 

1.8 4.27 3.74 3.13 2.10 2.66 2.46 2.20 1.89 SS Syn 

1.9 3.49 2.95 2.71 1.80 2.27 1.91 1.93 1.50 SS Syn 

2.0 2.95 2.40 2.40 1.57 2.00 1.60 1.74 1.30 SS Syn 

 n = 7  

1.1 142.15 141.65 40.39 28.92 98.47 129.11 52.56 68.58 EWMA 

1.2 50.91 50.41 15.87 10.70 28.06 35.69 15.93 19.92 EWMA 

1.3 22.47 21.96 8.91 5.91 11.55 13.89 7.39 8.60 SS Syn 

1.4 11.97 11.46 5.92 3.89 6.23 6.96 4.40 4.66 SS Syn 

1.5 7.36 6.85 4.34 2.84 4.03 4.22 3.06 2.95 SS Syn 

1.6 5.04 4.52 3.39 2.20 2.93 2.76 2.36 2.12 SS Syn 

1.7 3.74 3.21 2.78 1.79 2.32 2.06 1.95 1.53 SS Syn 

1.8 2.96 2.41 2.36 1.49 1.94 1.52 1.69 1.22 SS Syn 

1.9 2.45 1.88 2.06 1.27 1.70 1.23 1.52 0.97 SS Syn 

2.0 2.10 1.52 1.84 1.10 1.53 0.99 1.29 0.85 SS Syn 

 n = 10  

1.1 121.32 120.82 31.19 21.59 79.71 104.36 51.55 53.83 EWMA 

1.2 37.69 37.19 11.89 7.74 19.58 24.50 11.56 14.08 SS Syn 

1.3 15.49 14.98 6.63 4.22 7.72 8.97 5.26 5.77 SS Syn 

1.4 8.00 7.49 4.39 2.78 4.18 4.45 3.16 3.08 SS Syn 

1.5 4.89 4.36 3.22 2.02 2.76 2.61 2.25 1.96 SS Syn 

1.6 3.38 2.84 2.53 1.57 2.08 1.71 1.78 1.36 SS Syn 

1.7 2.56 2.00 2.09 1.26 1.70 1.24 1.52 0.97 SS Syn 

1.8 2.07 1.49 1.79 1.04 1.48 0.98 1.35 0.77 SS Syn 

1.9 1.76 1.15 1.58 0.88 1.33 0.74 1.25 0.60 SS Syn 

2.0 1.55 0.93 1.44 0.75 1.24 0.59 1.18 0.48 SS Syn 

 n = 15  

1.1 96.92 96.40 23.22 15.44 59.28 77.31 31.33 40.17 EWMA 

1.2 25.51 25.01 8.62 5.39 12.49 15.31 7.93 9.27 SS Syn 

1.3 9.79 9.28 4.78 2.92 4.84 5.29 3.58 3.68 SS Syn 

1.4 4.98 4.45 3.17 1.92 2.71 2.54 2.21 1.91 SS Syn 

1.5 3.09 2.54 2.34 1.40 1.89 1.52 1.65 1.16 SS Syn 

1.6 2.21 1.63 1.86 1.07 1.50 1.02 1.37 0.80 SS Syn 

1.7 1.74 1.14 1.56 0.85 1.30 0.69 1.22 0.56 SS Syn 

1.8 1.47 0.83 1.37 0.68 1.18 0.49 1.14 0.46 SS Syn 

1.9 1.31 0.64 1.24 0.54 1.11 0.41 1.08 0.34 SS Syn 

2.0 1.21 0.50 1.16 0.43     1.07 0.31 1.05 0.25 SS Syn 

 n = 20  

1.1 79.99 79.49 18.80 12.18 46.21 60.04 25.14 31.98 EWMA 

1.2 18.76 18.25 6.88 4.18 8.90 10.54 6.00 6.82 SS Syn 

1.3 6.94 6.42 3.80 2.27 3.50 3.57 2.74 2.58 SS Syn 

1.4 3.56 3.01 2.53 1.50 2.05 1.77 1.76 1.33 SS Syn 

1.5 2.27 1.70 1.88 1.08 1.51 1.03 1.37 0.81 SS Syn 

1.6 1.69 1.08 1.52 0.81 1.26 0.63 1.19 0.51 SS Syn 

1.7 1.39 0.74 1.30 0.61 1.14 0.47 1.10 0.38 SS Syn 

1.8 1.23 0.53 1.18 0.46 1.08 0.32 1.05 0.26 SS Syn 

1.9 1.14 0.40 1.11 0.34 1.04 0.22 1.03 0.18 SS Syn 

2.0 1.08 0.30 1.06 0.26 1.02 0.16 1.02 0.13 SS Syn 
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Table 4.25 The ARL1 and SDRL1 of the ARL-based design of the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

  
0 0.15 =  

Best Chart Shewhart EWMA NSS Syn SS Syn 

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1   ARL1 SDRL1 

 n = 5  

1.1 161.99 161.49 52.01 38.04 117.35 154.00 65.99 86.34 EWMA 

1.2 66.44 65.93 21.37 15.09 38.85 49.89 21.97 37.96 EWMA 

1.3 31.74 31.23 12.15 8.36 17.02 21.01 10.52 12.73 SS Syn 

1.4 17.66 17.15 8.12 5.56 9.35 10.98 6.29 7.14 SS Syn 

1.5 11.09 10.58 5.95 4.07 6.01 6.65 4.33 4.65 SS Syn 

1.6 7.64 7.12 4.65 3.17 4.31 4.53 3.28 3.25 SS Syn 

1.7 5.66 5.13 3.80 2.58 3.34 3.25 2.65 2.45 SS Syn 

1.8 4.42 3.89 3.21 2.16 2.73 2.48 2.25 1.96 SS Syn 

1.9 3.61 3.07 2.78 1.85 2.33 2.00 1.97 1.56 SS Syn 

2.0 3.05 2.51 2.47 1.62 2.05 1.68 1.78 1.36 SS Syn 

 n = 7  

1.1 143.78 143.28 41.05 29.40 99.95 131.06 53.33 69.62 EWMA 

1.2 52.05 51.55 16.18 10.92 28.77 36.67 16.26 20.37 EWMA 

1.3 23.13 22.62 9.11 6.04 11.89 14.37 7.56 8.83 SS Syn 

1.4 12.38 11.87 6.06 3.99 6.43 7.24 4.50 4.80 SS Syn 

1.5 7.63 7.12 4.44 2.91 4.15 4.30 3.13 3.05 SS Syn 

1.6 5.24 4.71 3.48 2.26 3.02 2.88 2.41 2.20 SS Syn 

1.7 3.89 3.35 2.85 1.84 2.39 2.07 1.99 1.59 SS Syn 

1.8 3.07 2.52 2.42 1.54 2.00 1.59 1.72 1.27 SS Syn 

1.9 2.54 1.98 2.11 1.31 1.74 1.30 1.54 1.01 SS Syn 

2.0 2.18 1.61 1.89 1.14 1.57 1.04 1.42 0.89 SS Syn 

 n = 10  

1.1 123.13 122.63 31.73 21.97 81.25 106.40 42.08 54.60 EWMA 

1.2 38.72 38.22 12.14 7.91 20.18 25.33 11.78 14.40 SS Syn 

1.3 16.02 15.51 6.78 4.33 7.98 9.34 5.37 5.94 SS Syn 

1.4 8.31 7.80 4.50 2.85 4.32 4.55 3.23 3.18 SS Syn 

1.5 5.09 4.56 3.31 2.08 2.85 2.74 2.30 2.03 SS Syn 

1.6 3.52 2.98 2.60 1.61 2.14 1.80 1.82 1.41 SS Syn 

1.7 2.66 2.10 2.15 1.31 1.75 1.31 1.54 1.01 SS Syn 

1.8 2.15 1.57 1.84 1.08 1.51 0.96 1.37 0.81 SS Syn 

1.9 1.82 1.22 1.63 0.91 1.36 0.79 1.27 0.63 SS Syn 

2.0 1.60 0.98 1.47 0.78 1.26 0.62 1.19 0.51 SS Syn 

 n = 15  

1.1 98.75 98.25 23.65 15.74 60.71 79.19 31.67 40.71 EWMA 

1.2 26.34 25.84 8.81 5.51 12.92 15.82 8.09 9.49 SS Syn 

1.3 10.17 9.66 4.89 2.99 5.02 5.53 3.66 3.80 SS Syn 

1.4 5.19 4.66 3.25 1.97 2.80 2.66 2.26 1.98 SS Syn 

1.5 3.22 2.67 2.40 1.44 1.94 1.60 1.68 1.21 SS Syn 

1.6 2.29 1.72 1.91 1.11 1.54 1.00 1.39 0.84 SS Syn 

1.7 1.80 1.20 1.60 0.88 1.32 0.73 1.24 0.59 SS Syn 

1.8 1.52 0.89 1.40 0.71 1.20 0.53 1.15 0.49 SS Syn 

1.9 1.34 0.68 1.27 0.57 1.13 0.44 1.09 0.36 SS Syn 

2.0 1.23 0.54 1.18 0.46 1.08 0.33 1.06 0.27 SS Syn 

 n = 20  

1.1 81.74 81.24 19.16 12.41 47.48 61.75 25.43 32.38 EWMA 

1.2 19.42 18.92 7.03 4.28 9.23 11.00 6.13 7.01 SS Syn 

1.3 7.23 6.71 3.90 2.32 3.62 3.74 2.80 2.67 SS Syn 

1.4 3.70 3.16 2.60 1.54 2.11 1.76 2.32 2.06 SS Syn 

1.5 2.36 1.79 1.93 1.11 1.55 1.09 1.40 0.85 SS Syn 

1.6 1.75 1.14 1.56 0.84 1.29 0.67 1.21 0.54 SS Syn 

1.7 1.43 0.79 1.33 0.64 1.16 0.50 1.11 0.41 SS Syn 

1.8 1.26 0.57 1.20 0.49 1.09 0.34 1.06 0.28 SS Syn 

1.9 1.16 0.43 1.12 0.37 1.05 0.24 1.03 0.20 SS Syn 

2.0 1.10 0.33 1.07 0.28 1.03 0.18 1.02 0.15 SS Syn 
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Table 4.26 The ARL1 and SDRL1 of the ARL-based design of the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =     

  
0 0.20 =   

Best Chart Shewhart EWMA NSS Syn SS Syn 

ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 ARL1 SDRL1 

 n = 5  

1.1 163.95 163.45 53.01 38.97 119.19 156.43 67.12 87.83 EWMA 

1.2 68.06 67.56 21.94 15.52 39.94 51.33 22.54 28.67 EWMA 

1.3 32.79 32.29 12.49 8.62 17.61 21.75 10.84 13.17 SS Syn 

1.4 18.35 17.85 8.35 5.73 9.70 11.38 6.48 7.42 SS Syn 

1.5 11.57 11.06 6.14 4.21 6.25 6.68 4.47 4.75 SS Syn 

1.6 8.00 7.48 4.80 3.28 4.48 4.68 3.38 3.40 SS Syn 

1.7 5.93 5.08 3.92 2.67 3.47 3.43 2.73 2.56 SS Syn 

1.8 4.65 4.11 3.32 2.24 2.84 2.63 2.32 2.06 SS Syn 

1.9 3.80 3.26 2.88 1.93 2.42 2.12 2.03 1.64 SS Syn 

2.0 3.21 2.66 2.56 1.69 2.13 1.79 1.83 1.43 SS Syn 

 n = 7  

1.1 146.12 145.62 42.00 30.05 102.05 133.84 54.48 71.15 EWMA 

1.2 53.69 53.18 16.63 11.25 29.81 38.02 16.74 21.05 EWMA 

1.3 24.08 23.58 9.38 6.24 12.39 14.98 7.80 9.18 SS Syn 

1.4 12.97 12.46 6.25 4.13 6.71 7.64 4.65 5.02 SS Syn 

1.5 8.03 7.51 4.59 3.02 4.33 4.56 3.24 3.19 SS Syn 

1.6 5.52 4.99 3.60 2.35 3.15 3.07 2.49 2.22 SS Syn 

1.7 4.10 3.57 2.95 1.91 2.48 2.21 2.05 1.67 SS Syn 

1.8 3.24 2.69 2.51 1.60 2.07 1.70 1.77 1.35 SS Syn 

1.9 2.68 2.12 2.19 1.37 1.81 1.40 1.59 1.07 SS Syn 

2.0 2.30 1.72 1.96 1.20 1.62 1.12 1.46 0.95 SS Syn 

 n = 10  

1.1 125.69 125.19 32.54 22.58 83.42 109.22 42.94 55.81 EWMA 

1.2 40.21 39.70 12.50 8.16 21.03 26.44 12.13 14.88 SS Syn 

1.3 16.80 16.29 7.00 4.47 8.36 9.78 5.54 6.18 SS Syn 

1.4 8.76 8.25 4.66 2.95 4.53 4.84 3.33 3.33 SS Syn 

1.5 5.38 4.85 3.43 2.16 2.98 2.92 2.37 2.13 SS Syn 

1.6 3.72 3.18 2.70 1.68 2.23 1.93 1.87 1.49 SS Syn 

1.7 2.80 2.25 2.23 1.36 1.81 1.41 1.59 1.07 SS Syn 

1.8 2.26 1.69 1.91 1.14 1.56 1.03 1.41 0.87 SS Syn 

1.9 1.91 1.32 1.69 0.96 1.40 0.86 1.29 0.68 SS Syn 

2.0 1.68 1.07 1.53 0.83 1.29 0.68 1.22 0.55 SS Syn 

 n = 15  

1.1 101.34 100.83 24.28 16.18 62.73 81.90 32.24 41.49 EWMA 

1.2 27.53 27.02 9.08 5.69 13.54 16.69 8.32 9.82 SS Syn 

1.3 10.72 10.21 5.05 3.10 5.27 5.79 3.78 3.97 SS Syn 

1.4 5.48 4.96 3.37 2.05 2.93 2.85 2.34 2.08 SS Syn 

1.5 3.40 2.86 2.49 1.50 2.02 1.63 1.73 1.28 SS Syn 

1.6 2.41 1.85 1.98 1.16 1.59 1.08 1.43 0.90 SS Syn 

1.7 1.89 1.29 1.66 0.92 1.36 0.79 1.26 0.63 SS Syn 

1.8 1.58 0.96 1.45 0.75 1.23 0.57 1.17 0.46 SS Syn 

1.9 1.39 0.74 1.31 0.61 1.15 0.49 1.11 0.39 SS Syn 

2.0 1.27 0.59 1.21 0.51     1.10 0.37 1.07 0.30 SS Syn 

 n = 20  

1.1 84.21 83.71 19.67 12.77 49.27 64.04 25.89 33.02 EWMA 

1.2 20.38 19.87 7.25 4.42 9.69 11.65 6.31 7.18 SS Syn 

1.3 7.64 7.12 4.03 2.40 3.80 3.99 2.89 2.80 SS Syn 

1.4 3.91 3.38 2.69 1.59 2.20 1.89 1.85 1.47 SS Syn 

1.5 2.49 1.92 2.00 1.16 1.60 1.09 1.43 0.90 SS Syn 

1.6 1.83 1.23 1.61 0.88 1.32 0.72 1.23 0.58 SS Syn 

1.7 1.49 0.85 1.37 0.68 1.18 0.49 1.13 0.44 SS Syn 

1.8 1.30 0.62 1.23 0.53 1.10 0.38 1.07 0.31 SS Syn 

1.9 1.30 0.62 1.14 0.40 1.06 0.27 1.04 0.22 SS Syn 

2.0 1.12 0.36 1.09 0.31 1.03 0.20 1.02 0.16 SS Syn 
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Tables 4.23 to 4.26 demonstrate that the ARL-based design of the side-sensitive 

synthetic-  chart outperforms the non-side-sensitive synthetic-  chart significantly, 

particularly for small shift sizes. For instance, in Table 4.23, when n = 5, 1.1 =  and 

0 0.05 = , the non-side-sensitive synthetic-  chart has ARL1 and SDRL1 values of 115.42 

and 151.33, respectively. However, when the feature of side sensitivity is incorporated, 

the ARL1 and SDRL1 values decrease to 64.74 and 84.69, respectively. This represents a 

43.91% improvement in the ARL1. Therefore, it is evident that including the feature of 

side sensitivity results in a noteworthy enhancement of the synthetic-  chart’s 

performance. 

 

Tables 4.23 to 4.26 reveal that the EWMA-
2  chart demonstrates better performance 

compared to the non-side-sensitive synthetic-  chart for  1.1,  1.2, 1.3  , but exhibits 

similar or weaker performance for  1.5,  1.6, 1.7, 1.8, 1.9, 2.0  . For instance, in Table 

4.23, when n = 5, 1.1 =  and 0 0.05 = , the EWMA-
2  chart has ARL1 and SDRL1 values 

of 51.03 and 37.11, respectively, whereas the non-side-sensitive synthetic-  chart has 

ARL1 and SDRL1 values of 115.42 and 151.33, respectively. As for n = 5, 2.0 =  and 

0 0.05 =  in Table 4.23, the EWMA-
2  chart has ARL1 and SDRL1 values of 2.36 and 

1.54, respectively, while the non-side-sensitive synthetic-  chart has ARL1 and SDRL1 

values of 1.97 and 1.56, respectively.  

 

However, for 1.2 = , the side-sensitive synthetic-  chart exhibits comparable 

performance to the EWMA-
2  chart and outperforms it for 

 1.3,  1.4,  1.5,  1.6, 1.7, 1.8, 1.9, 2.0  . For instance, in Table 4.23, when n = 5, 1.3 =  

and 0 0.05 = , the EWMA-
2  chart has ARL1 and SDRL1 values of 11.80 and 8.10, 
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respectively, whereas the side-sensitive synthetic-  chart has ARL1 and SDRL1 values of 

10.18 and 12.25, respectively. As for n = 5, 2.0 =  and 0 0.05 = , the EWMA-
2  chart 

has ARL1 and SDRL1 values of 2.36 and 1.54, respectively, while the side-sensitive 

synthetic-  chart has ARL1 and SDRL1 values of 1.72 and 1.27, respectively (see Table 

4.23). It is noteworthy that the EWMA-
2  chart is famous for its sensitivity to small 

shifts, hence the comparison suggests that the proposed side-sensitive synthetic-  chart 

can be considered a competitive chart. Moreover, the side-sensitive synthetic-  chart 

performs better than the Shewhart-  chart for all values of sample size and shift size.  

 

According to the last column in Tables 4.23 to 4.26, it can be observed that for 1.1, =

the EWMA-
2  chart is the best chart among all four charts for all values of n and 0  as 

it is famous on its sensitivity toward small shift sizes. However, for 1.2, =  the EWMA-

2  chart performed the best only when  5,  7n  for all values of 0 . For 

 10,  15, 20n , the proposed side-sensitive synthetic-  chart is the best chart when 

1.2 =  for all values of 0 . Furthermore, the proposed chart is also the best chart among 

all four charts for  1.3,  1.4,  1.5,  1.6,  1.7,  1.8,  1.9,  2.0   for all values of n and 0 .  

 

Table 4.27 presents a comparison between the Shewhart- , EWMA-
2 , non-side-

sensitive synthetic- , and side-sensitive synthetic-  charts which are designed based on 

the EARL, in terms of EARL1 performance for  5, 7, 10, 15, 20n  and 

 0 0.05, 0.10, 0.15, 0.20  . The range for ( )min max,     is set as ( 1,  2 . All results 

obtained were validated using simulation.  
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Table 4.27 The EARL1 values of the EARL-based design of the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n ,  0 0.05, 0.10, 0.15, 0.20   and 

( ) ( min max,  1,  2  =  

n 
Shewhart EWMA NSS Syn SS Syn Best 

Chart EARL1 REARL1 EARL1 REARL1 EARL1 REARL1 EARL1 

 
0 0.05 =   

5 38.06 2.25 15.72 0.93 27.18 1.61 16.90 EWMA 

7 32.12 2.34 12.52 0.91 22.76 1.66 13.73 EWMA 

10 26.66 2.39 9.89 0.89 18.70 1.68 11.16 EWMA 

15 21.30 2.41 7.60 0.86 14.73 1.66 8.85 EWMA 

20 17.99 2.41 6.40 0.86 12.29 1.64 7.48 EWMA 

 
0 0.10 =   

5 38.34 2.25 15.84 0.93 27.39 1.61 17.03 EWMA 

7 32.41 2.34 12.62 0.91 22.96 1.66 13.83 EWMA 

10 26.93 2.40 9.98 0.89 18.89 1.68 11.22 EWMA 

15 21.53 2.42 7.66 0.86 14.90 1.68 8.89 EWMA 

20 18.19 2.43 6.46 0.86 12.43 1.66 7.50 EWMA 

 
0 0.15 =   

5 38.34 2.22 16.04 0.93 27.74 1.61 17.25 EWMA 

7 32.90 2.35 12.81 0.91 23.31 1.66 14.02 EWMA 

10 27.39 2.41 10.14 0.89 19.22 1.69 11.34 EWMA 

15 21.93 2.45 7.79 0.87 15.19 1.70 8.96 EWMA 

20 18.54 2.46 6.57 0.87 12.68 1.68 7.55 EWMA 

 
0 0.20 =   

5 39.57 2.25 16.36 0.93 28.25 1.61 17.56 EWMA 

7 33.62 2.35 13.08 0.91 23.82 1.67 14.31 EWMA 

10 21.93 2.45 7.79 0.87 15.17 1.70 8.96 EWMA 

15 22.50 2.48 7.98 0.88 15.59 1.72 9.08 EWMA 

20 19.04 2.49 6.73 0.88 13.04 1.71 7.64 EWMA 

       

Table 4.27 includes the relative EARL1 (REARL1) values to facilitate comparisons. 

REARL1 is calculated by dividing the EARL1 value of the chart being compared by the 

EARL1 value of the side-sensitive synthetic-  chart. For example, when n = 5 and 

0 0.05 =  for the Shewhart-  chart, the REARL1 is calculated as 
38.06

2.25
16.90

= . A 

REARL1 value greater than 1 indicates better performance for the side-sensitive synthetic-

  chart compared to the chart being compared. Results in Table 4.27 show that the side-

sensitive synthetic-  chart performs better than the Shewhart-  and non-side-sensitive 

synthetic-  charts for all sample sizes and in-control coefficient of variation values. 

Nevertheless, the EWMA-
2  chart exhibits better performance compared to the side-
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sensitive synthetic-  chart, with REARL1 ranging from 0.86 and 0.93. Hence, the 

EWMA-
2  chart is the best chart according to the EARL performance measure. 

 

According to the results obtained in Tables 4.23 to 4.27, it is proven that the proposed 

side-sensitive synthetic-  chart outperforms the Shewhart-  and non-side-sensitive 

synthetic-  charts for all cases in terms of both ARL and EARL-based designs. 

Furthermore, it also shows better and comparative performance than EWMA-
2  chart 

for moderate and large shift sizes. In order to evaluate the actual performance of the 

proposed chart accurately, a comparison among all four control charts which are designed 

based on MRL and EMRL is also being conducted in this subsection. The design based on 

MRL is evaluated using the 05l , MRL1, and 95l , whereas the EMRL-based design is 

evaluated using the ( )05E l , EMRL1, and ( )05E l .  

 

Specifically, with the same value of   5, 7, 10, 15, 20n  and 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0  , Table 4.28 compares the Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  and side-sensitive synthetic-  charts for 

0 0.05 = , while Tables 4.29 to 4.31 compare all four control charts for 0 0.10 = , 

0 0.15 =  and 0 0.20 = , respectively. The performance of control charts in both tables 

is compared in terms of Q05, MRL1 and Q95. All results obtained were validated using 

simulation with 10,000 trials. 
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Table 4.28 The 05l , MRL1 and 95l  values of the MRL-based Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.05 =  

  0 0.05 =  

Best Chart Shewhart EWMA NSS Syn SS Syn 

 
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  

 n = 5  

1.1 5 64 273 9 35 120 3 32 343 2 22 231 SS Syn 

1.2 2 27 116 5 16 45 1 10 106 1 8 81 SS Syn 

1.3 1 14 59 2 9 29 1 5 52 1 4 42 SS Syn 

1.4 1 8 34 2 6 21 1 3 28 1 3 22 SS Syn 

1.5 1 6 22 1 5 17 1 2 23 1 2 15 SS Syn 

1.6 1 4 16 1 4 12 1 2 14 1 2 8 SS Syn 

1.7 1 3 12 1 3 10 1 2 11 1 1 13 SS Syn 

1.8 1 3 9 1 2 8 1 1 11 1 1 7 NSS & SS Syn 

1.9 1 2 8 1 2 6 1 1 9 1 1 4 NSS & SS Syn 

2.0 1 2 6 1 2 5 1 1 4 1 1 4 NSS & SS Syn 

 n = 7  

1.1 5 55 234 8 28 89 2 27 279 2 18 186 SS Syn 

1.2 2 21 90 3 12 41 1 8 85 1 6 62 SS Syn 

1.3 1 10 43 2 7 24 1 4 40 1 3 31 SS Syn 

1.4 1 6 24 1 5 18 1 2 22 1 2 17 NSS & SS Syn 

1.5 1 4 16 1 3 11 1 2 15 1 2 8 NSS & SS Syn 

1.6 1 3 11 1 3 8 1 1 13 1 1 8 NSS & SS Syn 

1.7 1 2 8 1 2 6 1 1 9 1 1 4 NSS & SS Syn 

1.8 1 2 6 1 2 5 1 1 7 1 1 4 NSS & SS Syn 

1.9 1 2 5 1 2 4 1 1 6 1 1 3 NSS & SS Syn 

2.0 1 1 4 1 1 4 1 1 3 1 1 3 ALL 

 n = 10  

1.1 4 47 204 7 23 66 2 23 236 2 15 151 SS Syn 

1.2 2 16 69 3 9 28 1 7 64 1 5 43 SS Syn 

1.3 1 8 31 2 5 16 1 3 27 1 3 17 NSS & SS Syn 

1.4 1 4 17 1 4 12 1 2 15 1 2 8 NSS & SS Syn 

1.5 1 3 10 1 3 8 1 1 13 1 1 7 NSS & SS Syn 

1.6 1 2 7 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.7 1 2 5 1 2 4 1 1 6 1 1 3 NSS & SS Syn 

1.8 1 1 4 1 1 4 1 1 5 1 1 3 ALL 

1.9 1 1 3 1 1 3 1 1 4 1 1 2 ALL 

2.0 1 1 3 1 1 3 1 1 2 1 1 2 ALL 

 n = 15  

1.1 3 40 173 7 18 47 2 18 189 1 12 117 SS Syn 

1.2 1 12 51 2 7 22 1 5 45 1 3 34 SS Syn 

1.3 1 5 21 1 4 13 1 2 18 1 2 9 NSS & SS Syn 

1.4 1 3 12 1 3 8 1 1 12 1 1 8 NSS & SS Syn 

1.5 1 2 7 1 2 5 1 1 5 1 1 3 NSS & SS Syn 

1.6 1 1 5 1 1 4 1 1 5 1 1 3 ALL 

1.7 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.8 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.9 1 1 2 1 1 2 1 1 3 1 1 2 ALL 

2.0 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

 n = 20  

1.1 3 35 150 5 14 43 1 12 123 1 9 96 SS Syn 

1.2 1 9 39 1 6 22 1 3 31 1 3 21 NSS & SS Syn 

1.3 1 4 15 1 3 9 1 2 12 1 1 13 SS Syn 

1.4 1 2 8 1 2 5 1 1 8 1 1 4 NSS & SS Syn 

1.5 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.6 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.7 1 1 3 1 1 2 1 1 3 1 1 2 ALL 

1.8 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

1.9 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

2.0 1 1 2 1 1 2 1 1 1 1 1 1 ALL 
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Table 4.29 The 05l , MRL1 and 95l  values of the MRL-based Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.10 =  

  
 

0 0.10 =  

Best Chart Shewhart EWMA NSS Syn SS Syn 

 
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  

 n = 5  

1.1 5 64 275 9 36 120 3 32 340 2 22 232 SS Syn 

1.2 2 27 117 3 16 59 1 10 107 1 8 82 SS Syn 

1.3 2 14 60 2 9 30 1 5 52 1 4 43 SS Syn 

1.4 1 8 35 2 6 21 1 3 28 1 3 22 NSS & SS Syn 

1.5 1 6 23 1 5 18 1 2 23 1 2 15 NSS & SS Syn 

1.6 1 4 16 1 4 13 1 2 14 1 2 8 NSS & SS Syn 

1.7 1 3 12 1 3 10 1 2 11 1 1 13 SS Syn 

1.8 1 3 9 1 2 8 1 1 11 1 1 7 NSS & SS Syn 

1.9 1 2 8 1 2 7 1 1 9 1 1 4 NSS & SS Syn 

2.0 1 2 7 1 2 6 1 1 4 1 1 4 NSS & SS Syn 

 n = 7  

1.1 5 56 238 8 29 90 2 27 279 2 18 189 SS Syn 

1.2 2 22 92 3 12 41 1 8 85 1 6 63 SS Syn 

1.3 1 11 44 2 7 24 1 4 40 1 3 32 SS Syn 

1.4 1 6 25 1 5 18 1 2 23 1 2 17 NSS & SS Syn 

1.5 1 4 16 1 4 12 1 2 16 1 2 8 NSS & SS Syn 

1.6 1 3 11 1 3 9 1 1 13 1 1 11 NSS & SS Syn 

1.7 1 2 8 1 2 7 1 1 9 1 1 4 NSS & SS Syn 

1.8 1 2 6 1 2 5 1 1 7 1 1 4 NSS & SS Syn 

1.9 1 2 5 1 2 5 1 1 6 1 1 3 NSS & SS Syn 

2.0 1 1 4 1 1 4 1 1 5 1 1 3 ALL 

 n = 10  

1.1 4 48 204 8 23 67 2 23 235 2 15 151 SS Syn 

1.2 2 17 70 3 9 28 1 7 64 1 5 44 SS Syn 

1.3 1 8 31 2 5 16 1 3 30 1 3 18 NSS & SS Syn 

1.4 1 4 17 1 4 12 1 2 15 1 2 8 NSS & SS Syn 

1.5 1 3 11 1 3 18 1 1 3 1 1 8 NSS & SS Syn 

1.6 1 2 7 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.7 1 2 5 1 2 5 1 1 6 1 1 3 NSS & SS Syn 

1.8 1 1 4 1 1 4 1 1 5 1 1 3 ALL 

1.9 1 1 4 1 1 3 1 1 4 1 1 2 ALL 

2.0 1 1 3 1 1 3 1 1 2 1 1 2 ALL 

 n = 15  

1.1 3 40 172 7 18 48 2 18 189 1 2 117 SS Syn 

1.2 1 12 51 2 7 22 1 5 46 1 4 29 SS Syn 

1.3 1 5 21 1 4 13 1 2 20 1 2 11 NSS & SS Syn 

1.4 1 3 11 1 3 8 1 1 12 1 1 7 NSS & SS Syn 

1.5 1 2 7 1 2 5 1 1 4 1 1 3 NSS & SS Syn 

1.6 1 1 5 1 1 4 1 1 5 1 1 3 ALL 

1.7 1 1 4 1 1 3 1 1 3 1 1 2 ALL 

1.8 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.9 1 1 2 1 1 2 1 1 3 1 1 2 ALL 

2.0 1 1 2 1 1 2 1 1 2 1 1 1 ALL 

 n = 20  

1.1 3 35 149 4 15 50 1 12 123 1 9 96 SS Syn 

1.2 1 9 39 1 6 23 1 3 31 1 3 22 NSS & SS Syn 

1.3 1 4 15 1 3 10 1 2 12 1 2 7 NSS & SS Syn 

1.4 1 2 8 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.5 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.6 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.7 1 1 3 1 1 2 1 1 3 1 1 2 ALL 

1.8 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

1.9 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

2.0 1 1 2 1 1 2 1 1 1 1 1 1 ALL 
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Table.4.30 The 05l , MRL1 and 95l  values of the MRL-based Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.15 =  

  0 0.15 =   

Shewhart EWMA NSS Syn SS Syn Best Chart 

 
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  

 n = 5  

1.1 5 64 276 9 36 120 3 33 345 2 22 234 SS Syn 

1.2 3 28 119 4 16 52 1 11 107 1 8 84 SS Syn 

1.3 2 14 61 2 9 30 1 5 53 1 4 43 SS Syn 

1.4 1 9 36 2 6 22 1 3 28 1 3 24 NSS & SS Syn 

1.5 1 6 23 1 5 18 1 2 24 1 2 17 NSS & SS Syn 

1.6 1 4 17 1 4 13 1 2 15 1 2 8 NSS & SS Syn 

1.7 1 3 12 1 3 10 1 2 11 1 2 6 NSS & SS Syn 

1.8 1 3 10 1 3 8 1 1 12 1 1 8 NSS & SS Syn 

1.9 1 2 8 1 2 7 1 1 9 1 1 4 NSS & SS Syn 

2.0 1 2 7 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

                               n = 7 

1.1 5 56 241 9 29 91 2 27 280 2 18 181 SS Syn 

1.2 2 22 94 3 13 42 1 8 86 1 6 64 SS Syn 

1.3 1 11 45 2 7 25 1 4 41 1 3 32 SS Syn 

1.4 1 6 26 1 5 19 1 2 23 1 2 18 NSS & SS Syn 

1.5 1 4 16 1 4 12 1 2 16 1 2 8 NSS & SS Syn 

1.6 1 3 11 1 3 9 1 1 13 1 1 12 NSS & SS Syn 

1.7 1 2 9 1 2 7 1 1 10 1 1 4 NSS & SS Syn 

1.8 1 2 7 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.9 1 2 5 1 2 5 1 1 6 1 1 3 NSS & SS Syn 

2.0 1 1 5 1 1 4 1 1 5 1 1 3 ALL 

                              n = 10 

1.1 4 48 206 6 23 75 2 23 234 2 15 153 SS Syn 

1.2 2 17 72 2 10 36 1 7 65 1 5 46 SS Syn 

1.3 1 8 32 1 6 22 1 3 30 1 3 18 NSS & SS Syn 

1.4 1 4 18 1 4 12 1 2 15 1 2 8 NSS & SS Syn 

1.5 1 3 11 1 3 8 1 2 10 1 1 8 SS Syn 

1.6 1 2 8 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.7 1 2 6 1 2 5 1 1 6 1 1 3 NSS & SS Syn 

1.8 1 1 5 1 1 4 1 1 5 1 1 3 ALL 

1.9 1 1 4 1 1 3 1 1 4 1 1 2 ALL 

2.0 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

                              n = 15 

1.1 3 40 172 5 18 57 2 18 188 1 12 118 SS Syn 

1.2 1 12 52 2 7 23 1 5 46 1 4 29 SS Syn 

1.3 1 5 20 1 4 13 1 2 21 1 2 11 NSS & SS Syn 

1.4 1 3 11 1 3 8 1 1 12 1 1 8 NSS & SS Syn 

1.5 1 2 7 1 2 5 1 1 8 1 1 4 NSS & SS Syn 

1.6 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.7 1 1 4              1 1 3 1 1 4 1 1 2 ALL 

1.8 1 1 3     1 1 3 1 1 3 1 1 2 ALL 

1.9 1 1 2     1 1 2 1 1 3 1 1 2 ALL 

2.0 1 1 2 1 1 2 1 1 3 1 1 1 ALL 

 n = 20  

1.1 3 35 150 4 15 51 1 12 123 1 10 95 SS Syn 

1.2 1 10 40 2 6 17 1 3 32 1 3 22 NSS & SS Syn 

1.3 1 4 16 1 3 10 1 2 13 1 2 7 NSS & SS Syn 

1.4 1 2 8 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.5 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.6 1 1 4 1 1 3 1 1 3 1 1 2 ALL 

1.7 1 1 3 1 1 2 1 1 3 1 1 2 ALL 

1.8 1 1 2 1 1 2 1 1 3 1 1 1 ALL 

1.9 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

2.0 1 1 2 1 1 2 1 1 1 1 1 1 ALL 
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Table 4.31 The 05l , MRL1 and 95l  values of the MRL-based Shewhart- , 

EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and 0 0.20 =  

  
 

0 0.20 =   

Shewhart EWMA NSS Syn SS Syn Best Chart 

 
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  
05l  MRL1 

95l  

 n = 5  

1.1 5 65 280 10 37 121 3 34 352 2 23 239 SS Syn 

1.2 3 28 121 4 16 53 1 11 110 1 8 85 SS Syn 

1.3 2 15 63 2 10 38 1 5 54 1 4 44 SS Syn 

1.4 1 9 37 1 7 29 1 3 29 1 3 24 NSS & SS Syn 

1.5 1 6 24 1 5 19 1 3 13 1 2 18 SS Syn 

1.6 1 4 17 1 4 14 1 2 15 1 2 9 NSS & SS Syn 

1.7 1 3 13 1 3 11 1 2 11 1 2 7 NSS & SS Syn 

1.8 1 3 10 1 3 9 1 1 12 1 1 8 NSS & SS Syn 

1.9 1 2 8 1 2 7 1 1 10 1 1 5 NSS & SS Syn 

2.0 1 2 7 1 2 6 1 1 4 1 1 4 NSS & SS Syn 

                          n = 7  

1.1 5 57 246 9 30 92 2 27 284 2 19 196 SS Syn 

1.2 2 23 96 3 13 43 1 8 87 1 6 65 SS Syn 

1.3 1 11 47 2 8 26 1 4 41 1 3 33 SS Syn 

1.4 1 7 27 1 5 20 1 3 21 1 2 21 SS Syn 

1.5 1 4 17 1 4 13 1 2 16 1 2 8 NSS & SS Syn 

1.6 1 3 12 1 3 9 1 2 10 1 1 12 SS Syn 

1.7 1 2 9 1 2 7 1 1 10 1 1 5 NSS & SS Syn 

1.8 1 2 7 1 2 6 1 1 8 1 1 4 NSS & SS Syn 

1.9 1 2 6 1 2 5 1 1 7 1 1 3 NSS & SS Syn 

2.0 1 2 5 1 2 4 1 1 6 1 1 3 NSS & SS Syn 

                            n = 10  

1.1 4 49 209 8 24 69 2 23 234 2 15 156 SS Syn 

1.2 2 17 74 3 10 30 1 7 66 1 5 47 SS Syn 

1.3 1 8 34 1 6 23 1 3 31 1 3 19 NSS & SS Syn 

1.4 1 5 18 1 4 13 1 2 16 1 2 8 NSS & SS Syn 

1.5 1 3 12 1 3 9 1 2 6 1 1 11 SS Syn 

1.6 1 2 8 1 2 6 1 1 9 1 1 4 NSS & SS Syn 

1.7 1 2 6 1 2 5 1 1 7 1 1 3 NSS & SS Syn 

1.8 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.9 1 1 4 1 1 3 1 1 4 1 1 2 ALL 

2.0 1 1 3 1 1 3 1 1 2 1 1 2 ALL 

                            n = 15  

1.1 3 41 174 5 18 58 2 18 187 1 12 119 SS Syn 

1.2 1 13 53 2 7 24 1 5 47 1 4 31 SS Syn 

1.3 1 6 22 1 4 15 1 2 22 1 2 13 NSS & SS Syn 

1.4 1 3 12 1 3 8 1 1 13 1 1 8 NSS & SS Syn 

1.5 1 2 7 1 2 6 1 1 4 1 1 4 NSS & SS Syn 

1.6 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.7 1 1 4 1 1 3 1 1 4 1 1 2 ALL 

1.8 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.9 1 1 3 1 1 2 1 1 3 1 1 2 ALL 

2.0 1 1 2 1 1 2 1 1 2 1 1 2 ALL 

          n = 20  

1.1 3 35 150 5 15 45 1 12 122 1 10 97 SS Syn 

1.2 1 10 41 2 6 18 1 3 33 1 3 24 NSS & SS Syn 

1.3 1 4 16 1 3 11 1 2 13 1 2 7 NSS & SS Syn 

1.4 1 2 9 1 2 6 1 1 9 1 1 4 NSS & SS Syn 

1.5 1 2 5 1 2 4 1 1 5 1 1 3 NSS & SS Syn 

1.6 1 1 4 1 1 3 1 1 4 1 1 2 ALL 

1.7 1 1 3 1 1 3 1 1 3 1 1 2 ALL 

1.8 1 1 2 1 1 2 1 1 3 1 1 2 ALL 

1.9 1 1 2 1 1 2 1 1 1 1 1 1 ALL 

2.0 1 1 2 1 1 2 1 1 1 1 1 1 ALL 
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From Tables 4.28 to 4.31, it can be observed that the MRL-based design of the side-

sensitive synthetic-  chart produces smaller MRL1 compared to the non-side-sensitive 

synthetic-  chart, particularly for small shift sizes. For instance, the MRL1 (SS Syn) is 

22 and the MRL1 (NSS Syn) is 32 for n = 5, 1.1 =  and 0 0.05 =  in Table 4.28. This 

suggests that the proposed chart requires fewer samples to detect out-of-control signals 

compared to the non-side-sensitive synthetic-  chart, as evidenced by the lower MRL1. 

Furthermore, the side-sensitive synthetic-  chart demonstrates lower variability than the 

non-side-sensitive synthetic-  chart, as shown by the smaller difference between the 05l  

and 95l  in most cases. An instance of improvement in the side-sensitive synthetic-  chart 

over the non-side-sensitive synthetic-  chart for MRL-based design can be observed at n 

= 5, 1.1 =  and 0 0.05 =  in Table 4.28. In this case, the 05l  and 95l  values of the side-

sensitive synthetic-  chart is 2 and 231, respectively, while that of the non-side-sensitive 

synthetic-  chart is 3 and 343, respectively. This indicates that the side-sensitive 

synthetic-  chart performs better than the existing non-side-sensitive synthetic-  chart. 

 

Tables 4.28 to 4.31 reveal that the proposed side-sensitive synthetic-  chart performs 

better than the Shewhart-  chart in terms of smaller MRL1 values and smaller differences 

between two extreme percentiles for all values of sample size, shift size and in-control 

coefficient of variation except for n = 15, 2.0 =  and 0 0.20 =  in Table 4.31, where the 

two charts provide the same results for 05l , MRL1 and 95l . The side-sensitive synthetic-  

chart also exhibits better MRL1 performance compared to the EWMA-
2  chart, 

particularly for  1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7  . However, for 2.0 = , both charts 

yield the same MRL1 values in most cases. In terms of the difference between the 05l  and 

95l , the side-sensitive synthetic-  chart exhibits less variation than the EWMA-
2  chart 
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for  1.5, 1.6, 1.7, 1.8, 1.9, 2.0  . Nevertheless, the EWMA-
2  chart shows a smaller 

difference between 05l  and 95l  compared to the proposed chart for small shift sizes.  

 

From Tables 4.28 to 4.31, it can be observed that there are many results with the digit 

“1”, especially for 05l  which denotes the 5th percentile. Since ( )05 0.05P RL l = , the 

chart will detect the out-of-control condition by 05l  for only 5% of the time, and for 95% 

of the time the chart will detect the out-of-control condition after 05l . Thus, the values of 

05l  will be small and quite frequently appears as 1, since it denotes the early percentiles 

of the run length. In addition, for larger sample sizes and shift sizes, a quick detection of 

out-of-control condition is expected. Hence, the 05l , MRL1 and 95l  are frequently small 

values for such cases.  

 

By referring to the last column in Tables 4.28 to 4.31, it can be observed that the 

proposed side-sensitive synthetic-  chart is the best chart among all four charts for most 

cases particularly for small shift sizes. Besides, when the sample size and shift size 

increase, the non-side-sensitive and side-sensitive synthetic-  charts are the best charts 

for all values of 0  due to the same values of MRL1 obtained. Nevertheless, for large shift 

sizes, all four charts are the best charts for all values of  n and 0  as generally a quick  

detection of the  out-of-control condition is shown for larger sample sizes and shift sizes. 

Therefore, the proposed side-sensitive synthetic-  chart is the best chart in terms of the 

MRL performance.  
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Table 4.32 presents a comparison of the ( )05E l , EMRL1, and ( )95E l  for the Shewhart-

 , EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-sensitive synthetic-

  (SS Syn) charts that are designed based on EMRL. The comparison is conducted for 

different values of  5, 7, 10, 15, 20n ,  0 0.05, 0.10, 0.15, 0.20   and 

( ) ( min max,  1,  2  =  and all results obtained were verified using simulation. 

 

Table 4.32 The ( )05E l , EMRL1 and ( )95E l  values of the EMRL-based of the 

Shewhart- , EWMA-
2 , non-side-sensitive synthetic-  (NSS Syn) and side-

sensitive synthetic-  (SS Syn) charts for  5, 7, 10, 15, 20n , 

 0 0.05, 0.10, 0.15, 0.20   and ( ) ( min max,  1,  2  =     

n Shewhart EWMA NSS Syn SS Syn Best 

Chart  ( )05E l  EMRL1 ( )95E l  ( )05E l  EMRL1 ( )95E l  ( )05E l  EMRL1 ( )95E l  ( )05E l  EMRL1 ( )95E l  

0 0.05 =   

5 1.84 17.03 74.92 2.65 11.58 39.71 1.24 12.98 79.49 1.10 9.90 57.99 SS Syn 

7 1.73 14.14 62.56 2.75 9.33 28.66 1.17 11.05 67.49 1.12 7.49 46.17 SS Syn 

10 1.56 11.66 52.12 2.29 7.50 22.42 1.15 10.07 58.92 1.12 5.90 37.05 SS Syn 

15 1.48 9.96 44.18 1.81 5.88 19.12 1.17 7.71 47.52 1.05 5.03 29.72 SS Syn 

20 1.41 8.76 38.57 1.67 4.88 15.69 1.07 5.08 30.51 1.05 4.25 24.54 SS Syn 

0 0.10 =   

5 1.84 17.10 75.62 3.03 11.77 37.54 1.24 13.01 80.18 1.05 10.09 59.04 SS Syn 

7 1.79 14.28 63.27 2.79 9.43 28.56 1.15 11.35 68.38 1.12 7.65 46.57 SS Syn 

10 1.56 11.84 52.63 2.29 7.56 23.05 1.17 9.61 57.27 1.12 5.95 37.42 SS Syn 

15 1.48 9.84 43.54 1.88 5.87 17.78 1.17 7.60 47.11 1.05 4.96 29.43 SS Syn 

20 1.48 8.83 38.57 1.68 4.85 15.09 1.07 5.03 30.38 1.05 4.37 25.05 SS Syn 

0 0.15 =   

5 1.84 17.33 76.19 3.06 11.84 37.57 1.24 13.23 81.06 1.05 10.16 59.60 SS Syn 

7 1.79 14.37 64.08 2.65 9.50 30.01 1.15 11.37 68.81 1.12 7.70 47.08 SS Syn 

10 1.58 11.97 53.67 2.30 7.76 22.80 1.17 8.94 56.72 1.12 6.02 38.15 SS Syn 

15 1.48 9.89 44.28 1.88 5.98 18.47 1.17 7.53 46.95 1.05 5.03 30.26 SS Syn 

20 1.48 8.87 38.58 1.68 5.02 15.56 1.05 5.18 31.03 1.29 4.79 27.58 SS Syn 

0 0.20 =   

5 1.84 17.62 77.61 2.91 12.00 39.54 1.22 13.92 82.84 1.12 9.58 59.36 SS Syn 

7 1.79 14.81 65.45 2.56 9.72 31.41 1.15 11.46 68.58 1.05 4.96 29.43 SS Syn 

10 1.58 12.36 54.60 2.89 7.84 23.84 1.17 8.87 56.87 1.05 6.71 39.46 SS Syn 

15 1.48 9.95 44.54 1.88 6.17 19.26 1.17 7.57 46.85 1.05 5.54 31.25 SS Syn 

20 1.48 8.82 38.75 1.83 5.19 14.80 1.07 5.11 30.99 1.05 4.34 25.07 SS Syn 

               

 

From Table 4.32, it is noticeable that the side-sensitive synthetic-  chart which is 

designed based on EMRL performs better than the Shewhart-  and non-side-sensitive 

synthetic-  charts for all values of sample size and in-control coefficient of variation, as 

well as the EWMA-
2  chart for all cases in terms of the performance of EMRL1. 

However, the EWMA chart exhibits a smaller difference between the ( )05E l  and ( )95E l  

for all cases compared to the side-sensitive synthetic-  chart that is introduced in this 
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thesis. Therefore, the proposed side-sensitive synthetic-  chart is the best chart among 

all four charts in terms of the EMRL performance. 

 

4.5 Implementation Based on Real Industrial Example 

This subsection demonstrates the application of the side-sensitive synthetic-  chart 

for both ARL and MRL-based designs using an actual industrial example which was used 

by Castagliola et al. (2011). This industrial example was collected from an Italian 

company which produces sintered mechanical parts using power metallurgy, whereby 

compressed metal powder is heated to bond the individual particles. Sintering is utilized 

in the manufacture of complex-shaped mechanical components such as gears, resulting 

in cost savings compared to old machining operations. 

 

Pore shrinkage is a crucial factor that impacts the strength of the bond between 

particles (Kalpakjian, 1992). The pressure test drop time, Tpd, from 2 bar to 1.5 bar is a 

quality characteristic related to pore shrinkage, and it should be greater than 30 seconds. 

If a bigger amount of molten copper is used to fill the pores in the process of sintering, 

the pressure test drop time will be longer. The company led a regression analysis and 

found that there is a constant proportionality between the standard deviation and mean of 

the pressure drop time, such that pd pd pd  =  , where pd , pd  and pd  are the pressure 

drop time’s standard deviation, coefficient of variation and mean, respectively. 

Consequently, the company decided to monitor the coefficient of variation, i.e. 

pd

pd

pd

,





=  to identify any fluctuations in the process variability. 

 

After obtaining a nominal quantity of copper, a set of Phase I data consisting of 20 

samples (m = 20) with a sample size of 5 (n = 5) each was gathered. The data collected 
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during the Phase I study is presented in Table 4.33, which was sourced from Castagliola 

et al. (2011).  

 

Table 4.33 Phase I dataset from a sintering process 

k 
kX  kS  ˆ

k  

1 664.2 268.9 0.405 

2 705.6 308.6 0.437 

3 1051.5 539.9 0.513 

4 1047.3 359.0 0.343 

5 618.2 136.3 0.220 

6 781.4 446.4 0.571 

7 797.8 342.5 0.429 

8 678.9 275.4 0.406 

9 848.3 320.5 0.378 

10 1015.3 453.7 0.447 

11 777.4 276.4 0.356 

12 813.9 170.7 0.210 

13 716.9 397.4 0.554 

14 937.6 421.2 0.449 

15 915.1 331.9 0.363 

16 873.2 285.0 0.326 

17 984.3 573.7 0.583 

18 819.3 156.2 0.191 

19 839.0 244.0 0.291 

20 585.8 322.3 0.550 

 

By using the computation of root-mean-square, Castagliola et al. (2011) demonstrated 

that the Phase I data is under control with an estimated in-control sample coefficient of 

variation of 0.417. The process engineers explained that the heterogeneous microstructure 

of sintering steel with uneven grain size will result in an anomalous increase in pressure 

drop time’s standard deviation. This happens because it impacts the way copper is 

absorbed in every sintered part and its pore filling, leading to an effect on pressure drop 

time. An alteration in the correlation structure between pressure drop time’s mean and 

standard deviation will result in shifts in the in-control coefficient of variation. 

Consequently, assignable cause(s) can be identified by monitoring the coefficient of 

variation. 
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Process engineers have suggested that a 25% shift in the in-control coefficient of 

variation indicates a production problem. Therefore, this thesis proposed the side-

sensitive synthetic-  chart that is designed based on ARL and MRL to improve the 

detection of a shift of 1.25 = . It should be noted that Castagliola et al. (2011) also 

developed the EWMA-
2  chart based on 1.25 = . The methodology presented in 

Section 3.5 is used for ARL-based design to obtain the optimal chart parameters of L = 

21, LCL = 0, UCL = 0.9065. The results show that the side-sensitive synthetic-  chart 

has a minimum ARL1 of 18.8 compared to the EWMA-
2 , non-side-sensitive synthetic-

  and Shewhart-  charts, with ARL1 of 20.2, 33.1 and 58.8, respectively.  

 

The data for Phase II is presented in Table 4.34. It should be noted that the data 

comprises 20 new samples that were collected from the process after the existence of an 

assignable cause that led to an increase in process variability.    

 

Table 4.34 Phase II dataset from a sintering process 

k 
kX  kS  ˆ

k  

1 906.4 476.0 0.525 

2 805.1 493.9 0.613 

3 1187.2 1105.9 0.932 

4 663.4 304.8 0.459 

5 1012.1 367.4 0.363 

6 863.2 350.4 0.406 

7 1561.0 1652.2 1.058 

8 697.1 253.2 0.363 

9 1024.6 120.9 0.118 

10 355.3 235.2 0.662 

11 485.6 106.5 0.219 

12 1224.3 915.4 0.748 

13 1365.0 1051.6 0.770 

14 704.0 449.7 0.639 

15 1584.7 1050.8 0.663 

16 1130.0 680.6 0.602 

17 824.7 393.5 0.477 

18 921.2 391.0 0.424 

19 870.3 730.0 0.839 

20 1068.3 150.8 0.141 
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The Phase II data was monitored using the side-sensitive synthetic-  chart, as 

presented in Figure 4.1. 

           

Figure 4.1 The   sub-chart of the ARL-based design of the side-sensitive 

synthetic-  chart 

 

Figure 4.1 displays the side-sensitive synthetic-  chart utilized for monitoring the 

Phase II data, revealing two non-conforming samples, the 3rd and 7th samples, which 

appear in the region above the UCL. Since the values of CRL1 and CRL2 are less than L 

= 21, specifically 3 and 4, respectively, the side-sensitive synthetic-  chart will generate 

out-of-control signals at the 3rd and 7th samples. Thus, the special cause was promptly 

detected by the side-sensitive synthetic-  chart. To facilitate comparison, Figures 4.2 to 

4.4 show the Phase II data being monitored using the EWMA-
2 , non-side-sensitive 

synthetic-  and Shewhart-  charts.  

ˆ
k  
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Figure 4.2 The ARL-based design of the EWMA-
2  chart 

    

           

Figure 4.3 The   sub-chart of the ARL-based design of the non-side-sensitive 

synthetic-  chart  

 

            

Figure 4.4 The ARL-based design of the Shewhart-  chart  

ˆ
k  

ˆ
k  
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Figure 4.2 indicates that the EWMA-
2  chart produces an out-of-control signal at the 

13th sample. Nevertheless, the side-sensitive synthetic-  chart detected the out-of-control 

condition at the third sample which is earlier than the EWMA-
2  chart. Figure 4.3 

illustrates that the 7th sample is classified as a non-conforming sample for the non-side-

sensitive synthetic-  chart, resulting in CRL1 = 7. With the optimal L being 35, the non-

side-sensitive synthetic-  chart generates an out-of-control signal at the 7th sample. From 

Figure 4.4, the Shewhart-  chart did not identify any samples that are outside the control 

limits. However, there are seven successive samples, i.e. samples 12 to 18, that falls above 

the CL, which indicates the possible presence of assignable cause(s). By comparing 

Figure 4.1 with Figures 4.2 to 4.4, the side-sensitive synthetic-  chart which is designed 

based on the ARL resulted in the fastest discovery of out-of-control conditions among all 

the four charts. Hence, quicker corrective action can be engaged to identify and remove 

the unusual causes. 

 

To accurately assess the side-sensitive synthetic-  chart’s performance, the design 

based on MRL was also used with the same Phase II dataset, following the methodology 

presented in Section 3.7 with MRL0 = 250. The optimal chart parameters, L, LCL, and 

UCL, obtained were 7, 0, and 0.8418, respectively, and the corresponding values of Q05, 

MRL1 and Q95 were 1, 7 and 76 respectively. Figure 4.5 illustrates the side-sensitive 

synthetic-  chart’s   sub-chart which is designed based on the MRL, when implemented 

on the Phase II dataset. 
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Figure 4.5 The   sub-chart of the MRL-based design of the side-sensitive 

synthetic-  chart 

 

Figure 4.5 indicates that the 3rd and 7th samples exceed the UCL, and thus, they are 

identified as two consecutive non-conforming samples. Additionally, the CRL1, which 

considers the quantity of conforming samples until the occurrence of the first non-

conforming sample, is three, while the CRL2 is four, obtained from the quantity of 

conforming samples between the 4th and 7th samples. Since the optimal L is 7, and both 

CRL values are smaller than 7, the out-of-control signal is triggered at the 3rd and 7th 

samples. This result is consistent with the ARL-based design shown in Figure 4.1. 

Nonetheless, the design based on MRL yields a slightly smaller conforming region with 

a lower UCL value than the design based on ARL. Consequently, both designs of side-

sensitive synthetic-  chart based on ARL and MRL exhibit comparable performance in 

this example. 

ˆ
k  
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CHAPTER 5: CONCLUSION 

5.0 Introduction 

The opening of this chapter provides an overview of the performance of the side-

sensitive synthetic-  chart proposed in this thesis, based on the obtained optimal chart 

parameters and performance measures obtained. Additionally, a comparison is made 

between the proposed chart and three other coefficient of variation charts used in this 

thesis, namely the Shewhart- , EWMA-
2  and non-side-sensitive synthetic-  charts. 

Subsequently, the limitation of the research and recommendation for future study are 

explained in the last subsection of this thesis. 

 

5.1 Discussion and Summary 

 In this thesis, a synthetic chart that incorporates side sensitivity with ARL, EARL, MRL 

and EMRL-based designs is proposed to improve the existing non-side-sensitive 

synthetic-  chart’s performance in monitoring the coefficient of variation and this study 

is not available in the existing literature. The performance of the proposed chart is 

evaluated for sample sizes,  5,  7, 10, 15, 20n , shift sizes, 

 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0   and in-control coefficient of variations, 

 0 0.05, 0.10, 0.15, 0.20  . Besides, the side-sensitive synthetic-  chart’s entire 

distribution of run length is also being studied in order to precisely assess the actual 

performance of the proposed chart.  

 

The ARL and SDRL are derived as shown in Equations (3.18) and (3.19), respectively. 

Since it is hard to specify the value of shift size in most real-world situations, which is 

required to calculate the ARL and SDRL, the EARL is selected as one of the performance 

measures when shift size could not be specified. The formula for EARL is derived as 
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shown in Equation (3.29) with a range of possible values ( )min max,     which is set as 

(1,  2 . Subsequently, algorithms to optimize the ARL and EARL are formulated in 

Sections 3.4 and 3.5, respectively. These are related to the achievement of the first 

research objective in this thesis. 

 

By referring to the results of the ARL-based design with the constraint of ARL0 being 

set as 370.4, it can be observed that as sample size increases, the values of ARL1 and 

SDRL1 decrease significantly. Besides, the conforming region and maximum quantity of 

conforming samples between two consecutive non-conforming samples (L) are getting 

smaller for large sample sizes. Similarly, as shift size increases, the ARL1, SDRL1, 

conforming region and L shows a similar trend as that shown by an increase in sample 

size. For the in-control coefficient of variation ( )0 , the values of ARL1, SDRL1, LCL 

and UCL are slightly larger when the in-control coefficient of variation increases. In terms 

of the EARL performance, the value of EARL1 decreases significantly as the sample size 

increases. Furthermore, the increase in sample size also results in tighter conforming 

region. However, a different trend is observed as the in-control coefficient of variation 

increases, where the values of EARL1, LCL and UCL increase. 

 

Existing works of literature have explained the risks of evaluating a control chart solely 

based on the ARL and EARL performance especially for skewed distributions. Numerical 

analysis in this thesis shows that the distribution of run length of the side-sensitive 

synthetic-  chart that is designed based on ARL and EARL is positively skewed. Besides, 

false alarms often occur earlier than what is designated by the ARL. These are related to 

the second research objective of studying the side-sensitive synthetic-  chart’s 

distribution of run length. Hence, the proposed chart should also be assessed based on 
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another two performance measures, the MRL and EMRL. The formula to evaluate the 

MRL is derived in Equation (3.32) by setting 0.5 =  with specific values of shift size 

whereas the formula for EMRL for unknown shift size is derived as shown in Equation 

(3.33) with a range of possible values ( )min max,     which is set as (1,  2 . Algorithms to 

optimize these performance measures are shown in Sections 3.6 and 3.7, respectively. 

These are related to the achievement of the first research objective. The numerical 

analysis indicates that the design based on MRL performs better than the design based on 

ARL as it has a smaller conforming region for small shift sizes. Besides, it has a smaller 

spread and variation in the run lengths. Furthermore, it needs a smaller median quantity 

of samples in detecting the shifts. As for the design based on EMRL, it has a similar 

performance as the design based on EARL.  

 

Comparing it to other monitoring coefficient of variation charts based on ARL, EARL, 

MRL, and EMRL-based designs, the proposed chart displays better performance than the 

Shewhart-  and non-side-sensitive synthetic-  charts in all cases considered. In most 

cases, it also exhibits comparable or better performance than the EWMA chart, excluding 

small shift sizes where the EWMA-
2  chart performs better than the proposed chart. 

Hence, the side-sensitive synthetic-  chart can be considered a competitive chart for 

monitoring shifts in the coefficient of variation, and it marks a noteworthy enhancement 

over the existing synthetic chart, accomplishing the third research objective of this thesis.  

 

The actual performance of the proposed chart is assessed on an actual industry example 

taken from Castagliola et al. (2011) by implementing the design based on ARL. The 

performance is compared with the Shewhart- , EWMA-
2 , and non-side-sensitive 

synthetic-  charts. The numerical analysis demonstrates that the proposed side-sensitive 
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synthetic-  chart which is designed based on ARL has the smallest ARL1 among all four 

charts and detects the out-of-control condition quicker than the other coefficient of 

variation charts which are designed based on ARL, enabling prompt action to be engaged 

to eliminate the assignable cause(s) and bring the process back to a state of in-control, 

thereby enhancing the quality of products or services delivered. To ensure the accuracy 

of the evaluation, the proposed side-sensitive synthetic-  chart that is designed based on 

MRL is also implemented on the same real industry example, which yields similar results 

to the ARL-based design. Hence, the last research objective of this thesis is successfully 

accomplished.  

 

As a conclusion, incorporating the feature of side sensitivity into the existing 

synthetic-  chart has brought a significant improvement to the existing synthetic-  chart 

and this outcome has accomplished the purpose of this thesis.  

 

5.2 Limitation of Research and Future Recommendation 

This thesis has identified four research limitations. The first limitation pertains to the 

proposed side-sensitive synthetic-  chart, which solely considers three regions, namely 

the conforming, upper non-conforming and lower non-conforming regions, which may 

reduce the sensitivity of the chart. Although considering three regions results in better 

performance than the existing synthetic-  chart which considers only two regions, i.e. 

the conforming and non-conforming regions, future research which considers more 

regions as explained in the next paragraph might result in further improvement of the 

proposed side-sensitive synthetic-  chart. The second limitation is that the proposed 

side-sensitive synthetic-  chart has only been examined in the context of a univariate 

process. Hence, the proposed chart could not be applied to monitor multivariate processes 

with several correlated quality characteristics. The third limitation of this thesis is that 
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fixed chart parameters are adopted, irrespective of the present sample information. Since 

the operations and formulae to evaluate the proposed chart’s performance are based on 

fixed chart parameters, hence modifications need to be made on the operations and 

performance measures if variable chart parameters are going to be adopted. Finally, the 

last limitation is the data being monitored is assumed to be independent and normally 

distributed, which affects the distributional properties of ̂  and the formulae to evaluate 

the performance of the chart. For non-normal data, the distributional properties of ̂  

needs to be derived according to the new distribution, and the formulae for the 

performance measures also needs to be modified for dependent data by taking the 

dependency into consideration. 

 

Since the proposed side-sensitive synthetic-  chart has four limitations as mentioned 

in the previous paragraph, therefore several future research can be recommended. First, 

the study of the side-sensitive synthetic-  chart can be continued with more than three 

regions such as implementing the modified side-sensitive regions introduced by Shongwe 

and Graham (2018). The control chart can be separated into four regions which are the 

upper conforming, lower conforming, upper non-conforming and lower non-conforming 

regions. Another recommendation for future research includes exploring the application 

of the side-sensitive synthetic-  chart to multivariate processes. Another potential 

research area involves investigating the use of variable chart parameters for the side-

sensitive synthetic-  chart. Additionally, studies can be conducted to create a side-

sensitive synthetic-  chart suitable for non-normal and autocorrelated data. 
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APPENDIX 

APPENDIX A: COMPUTER PROGRAMMING FOR ARL AND EARL-BASED 

DESIGNS OF SIDE-SENSITIVE SYNTHETIC-  CHART 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV(n,cv)//to compute the mean and standard deviation of 

the in-control CV 

//------------------------------------------------------------------- 

  [argout,argin]=argn() 

  if argin~=2 

    error("incorrect number of arguments") 

  end 

  if cv<=0 

    error("argument ''cv'' must be > 0") 

  end 

  cv2=cv^2 

  mu=cv*(1+((cv2-0.25)+((3*cv2^2-cv2/4-7/32)+(15*cv2^3-3*cv2^2/4-7*cv2/32-

19/128)/n)/n)/n) 

  

sigma=cv*sqrt(((cv2+0.5)+((8*cv2^2+cv2+3/8)+(69*cv2^3+7*cv2^2/2+3*cv2/4+3/16)

/n)/n)/n) 

endfunction 

 

 

//------------------------------------------------------------------- 

function [A,B1,B2]=prob(LCL,UCL,n,cv)//to calculate the probability for a sample to 

fall between UCL and LCL, above UCL, and below LCL, respectively 
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//------------------------------------------------------------------- 

A=cdfcv(UCL,n,cv)-cdfcv(LCL,n,cv)//Prob conforming 

B1=1-cdfcv(UCL,n,cv)//B1=B+ 

B2=cdfcv(LCL,n,cv)//B2=B- 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [Q,q]=qsyncvI(n,L,LCL,UCL,cv0,delta)//to calculate the transition probability 

matrix and initial probability vector 

//------------------------------------------------------------------------------ 

 

cv1=delta*cv0 

[A,B1,B2]=prob(LCL,UCL,n,cv1) 

 

Q=zeros(2*L+1,2*L+1) 

 

Q(1,L+1)=A 

Q(L+1,L+1)=A 

Q(2*L+1,L+1)=A 

 

for i=2:L 

    Q(i,i-1)=A 

end 

for j=L+1:2*L+1 

    Q(j,L)=B2 

end 

 

for k=1:L+1 

    Q(k,L+2)=B1 

end 

 

for m=L+2:2*L 

    Q(m,m+1)=A 

end 

 

q=zeros(2*L+1,1) 

q(L+2)=1 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [mu,sd,sk,ku]=momdphase(Q,q) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

q=q(:)' 

W=inv(eye(Q)-Q) 

z=q*W 

nu1=sum(z) 
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mu=nu1 

if argout>=2 

  WQ=W*Q 

  z=z*WQ 

  nu2=2*sum(z) 

  sd=sqrt(nu2-nu1^2+nu1) 

end 

if argout>=3 

  z=z*WQ 

  nu3=6*sum(z) 

  mu3=nu3+3*(1-nu1)*nu2+2*nu1^3-3*nu1^2+nu1 

  sk=mu3/sd^3 

end 

if argout>=4 

  z=z*WQ 

  nu4=24*sum(z) 

  mu4=nu4+6*nu3+nu1*(1-4*nu3)+(6*nu1^2-12*nu1+7)*nu2-3*nu1^4+6*nu1^3-

4*nu1^2 

  ku=mu4/sd^4-3 

end 

endfunction 

 

 

//------------------------------------------------------------------------------- 

function [ARL,SDRL]=rlsyncvI(n,L,K,cv0,delta)//to calculate the ARL and SDRL with 

K 

//-------------------------------------------------------------------------------- 

[mu,sigma]=musigmaCV(n,cv0) 

 LCL=mu-K*sigma 

 UCL=mu+K*sigma 

[Q,q]=qsyncvI(n,L,LCL,UCL,cv0,delta) 

[ARL,SDRL]=momdphase(Q,q)  

endfunction 

 

 

//------------------------------------------------------------------------------- 

function [ARL,SDRL]=rlsyncvI2(n,L,LCL,UCL,cv0,delta)//to calculate the ARL and 

SDRL with LCL and UCL 

//-------------------------------------------------------------------------------- 

[mu,sigma]=musigmaCV(n,cv0) 

[Q,q]=qsyncvI(n,L,LCL,UCL,cv0,delta) 

[ARL,SDRL]=momdphase(Q,q)  

endfunction 

 

 

//------------------------------------------------------------------------------ 

function dif=optKI(K,L,n,cv0)//to find the optimal K that satisfies the ARL0 constraint 

//------------------------------------------------------------------------------ 

if K<=0 

  dif=%inf 

else 

  [ARL0,SDRL0]=rlsyncvI(n,L,K,cv0,1) 



  

155 

  dif=(370.4-ARL0)/370.4 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 

  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 

end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 

  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 

  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 
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  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 

  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 

    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [L,K,ARL1,SDRL1,ARL0]=optsyncvI(n,cv0,delta)//to find the optimal chart 

parameters, ARL1 and SDRL1 

//----------------------------------------------------------------------------- 

 

ARL1=%inf 

for iL=1:100//change 

    iK0=3 

    iK=simplexolve(iK0,optKI,list(iL,n,cv0)) 

    [iARL1,iSDRL1]=rlsyncvI(n,iL,iK,cv0,delta) 

    [iARL0,iSDRL0]=rlsyncvI(n,iL,iK,cv0,1) 

    mprintf("L=%6.4f  K=%6.4f  ARL1=%6.4f  SDRL1=%6.4f 

ARL0=%6.4f\n",iL,iK,iARL1,iSDRL1,iARL0) 

    if (iARL1<ARL1) 

      ARL1=iARL1 

      SDRL1=iSDRL1 

      ARL0=iARL0 

      L=iL 

      K=iK 
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    else ARL1=ARL1 

  end 

end 

endfunction 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 

 

 

//------------------------------------------------------------------------------- 

function EARL=earlsyncvI(n,L,K,cv0)//to compute the EARL with K 

//-------------------------------------------------------------------------------- 

[xi,wi]=quadlegendre(15,1.03,2) 

EARL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 
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  [ARL,SDRL]=rlsyncvI(n,L,K,cv0,xil) 

  EARL=EARL+ARL.*wil 

end 

 

EARL=EARL/(2-1.03) 

endfunction 

 

 

//------------------------------------------------------------------------------- 

function EARL=earlsyncvI2(n,L,LCL,UCL,cv0)//to compute the EARL with LCL and 

UCL 

//-------------------------------------------------------------------------------- 

[xi,wi]=quadlegendre(15,1.03,2) 

EARL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  [ARL,SDRL]=rlsyncvI2(n,L,LCL,UCL,cv0,xil) 

  EARL=EARL+ARL.*wil 

end 

 

EARL=EARL/(2-1.03) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [L,K,EARL]=optsyncvE(n,cv0)//to find the optimal chart parameters and EARL 

//----------------------------------------------------------------------------- 

 

EARL=%inf 

for iL=1:100  

    iK0=3 

    iK=simplexolve(iK0,optKI,list(iL,n,cv0)) 

    iEARL=earlsyncvI(n,iL,iK,cv0) 

    mprintf("L=%6.4f  K=%6.4f  EARL=%6.4f\n",iL,iK,iEARL) 

    if (iEARL<EARL) 

      EARL=iEARL 

      L=iL 

      K=iK 

    else EARL=EARL 

  end 

end 

endfunction 
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APPENDIX B: COMPUTER PROGRAMMING FOR MRL AND EMRL-BASED 

DESIGNS OF SIDE-SENSITIVE SYNTHETIC-  CHART 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV(n,cv)//to compute the mean and standard deviation of 

the in-control sample CV 

//------------------------------------------------------------------- 

  [argout,argin]=argn() 

  if argin~=2 

    error("incorrect number of arguments") 

  end 

  if cv<=0 

    error("argument ''cv'' must be > 0") 

  end 

  cv2=cv^2 

  mu=cv*(1+((cv2-0.25)+((3*cv2^2-cv2/4-7/32)+(15*cv2^3-3*cv2^2/4-7*cv2/32-

19/128)/n)/n)/n) 

  

sigma=cv*sqrt(((cv2+0.5)+((8*cv2^2+cv2+3/8)+(69*cv2^3+7*cv2^2/2+3*cv2/4+3/16)

/n)/n)/n) 

endfunction 

 

 

//------------------------------------------------------------------- 

function [A,B1,B2]=prob(LCL,UCL,n,cv)//to compute the probability a sample will fall 

within the UCL and LCL, above the UCL, and below the LCL, respectively 

//------------------------------------------------------------------- 

A=cdfcv(UCL,n,cv)-cdfcv(LCL,n,cv)//Prob conforming 

B1=1-cdfcv(UCL,n,cv)//B1=B+ 



  

160 

B2=cdfcv(LCL,n,cv)//B2=B- 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [Q,q]=qsyncvI(n,L,LCL,UCL,cv0,delta)//to compute the transition probability 

matrix and initial probability vector 

//------------------------------------------------------------------------------ 

 

cv1=delta*cv0 

[A,B1,B2]=prob(LCL,UCL,n,cv1) 

 

Q=zeros(2*L+1,2*L+1) 

 

Q(1,L+1)=A 

Q(L+1,L+1)=A 

Q(2*L+1,L+1)=A 

 

for i=2:L 

    Q(i,i-1)=A 

end 

for j=L+1:2*L+1 

    Q(j,L)=B2 

end 

 

for k=1:L+1 

    Q(k,L+2)=B1 

end 

 

for m=L+2:2*L 

    Q(m,m+1)=A 

end 

 

q=zeros(2*L+1,1) 

q(L+2)=1 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function F=cdfsyncv(Q,q,pct)//to compute the probability that the run length will be 

larger than the percentile 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

q=q(:)' 

Ft1=q*Q^pct 

Ft2=sum(Ft1) 

F=Ft2 

endfunction 
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//------------------------------------------------------------------------------ 

function X=pcrlsyncv(pcrl,mrlini,n,L,LCL,UCL,cv0,delta)//to obtain the percentile 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<7)|(argin>8) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if (L<=0)|(L~=floor(L)) 

    error("argument ''L'' must be an integer >= 1") 

end 

if argin==7 

  delta=1 

end 

if delta<=0 

  error("argument ''delta'' must be >0") 

end 

 

[Q,q]=qsyncvI(n,L,LCL,UCL,cv0,delta) 

 

for X=mrlini:500000 

    F=1-cdfsyncv(Q,q,X) 

    if F>=pcrl 

        break 

     end 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function z=optKsyncv(K,n,L,mrl0,cv0)//to obtain the value of K that satisifes the mrl0 

constraint 

//----------------------------------------------------------------------------- 

 

if (K<=0) 

   z=%inf 

else 

  [mu,sigma]=musigmaCV(n,cv0) 

  LCL=mu-K*sigma 

  UCL=mu+K*sigma 

  [Q,q]=qsyncvI(n,L,LCL,UCL,cv0,1) 

  probMRL=1-cdfsyncv(Q,q,mrl0) 

  z=(probMRL-0.5001)*10 

end 

endfunction 
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//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 

  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 

end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 

  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 

  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 

  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 
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  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 

    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [L,LCL,UCL,Q05,MRL1,Q95]=optsyncv(n,mrl0,cv0,delta)//to obtain the 

optimal chart parameters, and the 5th, 50th and 95th percentiles of the run length 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

mprintf("delta=%3.2f\n\n",delta) 

sol=[] 

ii=1 

MRL1=%inf 

diffPCRmin=%inf 

 

for iL=1:100 

    K0=3 

    iK=simplexolve(K0,optKsyncv,list(n,iL,mrl0,cv0),tol=1e-6) 

    [mu,sigma]=musigmaCV(n,cv0) 

    iLCL=mu-iK*sigma 

    iUCL=mu+iK*sigma 

    iPCR5=pcrlsyncv(0.05,1,n,iL,iLCL,iUCL,cv0,delta) 
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    iMRL1=pcrlsyncv(0.5,iPCR5,n,iL,iLCL,iUCL,cv0,delta) 

    iPCR95=pcrlsyncv(0.95,iMRL1,n,iL,iLCL,iUCL,cv0,delta) 

    MRL00=pcrlsyncv(0.5,mrl0-5,n,iL,iLCL,iUCL,cv0,1) 

    diffPCR=iPCR95-iPCR5 

    mprintf("%2d %8.6f %8.6f %5d %5d %5d 

%5d\n",[iL,iLCL,iUCL,iPCR5,iMRL1,iPCR95,MRL00]) 

     

    if (iMRL1<MRL1)  

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    Q05=iPCR5 

    MRL1=iMRL1 

    Q95=iPCR95 

    diffPCRmin=diffPCR 

    elseif (iMRL1==MRL1)&(diffPCR<=diffPCRmin) 

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    Q05=iPCR5 

    MRL1=iMRL1 

    Q95=iPCR95 

    diffPCRmin=diffPCR 

    elseif (iMRL1>MRL1) 

    MRL1=MRL1 

    diffPCRmin=diffPCRmin 

  end 

   

  if (iMRL1>MRL1) 

    break 

 end 

  

 end    

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain the Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 



  

165 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function Xe=pcrlsyncve(pcrle,emrlini,n,L,LCL,UCL,cv0,deltamin,deltamax)//to obtain 

the percentile 

//------------------------------------------------------------------------------ 

[xi,wi]=quadlegendre(15,deltamin,deltamax) 

Xe=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  XXe=pcrlsyncv(pcrle,emrlini,n,L,LCL,UCL,cv0,xil) 

  Xe=Xe+XXe.*wil 

end 

Xe=Xe/(deltamax-deltamin) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function 

[L,LCL,UCL,EQ05,EMRL1,EQ95]=optsyncve(n,mrl0,cv0,deltamin,deltamax)//to 

obtain the optimal chart parameters, and the 5th, 50th and 95th percentiles of the run length 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

sol=[] 
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ii=1 

EMRL1=%inf 

diffEPCRmin=%inf 

 

for iL=1:100 

    K0=3 

    iK=simplexolve(K0,optKsyncv,list(n,iL,mrl0,cv0),tol=1e-6) 

    [mu,sigma]=musigmaCV(n,cv0) 

    iLCL=mu-iK*sigma 

    iUCL=mu+iK*sigma 

    iEPCR5=pcrlsyncve(0.05,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    iEMRL1=pcrlsyncve(0.5,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    iEPCR95=pcrlsyncve(0.95,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    MRL00=pcrlsyncv(0.5,mrl0-5,n,iL,iLCL,iUCL,cv0,1) 

    diffEPCR=iEPCR95-iEPCR5 

    mprintf("%2d %8.6f %8.6f %8.6f %8.6f %8.6f 

%5d\n",[iL,iLCL,iUCL,iEPCR5,iEMRL1,iEPCR95,MRL00]) 

     

    if (iEMRL1<EMRL1)  

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    EQ05=iEPCR5 

    EMRL1=iEMRL1 

    EQ95=iEPCR95 

    diffEPCRmin=diffEPCR 

    elseif (iEMRL1==EMRL1)&(diffEPCR<=diffEPCRmin) 

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    EQ05=iEPCR5 

    EMRL1=iEMRL1 

    EQ95=iEPCR95 

    diffEPCRmin=diffEPCR 

    elseif (iEMRL1>EMRL1) 

    EMRL1=EMRL1 

    diffEPCRmin=diffEPCRmin 

  end 

   

  if (iEMRL1>EMRL1) 

    break 

 end 

  

 end    

endfunction 
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APPENDIX C: COMPUTER PROGRAMMING FOR ARL AND EARL-BASED 

DESIGNS OF NON-SIDE-SENSITIVE SYNTHETIC-  CHART 

//----------------------------------------------------------------------------- 

function X=idfcv(Y,n,cv)//to obtain the idf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if or((Y<=0)|(Y>=1)) 

  error("all elements of argument ''Y'' must be in (0,1)") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

X=sqrt(n)./idfstudent(1-Y,n-1,sqrt(n)/cv) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------- 

function [LCL,UCL,ARL,SDRL]=rlsyncv(n,cv0,delta,p,L)//to calculate the LCL, UCL, 

ARL and SDRL with p 

//------------------------------------------------------------------- 

cv1=delta*cv0 

LCL=idfcv(p/2,n,cv0) 
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UCL=idfcv(1-p/2,n,cv0) 

P1=1+cdfcv(LCL,n,cv1)-cdfcv(UCL,n,cv1) 

ARL=(1/(1-(1-P1)^L))*(1/P1) 

total=0 

for t=1:L 

total=total+t*(1-P1)^(t-1)      

end 

SDRL2=((2-P1)/((1-(1-P1)^L)*P1^2))+(1/(1-(1-P1)^L)^2)*(1/(P1^2)-2*total) 

SDRL=sqrt(SDRL2) 

 

 

//------------------------------------------------------------------- 

function dif=optp(p,L)//to find the optimal p 

//------------------------------------------------------------------- 

if p<=0 

   dif=%inf 

else 

dif=370-(1/(1-(1-p)^L))*(1/p)    

end 

 

 

//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 

  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 

end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 
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  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 

  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 

  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 

  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 

    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 

endfunction 
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//----------------------------------------------------------------------------- 

function p=limit(L) 

//----------------------------------------------------------------------------- 

 

p0=0.5; 

p=simplexolve(p0,optp,list(L),tol=1e-6) 

 

 

//----------------------------------------------------------------------------- 

function [L,LCL,UCL,ARL,SDRL]=optsyncv(n,cv0,delta)//to find the optimal chart 

parameters, ARL1 and SDRL1 

//----------------------------------------------------------------------------- 

ARL=%inf 

for iL=1:100//change 

    p=limit(iL) 

    [iLCL,iUCL,iARL,iSDRL]=rlsyncv(n,cv0,delta,p,iL) 

    if (iARL<ARL) 

      ARL=iARL 

      SDRL=iSDRL 

      L=iL 

      LCL=iLCL 

      UCL=iUCL 

    else ARL=ARL 

  end 

end 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain the Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 
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     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 

 

 

//------------------------------------------------------------------------------- 

function EARL=earlsyncv(n,cv0,p,L)//to compute the EARL with p 

//-------------------------------------------------------------------------------- 

[xi,wi]=quadlegendre(15,1.03,2) 

EARL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  [LCL,UCL,ARL,SDRL]=rlsyncv(n,cv0,xil,p,L) 

  EARL=EARL+ARL.*wil 

end 

 

EARL=EARL/(2-1.03) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [L,LCL,UCL,EARL]=optsyncvE(n,cv0)//to find the optimal chart parameters 

and EARL 

//----------------------------------------------------------------------------- 

EARL=%inf 

for iL=1:100  

    ip=limit(iL) 

    iEARL=earlsyncv(n,cv0,ip,iL) 

    if (iEARL<EARL) 

      EARL=iEARL 

      L=iL 

      p=ip 

      LCL=idfcv(p/2,n,cv0) 

      UCL=idfcv(1-p/2,n,cv0) 

    else EARL=EARL 

  end 

end 
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APPENDIX D: COMPUTER PROGRAMMING FOR MRL AND EMRL-BASED 

DESIGNS OF NON-SIDE-SENSITIVE SYNTHETIC-  CHART 

//------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV(n,cv)//to compute the mean and standard deviation of 

the in-control sample CV 

//------------------------------------------------------------------- 

  [argout,argin]=argn() 

  if argin~=2 

    error("incorrect number of arguments") 

  end 

  if cv<=0 

    error("argument ''cv'' must be > 0") 

  end 

  cv2=cv^2 

  mu=cv*(1+((cv2-0.25)+((3*cv2^2-cv2/4-7/32)+(15*cv2^3-3*cv2^2/4-7*cv2/32-

19/128)/n)/n)/n) 

  

sigma=cv*sqrt(((cv2+0.5)+((8*cv2^2+cv2+3/8)+(69*cv2^3+7*cv2^2/2+3*cv2/4+3/16)

/n)/n)/n) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [Q,q]=qsyncv(n,L,LCL,UCL,cv0,delta)//to compute the transition probability 

matrix and initial probability vector 

//------------------------------------------------------------------------------ 

cv1=delta*cv0 

A=cdfcv(UCL,n,cv1)-cdfcv(LCL,n,cv1)//Prob conforming 
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B=1-A//Prob non-conforming 

 

Q=zeros(L+1,L+1) 

 

Q(1,1)=A 

Q(1,2)=B 

 

for i=2:L 

    Q(i,i+1)=A 

end 

 

Q(L+1,1)=A 

 

q=zeros(L+1,1) 

q(2)=1 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [mu,sd,sk,ku]=momdphase(Q,q) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

q=q(:)' 

W=inv(eye(Q)-Q) 

z=q*W 

nu1=sum(z) 

mu=nu1 

if argout>=2 

  WQ=W*Q 

  z=z*WQ 

  nu2=2*sum(z) 

  sd=sqrt(nu2-nu1^2+nu1) 

end 

if argout>=3 

  z=z*WQ 

  nu3=6*sum(z) 

  mu3=nu3+3*(1-nu1)*nu2+2*nu1^3-3*nu1^2+nu1 

  sk=mu3/sd^3 

end 

if argout>=4 

  z=z*WQ 

  nu4=24*sum(z) 

  mu4=nu4+6*nu3+nu1*(1-4*nu3)+(6*nu1^2-12*nu1+7)*nu2-3*nu1^4+6*nu1^3-

4*nu1^2 

  ku=mu4/sd^4-3 

end 

endfunction 
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//------------------------------------------------------------------------------- 

function [ARL,SDRL]=rlsyncv(n,L,LCL,UCL,cv0,delta)//to calculate the ARL and 

SDRL 

//-------------------------------------------------------------------------------- 

[Q,q]=qsyncv(n,L,LCL,UCL,cv0,delta) 

[ARL,SDRL]=momdphase(Q,q) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function F=cdfsyncv(Q,q,pct)//to compute the probability that the run length will be 

larger than the percentile 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

q=q(:)' 

Ft1=q*Q^pct 

Ft2=sum(Ft1) 

F=Ft2 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function X=pcrlsyncv(pcrl,mrlini,n,L,LCL,UCL,cv0,delta)//to obtain the percentile with 

optimal L, LCL and UCL 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<7)|(argin>8) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if (L<=0)|(L~=floor(L)) 

    error("argument ''L'' must be an integer >= 1") 

end 

if argin==7 

  delta=1 

end 

if delta<=0 

  error("argument ''delta'' must be >0") 

end 

 

[Q,q]=qsyncv(n,L,LCL,UCL,cv0,delta) 

 

for X=mrlini:500000 

    F=1-cdfsyncv(Q,q,X) 

    if F>=pcrl 

        break 

     end 
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end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function X=pcrlsyncv2(pcrl,mrlini,n,L,K,cv0,delta)//to obtain the percentile with optimal 

L and K 

//------------------------------------------------------------------------------ 

[mu,sigma]=musigmaCV(n,cv0) 

 LCL=mu-K*sigma 

 UCL=mu+K*sigma 

[Q,q]=qsyncv(n,L,LCL,UCL,cv0,delta) 

 

for X=mrlini:500000 

    F=1-cdfsyncv(Q,q,X) 

    if F>=pcrl 

        break 

     end 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function z=optKsyncv(K,n,L,mrl0,cv0)//to obtain the value of K that satisfies the mrl0 

constraint 

//----------------------------------------------------------------------------- 

 

if (K<=0) 

   z=%inf 

else 

  [mu,sigma]=musigmaCV(n,cv0) 

  LCL=mu-K*sigma 

  UCL=mu+K*sigma 

  [Q,q]=qsyncv(n,L,LCL,UCL,cv0,1) 

  probMRL=1-cdfsyncv(Q,q,mrl0) 

  z=(probMRL-0.5001)*10 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 
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  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 

end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 

  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 

  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 

  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 

  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 
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    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [L,LCL,UCL,Q05,MRL1,Q95]=optsyncv(n,mrl0,cv0,delta)//to obtain the 

optimal chart parameters, and the 5th, 50th and 95th percentiles of the run length 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

mprintf("delta=%3.2f\n\n",delta) 

sol=[] 

ii=1 

MRL1=%inf 

diffPCRmin=%inf 

 

for iL=1:50 

    K0=3 

    iK=simplexolve(K0,optKsyncv,list(n,iL,mrl0,cv0),tol=1e-6) 

    [mu,sigma]=musigmaCV(n,cv0) 

    iLCL=mu-iK*sigma 

    iUCL=mu+iK*sigma 

    iPCR5=pcrlsyncv(0.05,1,n,iL,iLCL,iUCL,cv0,delta) 

    iMRL1=pcrlsyncv(0.5,iPCR5,n,iL,iLCL,iUCL,cv0,delta) 

    iPCR95=pcrlsyncv(0.95,iMRL1,n,iL,iLCL,iUCL,cv0,delta) 

    MRL00=pcrlsyncv(0.5,mrl0-5,n,iL,iLCL,iUCL,cv0,1) 

    diffPCR=iPCR95-iPCR5 

    mprintf("%2d %8.6f %8.6f %5d %5d %5d 

%5d\n",[iL,iLCL,iUCL,iPCR5,iMRL1,iPCR95,MRL00]) 

     

    if (iMRL1<MRL1)  

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    Q05=iPCR5 
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    MRL1=iMRL1 

    Q95=iPCR95 

    diffPCRmin=diffPCR 

    else 

    MRL1=MRL1 

    diffPCRmin=diffPCRmin 

end 

 

   if (iMRL1>MRL1) 

    break 

end 

 

 end    

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 



  

179 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function Xe=pcrlsyncve(pcrle,emrlini,n,L,LCL,UCL,cv0,deltamin,deltamax) 

//------------------------------------------------------------------------------ 

[xi,wi]=quadlegendre(15,deltamin,deltamax) 

Xe=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  XXe=pcrlsyncv(pcrle,emrlini,n,L,LCL,UCL,cv0,xil) 

  Xe=Xe+XXe.*wil 

end 

Xe=Xe/(deltamax-deltamin) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function 

[L,LCL,UCL,EQ05,EMRL1,EQ95]=optsyncve(n,mrl0,cv0,deltamin,deltamax)//to 

obtain the percentile 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

 

sol=[] 

ii=1 

EMRL1=%inf 

diffEPCRmin=%inf 

 

for iL=1:50 

    K0=3 

    iK=simplexolve(K0,optKsyncv,list(n,iL,mrl0,cv0),tol=1e-6) 

    [mu,sigma]=musigmaCV(n,cv0) 

    iLCL=mu-iK*sigma 

    iUCL=mu+iK*sigma 

    iEPCR5=pcrlsyncve(0.05,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    iEMRL1=pcrlsyncve(0.5,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    iEPCR95=pcrlsyncve(0.95,1,n,iL,iLCL,iUCL,cv0,deltamin,deltamax) 

    MRL00=pcrlsyncv(0.5,mrl0-5,n,iL,iLCL,iUCL,cv0,1) 

    diffEPCR=iEPCR95-iEPCR5 

    mprintf("%2d %8.6f %8.6f %8.6f %8.6f %8.6f 

%5d\n",[iL,iLCL,iUCL,iEPCR5,iEMRL1,iEPCR95,MRL00]) 

     

    if (iEMRL1<EMRL1)  

    L=iL 
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    LCL=iLCL 

    UCL=iUCL 

    EQ05=iEPCR5 

    EMRL1=iEMRL1 

    EQ95=iEPCR95 

    diffEPCRmin=diffEPCR 

    elseif (iEMRL1==EMRL1)&(diffEPCR<=diffEPCRmin) 

    L=iL 

    LCL=iLCL 

    UCL=iUCL 

    EQ05=iEPCR5 

    EMRL1=iEMRL1 

    EQ95=iEPCR95 

    diffEPCRmin=diffEPCR 

    elseif (iEMRL1>EMRL1) 

    EMRL1=EMRL1 

    diffEPCRmin=diffEPCRmin 

  end 

   

  if (iEMRL1>EMRL1) 

    break 

 end 

  

 end    

endfunction 

 

 

//----------------------------------------------------------------------------- 

function K=optK(n,cv0,UCL) 

//----------------------------------------------------------------------------- 

[mu,sigma]=musigmaCV(n,cv0) 

K=(UCL-mu)/sigma 

endfunction 

 

 

 

//----------------------------------------------------------------------------- 

function [LCL,UCL]=optCL(K,n,cv0)//to obtain LCL and UCL 

//----------------------------------------------------------------------------- 

 [mu,sigma]=musigmaCV(n,cv0) 

 LCL=mu-K*sigma 

 UCL=mu+K*sigma 
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APPENDIX E: COMPUTER PROGRAMMING FOR ARL AND EARL-BASED 

DESIGNS OF SHEWHART-  CHART 

//------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV(n,cv)//to compute the mean and standard deviation of 

the in-control CV 

//------------------------------------------------------------------- 

  [argout,argin]=argn() 

  if argin~=2 

    error("incorrect number of arguments") 

  end 

  if cv<=0 

    error("argument ''cv'' must be > 0") 

  end 

  cv2=cv^2 

  mu=cv*(1+((cv2-0.25)+((3*cv2^2-cv2/4-7/32)+(15*cv2^3-3*cv2^2/4-7*cv2/32-

19/128)/n)/n)/n) 

  

sigma=cv*sqrt(((cv2+0.5)+((8*cv2^2+cv2+3/8)+(69*cv2^3+7*cv2^2/2+3*cv2/4+3/16)

/n)/n)/n) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------- 

function [ARL,SDRL]=rlshcv(n,K,cv0,delta)//to obtain ARL and SDRL 

//------------------------------------------------------------------- 

cv1=delta*cv0 

[mu,sigma]=musigmaCV(n,cv0) 

LCL=mu-K*sigma 
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UCL=mu+K*sigma 

P=1+cdfcv(LCL,n,cv1)-cdfcv(UCL,n,cv1) 

ARL=1/P 

SDRL=sqrt(1-P)/P 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function X=idfcv(Y,n,cv)//to obtain idf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if or((Y<=0)|(Y>=1)) 

  error("all elements of argument ''Y'' must be in (0,1)") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

X=sqrt(n)./idfstudent(1-Y,n-1,sqrt(n)/cv) 

endfunction 

 

 

//------------------------------------------------------------------- 

function [LCL,UCL,ARL,SDRL]=optrlshcv(n,cv0,delta)//to find the optimal chart 

parameters, ARL and SDRL 

//------------------------------------------------------------------- 

   

cv1=delta*cv0 

alpha=0.0027 

LCL=idfcv(alpha/2,n,cv0) 

UCL=idfcv(1-alpha/2,n,cv0) 

P=1+cdfcv(LCL,n,cv1)-cdfcv(UCL,n,cv1) 

ARL=1/P 

SDRL=sqrt(1-P)/P 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 
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if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 

 

 

//------------------------------------------------------------------------------- 

function EARL=earlsyncv(n,cv0)//to compute the EARL 

//-------------------------------------------------------------------------------- 

[xi,wi]=quadlegendre(15,1.03,2) 

EARL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  [LCL,UCL,ARL,SDRL]=rlshcv(n,cv0,xil) 

  EARL=EARL+ARL.*wil 

end 

 

EARL=EARL/(2-1.03) 

endfunction 
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APPENDIX F: COMPUTER PROGRAMMING FOR MRL AND EMRL-BASED 

DESIGNS OF SHEWHART-  CHART 

//----------------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV(n,cv)//to compute the mean and standard deviation of 

the in-control sample CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

cv2=cv^2 

mu=cv*(1+((cv2-0.25)+((3*cv2^2-cv2/4-7/32)+(15*cv2^3-3*cv2^2/4-7*cv2/32-

19/128)/n)/n)/n) 

sigma=cv*sqrt(((cv2+0.5)+((8*cv2^2+cv2+3/8)+(69*cv2^3+7*cv2^2/2+3*cv2/4+3/16)

/n)/n)/n) 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [LCL,UCL]=ctrlmt(K,n,cv0)//to obtain LCL and UCL 

//------------------------------------------------------------------------------ 

 

  [mu,sigma]=musigmaCV(n,cv0) 

  LCL=mu-K*sigma 

  UCL=mu+K*sigma 

   

endfunction 

 

 

//----------------------------------------------------------------------------- 

function Y=cdfcv(X,n,cv)//to obtain the cdf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 
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i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./X(i),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function PRL=pctlXbar(n,K,delta,pctl,mrlini,cv0)//to obtain the percentile 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin>6 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if K<=0 

  error("argument ''L'' must be an integer > 0") 

end 

if delta<0 

  error("argument ''delta'' must be an integer >= 0") 

end 

if (pctl<=0)|(pctl>=1) 

  error("argument ''percentile'' must be an integer > 0 or < 1") 

end 

if mrlini<=0 

  error("argument ''mrlini'' must be an integer > 0") 

end 

 

[mu,sigma]=musigmaCV(n,cv0) 

LCL=mu-K*sigma 

UCL=mu+K*sigma 

cv1=delta*cv0 

P=cdfcv(UCL,n,cv1)-cdfcv(LCL,n,cv1) 

 

for PRL=mrlini:5000 

    prob_percen=1-P.^PRL 

    if prob_percen>=pctl 

        break 

    end 

end 

 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function dif=minKcv(K,n,mrl0,cv0) 

//------------------------------------------------------------------------------ 

if K<=0 

  dif=%inf 

else 
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  [mu,sigma]=musigmaCV(n,cv0) 

  LCL=mu-K*sigma 

  UCL=mu+K*sigma 

  P=cdfcv(UCL,n,cv0)-cdfcv(LCL,n,cv0)   

  dif=0.50001-(1-P.^mrl0) 

end 

 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 

  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 

end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 

  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 
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  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 

  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 

  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 

    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [K,Q05,MRL,Q95,MRL0]=opmrl(n,mrl0,delta,cv0)//to obtain the optimal chart 

parameters, and the 5th, 50th and 95th percentiles of the run length 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be an integer > 0") 

end 

if delta<0 

  error("argument ''delta'' must be >= 0") 
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end 

 

K=simplexolve(3,minKcv,list(n,mrl0,cv0),tol=1e-6) 

Q05=pctlXbar(n,K,delta,0.05,1,cv0) 

MRL=pctlXbar(n,K,delta,0.50,Q05,cv0) 

Q95=pctlXbar(n,K,delta,0.95,MRL,cv0) 

 

MRL0=pctlXbar(n,K,1,0.50,1,cv0) 

 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain the Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 
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//------------------------------------------------------------------------------ 

function Xe=pctlXe(n,K,deltamin,deltamax,pctl,mrlini,cv0)//to obtain the percentile 

//------------------------------------------------------------------------------ 

[xi,wi]=quadlegendre(15,deltamin,deltamax) 

Xe=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  XXe=pctlXbar(n,K,xil,pctl,mrlini,cv0) 

  Xe=Xe+XXe.*wil 

end 

Xe=Xe/(deltamax-deltamin) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [K,QE05,EMRL,QE95]=opmrle(n,mrl0,cv0,deltamin,deltamax)//to obtain the 

optimal chart parameters, and the 5th, 50th and 95th percentiles of the run length 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

 

K=simplexolve(3,minKcv,list(n,mrl0,cv0),tol=1e-6) 

QE05=pctlXe(n,K,deltamin,deltamax,0.05,1,cv0) 

EMRL=pctlXe(n,K,deltamin,deltamax,0.50,QE05,cv0) 

QE95=pctlXe(n,K,deltamin,deltamax,0.95,EMRL,cv0) 

 

    

endfunction 
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APPENDIX G: COMPUTER PROGRAMMING FOR ARL AND EARL-BASED 

DESIGNS OF EWMA-
2  CHART 

//----------------------------------------------------------------------------- 

function Y=cdffisher(X,m,n,nc)//to obtain the cdf 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<3)|(argin>4) 

  error("incorrect number of arguments") 

end 

if (m<=0)|(m~=floor(m)) 

  error("argument ''m'' must be an integer >= 1") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if argin==3 

  nc=0 

end 

if nc<0 

  error("argument ''nc'' must be >= 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Xi=X(i) 

  if nc==0 

    Y(i)=cdff("PQ",Xi,m*ones(Xi),n*ones(Xi)) 

  else 

    Y(i)=cdffnc("PQ",Xi,m*ones(Xi),n*ones(Xi),nc*ones(Xi)) 

  end 

end 

endfunction 

 

//------------------------------------------------------------------------------ 

function Y=cdfCV2(X,n,cv)//to obtain the cdf of CV 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 
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  Y(i)=1-cdffisher(n./X(i),1,n-1,n/cv^2)         

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV2(n,cv)//to compute the mean and standard deviation 

of the in-control CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

cv2=cv^2 

mu=cv2*(1-3*cv2/n) 

sigma=sqrt(cv2^2*(2/(n-1)+cv2*(4/n+20/(n*(n-1))+75*cv2/n^2))-(mu-cv2)^2) 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [LCL,UCL]=complmt(n,K,lam,cv0)//to compute LCL and UCL 

//------------------------------------------------------------------------------ 

[mu0CV2,sigma0CV2]=musigmaCV2(n,cv0) 

UCL=mu0CV2+K*sqrt(lam/(2-lam))*sigma0CV2 

LCL=mu0CV2 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [Q,q]=Qewmacv2u(n,K,lam,cv0,cv1)//to calculate the transition probability 

matrix and initial probability vector 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if cv0<=0 
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  error("argument ''cv0'' must be > 0") 

end 

if argin==4 

  cv1=cv0 

end 

if cv1<=0 

  error("argument ''cv1'' must be > 0") 

end 

[mu0CV2,sigma0CV2]=musigmaCV2(n,cv0) 

UCL=mu0CV2+K*sqrt(lam/(2-lam))*sigma0CV2 

LCL=mu0CV2 

p=10 

d=(UCL-LCL)/(2*p) 

h=[LCL,LCL+d:2*d:UCL-d] 

Hj=ones(p+1,1)*h 

Hi=Hj' 

Q1=(Hj+d-(1-lam)*Hi)/lam 

Q2=(Hj-d-(1-lam)*Hi)/lam 

Q=cdfCV2(Q1,n,cv1)-cdfCV2(Q2,n,cv1) 

Q0=(mu0CV2-(1-lam)*h')/lam 

Q(:,1)=cdfCV2(Q0,n,cv1) 

q=zeros(p+1,1) 

q(1)=1 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [mu,sd,sk,ku]=momdphase(Q,q) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

q=q(:)' 

W=inv(eye(Q)-Q) 

z=q*W 

nu1=sum(z) 

mu=nu1 

if argout>=2 

  WQ=W*Q 

  z=z*WQ 

  nu2=2*sum(z) 

  sd=sqrt(nu2-nu1^2+nu1) 

end 

if argout>=3 

  z=z*WQ 

  nu3=6*sum(z) 

  mu3=nu3+3*(1-nu1)*nu2+2*nu1^3-3*nu1^2+nu1 

  sk=mu3/sd^3 

end 

if argout>=4 

  z=z*WQ 
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  nu4=24*sum(z) 

  mu4=nu4+6*nu3+nu1*(1-4*nu3)+(6*nu1^2-12*nu1+7)*nu2-3*nu1^4+6*nu1^3-

4*nu1^2 

  ku=mu4/sd^4-3 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function f=Kewmacv2u(K,lam,n,cv0)//to obtain f 

//------------------------------------------------------------------------------ 

if K<=0 

  f=%inf 

else 

  ARL=rlewmacv2u(n,K,lam,cv0,cv0) 

  f=(370.4-ARL)/370.4 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function ARL=lamewmacv2u(lam,n,cv0,cv1)//to obtain ARL 

//------------------------------------------------------------------------------ 

if (lam>1)|(lam<0) 

  ARL=1e4 

else 

  global K0 

  K=fsolve(K0,list(Kewmacv2u,lam,n,cv0),tol=1e-4) 

  ARL0=rlewmacv2u(n,K,lam,cv0,cv0) 

  ARL=rlewmacv2u(n,K,lam,cv0,cv1) 

  mprintf("lam=%6.4f  K=%6.4f  ARL=%5.1f  ARL0=%5.1f\n",lam,K,ARL,ARL0) 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [lam,K,ARL,SDRL,ARL0]=lamKewmacv2u(n,cv0,cv1)//to calculate the 

optimal chart parameters, ARL, SDRL and ARL0 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

if cv1<=0 

  error("argument ''cv1'' must be > 0") 

end 
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global K0 

K0=3 

lam0=0.05 

[ARL,lam]=optim(list(NDcost,lamewmacv2u,n,cv0,cv1),lam0,"ar",100,100,1e-4) 

K=fsolve(K0,list(Kewmacv2u,lam,n,cv0),tol=1e-4) 

[ARL,SDRL]=rlewmacv2u(n,K,lam,cv0,cv1) 

ARL0=rlewmacv2u(n,K,lam,cv0,cv0) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b) 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 
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//------------------------------------------------------------------------------- 

function EARL=erlewmacv2u(n,lam,cv0)//to calculate EARL 

//-------------------------------------------------------------------------------- 

[xi,wi]=quadlegendre(15,1.03,2) 

EARL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  cv1=xil*cv0 

  ARL=lamewmacv2u(lam,n,cv0,cv1) 

  EARL=EARL+ARL.*wil 

end 

 

EARL=EARL/(2-1.03) 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [opK,oplam,opEARL]=optewmacvE(n,cv0)//to calculate the optimal chart 

parameters and EARL 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin~=2 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

 

opEARL=%inf 

global K0 

for lam=0.01:0.01:1 

K0=3 

EARL=erlewmacv2u(n,lam,cv0) 

K=fsolve(K0,list(Kewmacv2u,lam,n,cv0),tol=1e-4) 

if EARL<opEARL 

    opK=K 

    oplam=lam 

    opEARL=EARL 

else opEARL=opEARL 

end    

end 

endfunction 
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APPENDIX H: COMPUTER PROGRAMMING FOR MRL AND EMRL-BASED 

DESIGNS OF EWMA-
2  CHART 

//------------------------------------------------------------------------------ 

function Y=cdfCV2(X,n,cv)//to obtain cdf of CV 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

Y=zeros(X) 

i=(X>0) 

if or(i) 

  Y(i)=1-cdfstudent(sqrt(n)./sqrt(X(i)),n-1,sqrt(n)/cv) 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function X=idfCV2(Y,n,cv)//to obtain idf of CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=3 

  error("incorrect number of arguments") 

end 

if or((Y<=0)|(Y>=1)) 

  error("all elements of argument ''Y'' must be in (0,1)") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

X=n./(idfstudent(1-Y,n-1,sqrt(n)/cv)).^2 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [mu,sigma]=musigmaCV2(n,cv)//to compute the mean and standard deviation 

of the in-control sample CV 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=2 
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  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if cv<=0 

  error("argument ''cv'' must be > 0") 

end 

cv2=cv^2 

mu=cv2*(1-3*cv2/n) 

sigma=sqrt(cv2^2*(2/(n-1)+cv2*(4/n+20/(n*(n-1))+75*cv2/n^2))-(mu-cv2)^2) 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [LCL,UCL]=complmt(n,K,lam,cv0)//to obtain LCL and UCL 

//------------------------------------------------------------------------------ 

[mu0CV2,sigma0CV2]=musigmaCV2(n,cv0) 

UCL=mu0CV2+K*sqrt(lam/(2-lam))*sigma0CV2 

LCL=mu0CV2 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [Q,q]=Qewmacv2u(n,K,lam,cv0,cv1)//to compute the transition probability 

matrix and initial probability vector 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<4)|(argin>5) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

if argin==4 

  cv1=cv0 

end 

if cv1<=0 

  error("argument ''cv1'' must be > 0") 

end 

[mu0CV2,sigma0CV2]=musigmaCV2(n,cv0) 

UCL=mu0CV2+K*sqrt(lam/(2-lam))*sigma0CV2 

LCL=mu0CV2 
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p=100 

d=(UCL-LCL)/(2*p) 

h=[LCL,LCL+d:2*d:UCL-d] 

Hj=ones(p+1,1)*h 

Hi=Hj' 

Q1=(Hj+d-(1-lam)*Hi)/lam 

Q2=(Hj-d-(1-lam)*Hi)/lam 

Q=cdfCV2(Q1,n,cv1)-cdfCV2(Q2,n,cv1) 

Q0=(mu0CV2-(1-lam)*h')/lam 

Q(:,1)=cdfCV2(Q0,n,cv1) 

q=zeros(p+1,1) 

q(1)=1 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function MRL=rlewmacv2u(n,K,lam,mrlini,mrl0,cv0,cv1)//to find MRL 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<6)|(argin>7) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

if argin==6 

  cv1=cv0 

elseif cv1<=0 

  error("argument ''cv1'' must be > 0") 

end  

if mrlini<=0 

   error("argument ''mrlini'' must be > 0") 

end 

[Q,q]=Qewmacv2u(n,K,lam,cv0,cv1) 

q=q(:)' 

for MRL=mrlini:mrl0+5 

    W=eye(Q)-Q^MRL 

    z=q*W 

    probmed=sum(z) 

    if probmed>=0.5 

   break 

end 

end 
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endfunction 

 

 

//------------------------------------------------------------------------------ 

function percentile=prlewmacv2u(n,K,lam,percini,probperc,cv0,cv1)//to calculate the 

percentile 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if (argin<6)|(argin>7) 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if K<=0 

  error("argument ''K'' must be > 0") 

end 

if (lam<=0)|(lam>1) 

  error("argument ''lam'' must be in (0,1]") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

if argin==6 

  cv1=cv0 

elseif cv1<=0 

  error("argument ''cv1'' must be > 0") 

end  

if percini<=0 

   error("argument ''percini'' must be > 0") 

end 

[Q,q]=Qewmacv2u(n,K,lam,cv0,cv1) 

q=q(:)' 

for percentile=percini:5000 

    W=eye(Q)-Q^percentile 

    z=q*W 

    probmed=sum(z) 

    if probmed>=probperc 

        break 

end 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function f=Kewmacv2u(K,lam,n,mrl0,cv0) 

//------------------------------------------------------------------------------ 

if K<=0 

  f=%inf 

else 

  [Q,q]=Qewmacv2u(n,K,lam,cv0,cv0) 

  q=q(:)' 
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  W=eye(Q)-Q^mrl0 

  z=q*W 

  f=0.5001-sum(z) 

  end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function mrl=lamewmacv2u(lam,n,mrl0,cv0,cv1)//to find MRL 

//------------------------------------------------------------------------------ 

if (lam<=0)|(lam>1) 

  mrl=%inf 

else 

  global K0 

  K=fsolve(K0,list(Kewmacv2u,lam,n,mrl0,cv0),tol=1e-4) 

  mrl=rlewmacv2u(n,K,lam,1,mrl0,cv0,cv1) 

  if mrl<0 

    mrl=%inf 

  end 

 mprintf("lam=%6.4f K=%6.4f mrl=%3d mrl0=%4d\n",[lam,K,mrl,mrl0]) 

end 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function [lam,K,PRL5,MRL,PRL95,MRL0]=lamKewmacv2u(n,mrl0,cv0,cv1)//to 

calculate the optimal chart parameters, and the 5th, 50th and 95th percentiles of the run 

length 

//------------------------------------------------------------------------------ 

[argout,argin]=argn() 

if argin~=4 

  error("incorrect number of arguments") 

end 

if (n<=1)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 2") 

end 

if cv0<=0 

  error("argument ''cv0'' must be > 0") 

end 

if cv1<=0 

  error("argument ''cv1'' must be > 0") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be >0") 

end 

global K0 

K0=3 

lam0=0.05 

lam=neldermead(lam0,lamewmacv2u,list(n,mrl0,cv0,cv1),tol=1e-4,opt="min") 

K=fsolve(K0,list(Kewmacv2u,lam,n,mrl0,cv0),tol=1e-4) 

PRL5=prlewmacv2u(n,K,lam,1,0.05,cv0,cv1) 

MRL=rlewmacv2u(n,K,lam,PRL5,mrl0,cv0,cv1) 
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PRL95=prlewmacv2u(n,K,lam,MRL,0.95,cv0,cv1) 

MRL0=rlewmacv2u(n,K,lam,mrl0-5,mrl0,cv0,cv0) 

mprintf("(%5.3f, %5.3f) (%2d, %3d, %4d, 

%1d)%4d\n",[lam,K,PRL5,MRL,PRL95,n,MRL0]) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function [x,w]=quadlegendre(n,a,b)//to obtain Gauss-Legendre Quadrature 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<1)|(argin>3) 

  error("incorrect number of arguments") 

end 

if argout~=2 

  error("incorrect number of output arguments") 

end 

if ~exists("a","local") 

  a=-1 

end 

if ~exists("b","local") 

  b=+1 

end 

if a>=b 

  error("argument ''a'' must be < argument ''b''") 

end 

  x=[2.01194093997434522301e-1; 

     3.94151347077563369897e-1; 

     5.70972172608538847537e-1; 

     7.24417731360170047416e-1; 

     8.48206583410427216201e-1; 

     9.37273392400705904308e-1; 

     9.87992518020485428490e-1] 

  w=[2.02578241925561272881e-1; 

     1.98431485327111576456e-1; 

     1.86161000015562211027e-1; 

     1.66269205816993933553e-1; 

     1.39570677926154314447e-1; 

     1.07159220467171935012e-1; 

     7.03660474881081247100e-2; 

     3.07532419961172683551e-2] 

x=([-x((n-1)/2:-1:1);0;x]*(b-a)+a+b)/2 

w=[w((n+1)/2:-1:2);w]*(b-a)/2 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function eprl=eprlewmacv2u(n,K,lam,percini,probperc,cv0,deltamin,deltamax)//to find 

EPRL 

//------------------------------------------------------------------------------ 

[xi,wi]=quadlegendre(15,deltamin,deltamax) 

eprl=0 
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for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  cv1=xil*cv0 

  prl=prlewmacv2u(n,K,lam,percini,probperc,cv0,cv1) 

  eprl=eprl+prl.*wil 

end 

eprl=eprl/(deltamax-deltamin) 

endfunction 

 

 

//------------------------------------------------------------------------------ 

function EMRL=emrlewmacv2u(deltamin,deltamax,n,K,lam,cv0,mrl0)//to find EMRL 

//------------------------------------------------------------------------------ 

[xi,wi]=quadlegendre(15,deltamin,deltamax) 

EMRL=0 

for il=1:15 

  xil=xi(il) 

  wil=wi(il) 

  cv1=xil*cv0 

  MRL=rlewmacv2u(n,K,lam,1,mrl0,cv0,cv1) 

  EMRL=EMRL+MRL.*wil 

end 

EMRL=EMRL/(deltamax-deltamin) 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function xsol=simplexolve(x0,fun,extra,tol)//to obtain K 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if (argin<2)|(argin>4) 

  error("incorrect number of arguments") 

end 

[j,p]=size(x0) 

if j~=1 

  error("argument ''x0'' must be a row vector") 

end 

if ~exists("extra","local") 

  extra=list() 

end 

if ~exists("tol","local") 

  tol=1e-12 

end 

if typeof(fun)~="function" 

  error("argument ''fun'' must be a function") 

end 

if typeof(extra)~="list" 

  error("argument ''extra'' must be a list") 

end 

if tol<=0 

  error("argument ''tol'' must be > 0") 
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end 

r=1 

while %t 

  X=simplex(x0,r) 

  for i=1:p+1 

    f(i)=norm(fun(X(i,:),extra(:))) 

  end 

  if and(isinf(f)) 

    r=r/2 

  else 

    break 

  end 

end 

onesp1=ones(p+1,1) 

while %t 

  [f,j]=sort(f) 

  X=X(j,:) 

  fsol=f(p+1) 

  xsol=X(p+1,:) 

  fw=f(1) 

  xw=X(1,:) 

  xm=mean(X(2:p+1,:),"r") 

  if sqrt(sum((xw-xm).^2))<=tol 

    break 

  end 

  d=xm-xw 

  xr=xw+2*d 

  fr=norm(fun(xr,extra(:))) 

  if fr<fsol 

    xe=xr+d 

    fe=norm(fun(xe,extra(:))) 

    if fe<fr 

      f(1)=fe 

      X(1,:)=xe 

    else 

      f(1)=fr 

      X(1,:)=xr 

    end 

  else 

    xc=xw+0.5*d 

    fc=norm(fun(xc,extra(:))) 

    if fc<fsol 

      f(1)=fc 

      X(1,:)=xc 

    else 

      X=0.5*(X+onesp1*xsol) 

      for i=1:p 

        f(i)=norm(fun(X(i,:),extra(:))) 

      end 

    end 

  end 

end 
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endfunction 

 

//----------------------------------------------------------------------------- 

function EMRL=lamemrlewmacv2u(lam,deltamin,deltamax,n,mrl0,cv0)//to find EMRL 

//----------------------------------------------------------------------------- 

if (lam<=0)|(lam>1) 

  EMRL=1e4 

else 

  global K0 

  K=simplexolve(K0,Kewmacv2u,list(lam,n,mrl0,cv0),tol=1e-4) 

  //K=fsolve(K0,list(Kewmacv2u,lam,n,mrl0,cv0),tol=1e-4) 

  MRL0=rlewmacv2u(n,K,lam,mrl0-5,mrl0,cv0,cv0) 

  EMRL=emrlewmacv2u(deltamin,deltamax,n,K,lam,cv0) 

end 

endfunction 

 

 

//----------------------------------------------------------------------------- 

function 

[lam,K,QE05,EMRL,QE95,MRL0]=emrlEWMAxoptimcv2u(deltamin,deltamax,n,mrl0

,cv0)//to calculate the optimal chart parameters, and the 5th, 50th and 95th percentiles of 

the run length 

//----------------------------------------------------------------------------- 

[argout,argin]=argn() 

if argin~=5 

  error("incorrect number of arguments") 

end 

if (n<=0)|(n~=floor(n)) 

  error("argument ''n'' must be an integer >= 1") 

end 

if mrl0<0 

  error("argument ''mrl0'' must be > 0") 

end  

if cv0<=0 

  error("argument ''cv0'' must be >0") 

end 

global K0 

K0=3 

lam0=0.05 

lam=neldermead(lam0,lamemrlewmacv2u,list(deltamin,deltamax,n,mrl0,cv0),tol=1e-

4,opt="min") 

K=simplexolve(K0,Kewmacv2u,list(lam,n,mrl0,cv0),tol=1e-4) 

//K=fsolve(K0,list(Kewmacv2u,lam,n,mrl0,cv0),tol=1e-4) 

MRL0=rlewmacv2u(n,K,lam,mrl0-5,mrl0,cv0,cv0) 

QE05=eprlewmacv2u(n,K,lam,1,0.05,cv0,deltamin,deltamax) 

EMRL=emrlewmacv2u(deltamin,deltamax,n,K,lam,cv0) 

QE95=eprlewmacv2u(n,K,lam,1,0.95,cv0,deltamin,deltamax) 

mprintf("(%6.4f, %6.4f) (%6.2f %6.2f %6.2f %1d) 

%4d\n",[lam,K,QE05,EMRL,QE95,n,MRL0]) 

endfunction 

 

 




