BULLETIN of the
MALAYSIAN MATHEMATICAL
SCIENCES SOCIETY
http://math.usm.my/bulletin

Chromatic Equivalence Classes of Some Families of Complete Tripartite Graphs

¹G. L. CHIA AND ²CHEE-KIT HO

¹Institute of Mathematical Sciences, University Malaya, 50603 Kuala Lumpur, Malaysia

²Department of Financial Mathematics and Statistics, Sunway University Business School, No. 5, Jalan

Universiti, Bandar Sunway, 46150 Petaling Jaya, Malaysia

¹glchia@um.edu.my, ²ckho@sunway.edu.my

Abstract. We obtain new necessary conditions on a graph which shares the same chromatic polynomial as that of the complete tripartite graph $K_{m,n,r}$. Using these, we establish the chromatic equivalence classes for $K_{1,n,n+1}$ (where $n \ge 2$). This gives a partial solution to a question raised earlier by the authors. With the same technique, we further show that $K_{n-3,n,n+1}$ is chromatically unique if $n \ge 5$. In the more general situation, we show that if $2 \le m \le n$, then $K_{m,n,n+1}$ is chromatically unique if n is sufficiently large.

2010 Mathematics Subject Classification: 05C31, 05C15

Keywords and phrases: Complete tripartite graph, chromatic polynomial, chromatic equivalence class.

1. Introduction

All graphs mentioned in this paper are finite, undirected having neither loops nor multiple edges. Let G be a graph and let $P(G; \lambda)$ denote its chromatic polynomial. The *chromatic equivalence class* of G, denoted $\mathscr{C}(G)$, is the set of all graphs sharing the same chromatic polynomial with that of G. In the event that $\mathscr{C}(G) = \{G\}$, then G is said to be *chromatically unique*. The search for chromatic equivalence classes of graphs has been the subject of much interest in chromatic graph theory (see [5] for a review on the topic).

In what follows, we let K_n denote a complete graph on n vertices. Suppose G and H are two graphs. Let G+H denote the graph obtained by joining every vertex of G to every vertex of H. Suppose $K_{m,n,r}$ denotes the complete tripartite graph whose partite sets have cardinalities m,n and r. Then clearly $K_{m,n,r} = \overline{K}_m + \overline{K}_n + \overline{K}_r$ where \overline{G} denotes the complement of the graph G. Note that the chromaticity of $K_m + G$ has also been studied earlier in [1], where G denotes some chromatically unique graphs. More about the chromatic equivalence class of (join of) graphs can also been found in [2].

While the chromatic equivalence classes for the complete bipartite graphs have been completely settled (see [5]), not much is known about the chromatic equivalence class for

Communicated by Xueliang Li.

Received: May 7, 2013; Revised: August 1, 2013.

the complete tripartite graphs although the problem has been studied since 1988 (see [3]). Some recent results on the chromaticity of complete multi-partite graphs can be found in [8]. In this paper, we focus our attention on finding the chromatic equivalence class for the complete tripartite graphs of the type $K_{m,n,n+1}$. For this purpose, some necessary conditions for a graph to share the same chromatic polynomial as that of $K_{m,n,n+1}$ are developed in Section 2, the main one being Theorem 2.1.

Let \mathcal{T}_m denote the set of all trees on m vertices and let $\mathcal{J}(m,n) = \{T + \overline{K}_m, S + \overline{K}_n \mid T \in \mathcal{T}_{n+1}, S \in \mathcal{T}_{m+1}\}$. Since $K_{1,m,n} = \overline{K}_1 + \overline{K}_m + \overline{K}_n$, it follows readily that $K_{1,m,n}, T + \overline{K}_m$ and $S + \overline{K}_n$ all have the same chromatic polynomial. Hence $\mathcal{J}(m,n) \subseteq \mathcal{C}(K_{1,m,n})$. In [4] it was shown that $\mathcal{C}(K_{1,n,n}) = \mathcal{J}(n,n)$ for any positive integer n and that $\mathcal{C}(K_{1,n,n}) = \mathcal{J}(r,4)$ if $r \in \{2,3\}$. Further it was asked whether or not $\mathcal{C}(K_{1,m,n}) = \mathcal{J}(m,n)$. In the present paper, we show that $\mathcal{C}(K_{1,n,n+1}) = \mathcal{J}(n,n+1)$ (Theorem 3.1). It looks very much likely that $\mathcal{C}(K_{1,m,n}) = \mathcal{J}(m,n)$.

Conjecture 1.1. $\mathscr{C}(K_{1,m,n}) = \mathscr{J}(m,n)$ for all positive integers $m,n \geq 2$.

Using the same method, we move on to show that (i) $K_{n-3,n,n+1}$ is chromatically unique if $n \ge 5$ (Theorem 3.2) and that (ii) $K_{m,n,n+1}$, where $2 \le m \le n$, is chromatically unique if n is sufficiently large (Theorem 3.3).

2. Some necessary conditions

Let G be a graph on p vertices and q edges and let $n(A^*, G)$ denote the number of induced subgraphs in G that are isomorphic to A. A spanning subgraph is called *special* if its connected components are complete graphs. Let $s_i(G)$ denote the number of special spanning subgraphs of G with i components, i = 1, 2, ..., p. Then, following Frucht [7], the chromatic polynomial of G may be expressed as

$$P(G;\lambda) = \sum_{i=1}^{p} s_i(\overline{G})(\lambda)_i$$

where $(\lambda)_i = \lambda(\lambda - 1) \cdots (\lambda - i + 1)$ is the falling factorial and \overline{G} is the complement of G. It is clear that $s_p(\overline{G}) = 1$ and $s_{p-1}(\overline{G}) = \overline{q}$ if \overline{G} has \overline{q} edges.

Note that if $Y \in \mathcal{C}(G)$, then $s_i(\overline{Y}) = s_i(\overline{G})$ for all $\chi(G) \leq i \leq p$, where $\chi(G)$ is the chromatic number of G. Thus, it follows that Y and G have the same numbers of vertices and edges. Furthermore, in the event that G contains no K_4 , it follows from Theorem 1 of [6] that $n(C_4^*, Y) = n(C_4^*, G)$. Here C_4 denotes a cycle with 4 vertices.

Let $\mathcal{K}^e(s_1, s_2, s_3)$ denote the set of all connected tripartite graphs obtained by deleting e edges from the complete tripartite graph K_{s_1, s_2, s_3} . Note that, for any graph $Y \in \mathcal{K}^e(s_1, s_2, s_3)$, \overline{Y} is the disjoint union of three complete subgraphs K_{s_1} , K_{s_2} and K_{s_3} with e edges joining these subgraphs.

Suppose, for any triplet (i, j, k) where $\{i, j, k\} = \{1, 2, 3\}$, that there are a_i edges joining the subgraphs K_{s_j} and K_{s_k} . Then $a_1 + a_2 + a_3 = e$. Let E_i denote the set of all the a_i edges joining K_{s_j} and K_{s_k} where i = 1, 2, 3. Two edges $\alpha \in E_r$ and $\beta \in E_s$, where $r \neq s$, are said to be a *coincidence pair* of Y if they are incident with each other in \overline{Y} .

Suppose $Y \in \mathcal{C}(G)$. We shall now record some known necessary conditions on Y as well as develop new ones.

Lemma 2.1. [4] Let G be the complete tripartite graph K_{m_1,m_2,m_3} .

- (i) If $Y \in \mathcal{C}(G)$, then $Y \in \mathcal{K}^e(s_1, s_2, s_3)$ where $e = \sum_{i < j} s_i s_j \sum_{i < j} m_i m_i$.
- (ii) Suppose $Y \in \mathcal{K}^e(s_1, s_2, s_3)$ and $s_1 + s_2 + s_3 = m_1 + m_2 + m_3$. Then, for each $j \in \{1, 2, 3\}$,

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge \prod_{i=1}^{3} (s_i - m_j) - \sum_{i=1}^{3} a_i(s_i - m_j)$$

and equality holds if and only if Y has no coincidence pair.

Corollary 2.1. Let G be the complete tripartite graph K_{m_1,m_2,m_3} and $Y \in \mathcal{K}^e(s_1,s_2,s_3)$ where $s_1 \leq s_2 \leq s_3$. Then

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge (s_3 - m_1)(s_3 - m_2)(s_3 - m_3).$$

Proof. From Lemma 2.1(ii) with j = 1, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge \prod_{i=1}^{3} (s_i - m_1) - \sum_{i=1}^{3} a_i (s_i - m_1)$$

$$\ge \prod_{i=1}^{3} (s_i - m_1) - (a_1 + a_2 + a_3)(s_3 - m_1)$$

$$= (s_3 - m_1) \{ (s_1 - m_1)(s_2 - m_1) - e \}$$

Since $e = s_1s_2 + s_1s_3 + s_2s_3 - m_1m_2 - m_1m_3 - m_2m_3$ (by Lemma 2.1(i)) and $s_1 + s_2 + s_3 = m_1 + m_2 + m_3$, the expression $(s_1 - m_1)(s_2 - m_1) - e$ can readily be simplified to $(s_3 - m_2)(s_3 - m_3)$ and the proof is complete.

Lemma 2.2. Let G be the complete tripartite graph K_{m_1,m_2,m_3} and $Y \in \mathcal{K}^e(s_1,s_2,s_3)$. Suppose further that $Y \in \mathcal{C}(G)$ and $1 \le m_1 \le m_2 \le m_3$ and e > 0. Then $s_2 < m_3$ or $s_3 < m_3$ if $s_1 \le s_2 \le s_3$.

Proof. Let $f(x_1, x_2, x_3) = x_1x_2 + x_2x_3 + x_3x_1$. Then we can show that if $s_1 + s_2 + s_3 = m_1 + m_2 + m_3$ and $s_2 \ge m_2, s_3 \ge m_3$, then

$$f(s_1, s_2, s_3) \leq f(m_1, m_2, m_3)$$

where equality holds only if $s_i = m_i$ for i = 1, 2, 3. Moreover, under the condition $s_1 + s_2 + s_3 = m_1 + m_2 + m_3$ and $s_2 \ge m_2, s_3 \ge m_3$, $f(s_1, s_2, s_3)$ attains its maximum value when $s_2 + s_3 = m_2 + m_3$.

To see this, suppose $s_2 > m_2$ and $s_3 \ge m_3$. Then $s_1 < m_1 \le m_2 < s_2$ implying that $s_2 - s_1 \ge 2$. Hence

$$f(s_1+1,s_2-1,s_3)=(s_1+1)(s_2-1)+s_1s_3+s_2s_3=f(s_1,s_2,s_3)+s_2-s_1-1>f(s_1,s_2,s_3).$$

Similarly, if $s_2 \ge m_2$ and $s_3 > m_3$, we also have

$$f(s_1+1,s_2,s_3-1) > f(s_1,s_2,s_3).$$

Hence $f(s_1, s_2, s_3) \le f(m_1, m_2, m_3)$ whenever $s_1 + s_2 + s_3 = m_1 + m_2 + m_3$ and $s_2 \ge m_2, s_3 \ge m_3$.

Theorem 2.1. Let G be the complete tripartite graph K_{m_1,m_2,m_3} and $Y \in \mathcal{K}^e(s_1,s_2,s_3)$ where $s_1 \leq s_2 \leq s_3$. Suppose further that $Y \in \mathcal{C}(G)$ and $1 \leq m_1 \leq m_2 < m_3$. Then $m_2 \leq s_3 \leq m_3$. Furthermore,

- (i) if $s_3 = m_2$, then either $Y \cong H + \overline{K}_{m_2}$ for some bipartite graph H or else $Y \in \mathcal{K}^e(m_1 + m_3 m_2, m_2, m_2)$ where $e = (m_3 m_2)(m_2 m_1)$, and
- (ii) if $s_3 = m_3$, then $Y \cong H + \overline{K}_{m_3}$ for some bipartite graph H.

Proof. Suppose $s_3 > m_3$. Then $s_3 > m_3 \ge m_2 \ge m_1$. By Corollary 2.1, we have $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) > 0$, a contradiction because $Y \in \mathcal{C}(G)$. Therefore $s_3 \le m_3$.

Suppose on the contrary that $s_3 < m_2$. Then we have $s_1 \le s_2 \le s_3 < m_2 \le m_3$. By Corollary 2.1, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge (s_3 - m_1)(s_3 - m_2)(s_3 - m_3)$$

Now, if $s_3 > m_1$, then $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) > 0$, a contradiction because $Y \in \mathcal{C}(G)$. On the other hand, if $s_3 \le m_1$, then $s_1 \le s_2 \le m_1$ implies $s_1 + s_2 + s_3 \le 3m_1 < m_1 + m_2 + m_3$ which is impossible. Therefore $s_3 > m_2$.

(i) Suppose $s_3 = m_2$.

If $s_2 \neq m_2$, then $s_1, s_2 < m_2$. By Lemma 2.1(ii) with j = 2, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge -a_1(s_1 - m_2) - a_2(s_2 - m_2).$$

Since $Y \in \mathscr{C}(G)$, $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and this implies $a_1 = a_2 = 0$. Therefore $e = a_3$ and $Y \cong H + \overline{K}_{s_3} \cong H + \overline{K}_{m_2}$ for some bipartite graph H. On the other hand, if $s_2 = m_2$, then $s_1 = m_1 + m_2 + m_3 - (s_2 + s_3) = m_1 + m_3 - m_2$ and this implies $Y \in \mathscr{K}^e(m_1 + m_3 - m_2, m_2, m_2)$ where $e = (m_3 - m_2)(m_2 - m_1)$ by Lemma 2.1(i).

(ii) Suppose $s_3 = m_3$.

Then $s_1, s_2 < m_3 = s_3$ by Lemma 2.2 (because $s_1 \le s_2 < m_3 = s_3$). By Lemma 2.1(ii) with i = 3, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge -a_1(s_1 - m_3) - a_2(s_2 - m_3).$$

Since $Y \in \mathcal{C}(G)$, $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and hence $a_1 = a_2 = 0$. This implies that $e = a_3$ and $Y \cong H + \overline{K}_{s_3} \cong H + \overline{K}_{m_3}$ for some bipartite graph H. This completes the proof.

3. Results

Recall the following result from [4].

Lemma 3.1. [4] Let G be the complete tripartite graph K_{m_1,m_2,m_3} and $Y \in \mathcal{K}^e(s_1,s_2,s_3)$.

- (i) Suppose further that $Y \in \mathcal{C}(G)$, $2 \le m_1 \le m_2 \le m_3$ and $Y \cong H + \overline{K}_t$ for some bipartite graph H and some $t \in \{m_1, m_2, m_3\}$. Then Y is isomorphic to G.
- (ii) Suppose further that $Y \cong H + \overline{K}_n$ where H is a bipartite graph and n is a positive integer. If H is disconnected, then $s_3(\overline{Y}) > s_3(\overline{G})$.

We can now prove that Conjecture 1.1 is true for the complete tripartite graph $K_{1,n,n+1}$.

Theorem 3.1. For any positive integer $n \ge 2$, $\mathcal{C}(K_{1,n,n+1}) = \mathcal{J}(n,n+1)$.

Proof. We need only to show that $\mathscr{C}(K_{1,n,n+1}) \subseteq \mathscr{J}(n,n+1)$. Let G denote the complete tripartite graph $K_{1,n,n+1}$ and suppose $Y \in \mathscr{C}(G)$. By Theorem 2.1, either $Y \cong H_1 + \overline{K}_n$ or $Y \cong H_2 + \overline{K}_{n+1}$ for some bipartite graphs H_1 and H_2 or else $Y \in \mathscr{K}^e(2,n,n)$ where e = n-1. By Lemma 3.1(ii), either of the subgraphs H_1 and H_2 is connected. Hence $H_1 \in \mathscr{T}_{n+2}$ and $H_2 \in \mathscr{T}_{n+1}$ because the numbers of edges in H_1 and H_2 are n+1 and n respectively. But this

means that $Y \in \mathcal{J}(n, n+1)$. On the other hand, if $Y \in \mathcal{K}^e(2, n, n)$ where $e = a_1 + a_2 + a_3 = n-1$, then by Lemma 2.1(ii) with j = 2, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge -a_1(2-n).$$

Since $Y \in \mathcal{C}(G)$, $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and this implies that either n = 2 or else n > 2 and $a_1 = 0$. If n = 2, then e = 1 and $Y \cong T + \overline{K}_2$ where T is a path on 4 vertices and hence $Y \in \mathcal{J}(2,3)$.

Therefore assume that n > 2 and $a_1 = 0$. Since $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$, by Lemma 2.1(ii), Y has no coincidence pair. As such, the subgraph induced by the a_2 edges in E_2 (respectively the a_3 edges in E_3) in \overline{Y} is isomorphic to K_{1,a_2} (respectively K_{1,a_3}). Therefore we have,

$$n(C_4^*, Y) = \binom{n}{2}^2 + 2\binom{n}{2} + (a_2 + a_3)\binom{n}{2} - \sum_{i=2}^3 a_i(n - a_i) - \sum_{i=2}^3 \binom{a_i}{2}$$

$$= \binom{n}{2}^2 + 2\binom{n}{2} + (a_2 + a_3)(\binom{n}{2} - n) + \binom{a_2 + 1}{2} + \binom{a_3 + 1}{2}$$

$$= \binom{n}{2}^2 + n\binom{n}{2} - a_2a_3$$

$$= n(C_4^*, G) - a_2a_3$$

This implies that either $a_2=0$ and $a_3=e=n-1$ or else $a_3=0$ and $a_2=e=n-1$. Either case implies that $Y\cong H+\overline{K}_n$ for some bipartite graph H. By Lemma 3.1(ii), H is connected. Note that H has n+2 vertices and 2n-e=n+1 edges. That is, $H\in \mathcal{T}_{n+2}$ and hence $Y\in \mathcal{J}(n,n+1)$. The proof is now complete.

Next, we show that $K_{n-3,n,n+1}$ is chromatically unique if $n \ge 5$. In what follows, we let $A(m,n) = \binom{n}{2}^2 + 2\binom{m+1}{2}\binom{n}{2} + (n-m)\binom{n}{2}$. Then we have $A(m,n) = n(C_4^*, K_{m,n,n+1}) + \frac{1}{2}mn(n-m)$.

Theorem 3.2. For any integer $n \ge 5$, $K_{n-3,n,n+1}$ is chromatically unique.

Proof. Let G denote the graph $K_{n-3,n,n+1}$. Assume that $Y \in \mathcal{C}(G)$ and Y is not isomorphic to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that $Y \in \mathcal{K}^3(n-2,n,n)$. By Lemma 2.1(ii) with j=2, we have

$$s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) \ge 2a_1.$$

Since $Y \in \mathcal{C}(G)$, we must have $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and this implies that $a_1 = 0$. Note that e = 3, that is, $a_2 + a_3 = 3$. Let $E_2 \cup E_3 = \{e_1, e_2, e_3\}$. Note that neither E_2 nor E_3 is an empty set because otherwise $Y \cong H + \overline{K}_n$ for some bipartite graph H, which by Lemma 3.1(i), implies Y is isomorphic to G. Without loss of generality, we may assume that $e_1, e_2 \in E_2$ and $e_3 \in E_3$. Since $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$, by Lemma 2.1(ii), Y has no coincidence pair. Thus there are three possible cases for $Y : e_1$ and e_2 are not incident, or they have a common vertex in the partite set having n vertices, or a common vertex in the partite set having n - 2 vertices. Let X_1, X_2, X_3 represent Y corresponding to these three cases.

It is routine to check that for each $i \in \{1,2,3\}$, $n(C_4^*,X_i) = A(n-3,n) - x_i$ where $x_1 = 3n^2 - 12n + 8$, $x_2 = 3n^2 - 13n + 10$ and $x_3 = 3n^2 - 13n + 12$. Since $A(n-3,n) = n(C_4^*, K_{n-3}, n,n+1) + 3n(n-3)/2$, it follows that $n(C_4^*,X_i) < n(C_4^*,G)$ for each $i \in \{1,2,3\}$ and the proof is complete.

Theorem 3.3. Suppose m and n are natural numbers such that $2 \le m \le n$. Then there exists a natural number N(m) (depending on m) such that $K_{m,n,n+1}$ is chromatically unique whenever $n \geq N(m)$.

Proof. Let G denote the graph $K_{m,n,n+1}$. Assume that $Y \in \mathcal{C}(G)$ and Y is not isomorphic to G. Applying Theorem 2.1 and Lemma 3.1(i), it follows that $Y \in \mathcal{K}^e(m+1,n,n)$ where e = n - m. We shall obtain a contradiction by showing that if n is sufficiently large, then $n(C_4^*, Y) < n(C_4^*, K_{m,n,n+1})$ for any $Y \in \mathcal{K}^e(m+1, n, n)$ where e = n - m. By Lemma 2.1(ii) with j = 2, we have

 $s_{n-2}(\overline{G}) - s_{n-2}(\overline{Y}) \ge (n - (m+1))a_1.$

Since $Y \in \mathscr{C}(G)$, we must have $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$ and this implies that either n = m+1or else $a_1 = 0$. If n = m + 1 then G is chromatically unique by Theorem 2 of [3] (see also Theorem 3 of [4]). Hence assume that $a_1 = 0$. Note that if $E_2 = \emptyset$ or if $E_3 = \emptyset$, then $Y \cong H + \emptyset$ \overline{K}_n for some bipartite graph H, which by Lemma 3.1(i), implies Y is isomorphic to G. Hence $a_2 \neq 0$ and $a_3 \neq 0$. Since $s_{p-2}(\overline{G}) - s_{p-2}(\overline{Y}) = 0$, by Lemma 2.1(ii), Y has no coincidence pair. Now, for any $Y \in \mathcal{K}^e(m+1,n,n)$, we see that $n(C_4^*,Y) = A(m,n) - en^2 + g(n)$ for some linear function g(n). Since $A(m,n) = n(C_4^*, K_{m,n,n+1}) + mn(n-m)/2$, and e = n-m, it follows that $n(C_4^*, Y) = n(C_4^*, K_{m,n,n+1}) - en^2/2 - e^2n/2 + g(n)$.

Hence, it follows that $-en^2/2 - e^2n/2 + g(n) < 0$ if $n \ge N(m)$ for some natural number

N(m) (which depends on m). Consequently, $n(C_A^*, Y) < n(C_A^*, K_{m,n,n+1})$.

Acknowledgement. The authors wish to thank the referees for the constructive comments, in particular to the first referee which gave a simpler proof for Lemma 2.2 (which is stronger than the original statement and does not make use of an earlier result from [4]).

References

- [1] G. L. Chia, On the join of graphs and chromatic uniqueness, J. Graph Theory 19 (1995), no. 2, 251-261.
- [2] G. L. Chia, On the chromatic equivalence class of graphs, Discrete Math. 178 (1998), no. 1-3, 15-23.
- [3] G. L. Chia, B.-H. Goh and K.-M. Koh, The chromaticity of some families of complete tripartite graphs, Sci. Ser. A Math. Sci. (N.S.) 2 (1988), 27-37.
- [4] G. L. Chia and C.-K. Ho, Chromatic equivalence classes of complete tripartite graphs, Discrete Math. 309 (2009), no. 1, 134-143.
- [5] F. M. Dong, K. M. Koh and K. L. Teo, Chromatic Polynomials and Chromaticity of Graphs, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
- [6] E. J. Farrell, On chromatic coefficients, Discrete Math. 29 (1980), no. 3, 257-264.
- [7] R. W. Frucht, A new method of computing chromatic polynomials of graphs, in Analysis, Geometry, and Probability (Valparaíso, 1981), 69-77, Lecture Notes in Pure and Appl. Math., 96, Dekker, New York.
- [8] H. Roslan, A. Sh. Ameen, Y. H. Peng and H. X. Zhao, Chromaticity of complete 6-partite graphs with certain star or matching deleted, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 15-24.