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Abstract. We obtain new necessary conditions on a graph which shares the same chromatic
polynomial as that of the complete tripartite graph Ky, » .. Using these, we establish the
chromatic equivalence classes for Ky 41 (where n > 2). This gives a partial sclution to
a question raised earlier by the anthors. With the same technique, we further show that
Ky—3pn+1 is chromatically unique if # > 5. In the more general situation, we show that if
2 <m < n, then K, ;, n41 is chromatically unique if » is sufficiently large.

2010 Mathematics Subject Classification: 05C31, 05C135

Keywords and phrases: Complete tripartite graph, chromatic polynomial, chromatic equiv-
alence class.

1. Introduction

All graphs mentioned in this paper are finite, undirected having neither loops nor multiple
edges. Let G he a graph and let P{G; 1) denote its chromatic polynomial. The chromatic
equivalence class of G, denoted €'(G), is the set of all graphs sharing the same chromatic
polynomial with that of G. In the event that 6°(G) = {G}, then G is said to be chromatically
unique. The search for chromatic equivalence classes of graphs has been the subject of
much interest in chromatic graph thecry (see [5] for a review on the topic).

In what follows, we let K,, denote a complete graph on » vertices. Suppose G and H
are two graphs. Let G+ H denote the graph obtained by joining every vertex of G to
every vertex of H. Suppose Ky, denotes the complete tripartite graph whose partite sets
have cardinalities m,n and r. Then clearly Kyn, = Ky + K, + K, where G denotes the
complement of the graph &. Note that the chromaticity of K, + G has also been studied
earlierin [1], where G denotes some chromatically unique graphs, More about the chromatic
equivalence class of (join of) graphs can also been found in [2].

‘While the chromatic equivalence classes for the complete bipartite graphs have been
completely settled (see [5]), not much is known about the chromatic equivalence class for
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the complete tripartite graphs although the problem has been studied since 1988 (see [3]).
Some recent results on the chromaticity of complete multi-partite graphs can be found in [§].
In this paper, we focus our atiention on finding the chromatic equivalence class for the
complete tripartite graphs of the type Ky 1. For this purpose, some necessary conditions
for a graph to share the same chromatic polynomial as that of K, , .1 are developed in
Section 2, the main one being Theorem 2.1.

Let .7, denote the set of all trees on m vertices and let _# (m,n) ={T + K, S+K, |T €
Fpi1y S € Gy} Since Kipp = K1 +Kop + K, it follows readily that Ky g », T + Ky and
S+ K, all have the same chromatic polynomial. Hence _# (m,n) C € (K1 ). In [4] it was
shown that €(Kj ) = _# (n,n) for any positive integer » and that (K1 4} = # (r4) if
r € {2,3}. Further it was asked whether or not €(Kj ) = _Z (m,n). In the present paper,
we show that € (Ky pps1) = #(n,n+1) (Theorem 3.1). It looks very much likely that
C &) = F (mon).

Conjecture 1.1. €(Kyp,) = & (m,n) for all positive integers m,n > 2.

Using the same method, we move on to show that (i) K,;—3  »+1 is chromatically unique
if n > 5 (Theorem 3.2) and that (ii) K, p n4-1, Where 2 <m < n, is chromatically unique if n
is sufficiently large (Theorem 3.3).

2, Some necessary conditions

Let G be a graph on p vertices and g edges and let n(A*, G) denote the number of induced
subgraphs in G that are isomorphic to A. A spanning subgraph is called special if its con-
nected components are complete graphs. Let 5;(G) denote the number of special spanning
subgraphs of G with i components, i=1,2,..., p. Then, following Frucht [7], the chromatic
polynomial of G may be expressed as

HGM=2M@@h

where ()i =A(A ~1)--- (X —i-1) is the falling factorial and G is the complement of G.
It is clear that 5,(G) = 1 and 5,—1{G) = g if G has g edges.

Note that if ¥ € €(G), then 5;(¥) = 5;(G) for all x{G) < i < p, where x(G) is the
chromatic number of G. Thus, it follows that ¥ and G have the same numbers of vertices
and edges. Furthermore, in the event that &G contains no Ky, it follows from Theorem 1
of [6] that n(Cy,Y) = n{Cy, G). Here Cy denotes a cycle with 4 vertices.

Let .%2"¢(s1,52,53) denote the set of all connected tripartite graphs obtained by delet-
ing e edges from the complete tripartite graph K, s,s. Note that, for any graph ¥ €
S %(s51,52,53), ¥ is the disjoint union of three complete subgraphs K;,, K;, and K, with
e edges joining these subgraphs.

Suppose, for any triplet (i, j,k) where {i, j,k} = {1,2,3}, that there are a; edges joining
the subgraphs K;; and K. Then a; + a2 +a3 = e. Let E; denote the set of all the a; edges
joining K;; and K where i = 1,2,3. Two edges & € E, and B € B, , where r # 5, are said
to be a coincidence pair of Y if they are incident with each other in ¥.

Suppose ¥ € F(G). We shall now record some known necessary conditions on ¥ as well
as develop new ones.

Lemma 2.1. [4] Let G be the complete tripartite graph Ky iy ms-
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() IfY € €(G), then ¥ € H*(s51,52,53) where e = ¥ ;5i8j — Vi jmim.
(i) Suppose Y € J£¢{s1,52,53) and s1+ 52+ 53 = my +my +ma. Then, for each j €
{1,2,3},

3 3
5p-2(G) —sp2(Y) = [ [(si —m;) — }_ailsi —m;)
i=l i=1
and equality holds if and only if Y has no coincidence pair.

Corollary 2.1. Let G be the complete tripartite graph Ky, s s and ¥ € J¢(s1,52,53)
where 51 < 52 < 53. Then

sp-2(G) —5p-2(Y) 2 (53 —my ) (53 — mp) (53 —m3).

Proof. From Lemma 2,1(ii) with j = 1, we have
3 3
sp-2(G) —sp—2(¥) 2 [J(si —m1) =}, ai(si —m)
i=1 i=1

> Ii(s,-—-mﬂ — (a1 +az2+a3)(s3 —m)

= (s3—m){(s1 —m)(s2—m) —e}
Since e = 5152+ 5183 + 5253 — g —myms — i (by Lemma 2.1(1)) and 5y 4+ 52+ 55 =
mi + my + ma, the expression (s; —my)(s2 —m1) — e can readily be simplified to (s3 —
my)(s3 —ms3) and the proof is complete.

Lemma 2.2. Let G be the complete tripartite graph Kmy my m; and Y € £ ¢(s1,52,53). Sup-

pose further that Y € €(G)and 1 <mi <ma <mzande > 0. Then 51 <m3 or sz <mz if
51 S5 <83

Progf. Let f(x),%2,%3) = x1X2 + Xax3 + x3%1 . Then we can show that if s; + 52 + 53 =1y +
my +ms and sy > mip,83 = m3, then
f(s1,52,53) < f(my,mz,m3)

where equality holds only if s; = m; for i = 1,2,3. Moreover, under the condition s; +
s34+ 853 =my +ma+m; and 52 > mp, 55 > my, f{s1,52,53) attains its maximum value when
52+ 53 = ma +ns.

To see this, suppose s > mp and s3 > ms. Then s; < m; € my < sz implying that
52— 51 = 2. Hence

Fs1+1s0—1,83)= (51 1){s2— 1)+ 5153+ 5283 = f(51,52,53) +52 —51 = 1 > fl51,82,53).
Similarly, if s2 > mp and s3 > m3, we also have

flsy+1,82,83 — 1) > f(s1,52,53).
Hence f{(s1,52,53) < f(my,ma,m3) whenever s; +55+s3 =m +mz+ms and sy = my, 53 =
m3. 1

Theorem 2.1, Let G be the complete tripartite graph Ky mymy and Y € H¢(51,52,53)
where s1 < 52 < 53. Suppose further that Y € €(G) and 1 <m) <mp <ms. Then mp <
53 < m. Furthermore,
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(1) if 53 = mo, then either Y = H +F,,,2 for some bipartite graph H or else Y &€
JE(my + m3 —ma,ma,my) where e = (ms —ma)(ma —m1), and
(i) ifss=ms, thenY = H -{—fm} Jfor some bipartite graph H.

Proof. Suppose s3 > m3. Then s3 > m3 = mz > my. By Corollary 2.1, we have sp_2 (G)—
sp—2(Y) > 0, a contradiction because ¥ € €(G). Therefore 53 < m;.

Suppose on the contrary that s3 < mp. Then we have 51 <352 <83 < my < m3. By
Corollary 2.1, we have

sp-2(G) —$p2(¥) = (53 —m) (53 —ma2)(s3 —m3)

Now, if 53 > my, then s, 2(G) —sp—2(Y) > 0, a contradiction because ¥ € %' (G). On the
other hand, if s3 < my, then 51 < $2 < my implies 51+ 52+ 53 < 3my < my +my +m3 which
is impossible. Therefore 53 > m3.

(i) Suppose s3 = my.

If 57 £ mp, then 51,572 < pp. By Lemma 2.1(ii} with j = 2, we have

sp-2{G) —5p—2(¥) = —a1(s1 —ma) —az{sz —my).

Since ¥ € €(G), 5p—2(G) —sp—2(¥) = 0 and this implies a; = a3 = 0. Therefore e = a3 and
Y = H+K,, = H+K,, for some bipartite graph 4. On the other hand, if 5, =, then s =
m1 +my +m3 — (s2+53) = my +m3 —mo and this implies ¥ € J£¢(m; +m3 — mz, mz, nz)
where & = (my —my) (my —my ) by Lemuma 2.1(0).

(ii) Suppose 53 = ms.

Then 51,52 < m3 = 53 by Lemma 2.2 (because 51 < 52 < m3 = s53). By Lemma 2.1(ii)
with j =3, we have

SP*Z(E) _Spr(?) z —al(Sl —m3) —az(sz -—rng).

Since ¥ € ¥(G), sp—2(G) —sp—2(Y) = 0 and hence a1 = az = 0. This implies that e = a3
and ¥ 2 H+X,, = H +K,, for some bipartite graph H. This completes the proof. 1

3. Results
Recall the following result from [4].

Lemma 3.1. [4] Let G be the complete tripartite graph Ky mym; and Y € £ ¢(s1,52,53).
(i) Suppose further that Y € €(G), 2 <m) <my <mz and ¥ = H + K, for some
bipartite graph H and some t € {m1,mz,m3}. ThenY is isomorphic 1o G.
(ii) Suppose further that ¥ = H +K,, where H is a bipartite graph and n is a positive
integer. If H is disconnected, then s3(Y) > 53(G).

‘We can now prove that Conjecture 1.1 is true for the complete tripartite graph K n41.
Theorem 3.1, For any positive integer n 2 2, € (Kiynt1) = F{nmn+1).

Proof. We need only to show that €(K1 1) C #(n,n+ 1). Let G denote the complete
tripartite graph Kj ,, ,1 and suppose Y € €'(G). By Theorem 2.1, either ¥ & Hy + X, or
Y = Hy + K, for some bipartite graphs H; and Hy orelse Y € J£¢(2,n,n) wheree=n—1.
By Lemma 3.1(ii), either of the subgraphs H) and H, is connected. Hence H; € ;.5 and
H, € Z,1; because the numbers of edges in Hy and H, are n+ | and n respectively. But this
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means that ¥ € _# (n,n+1). Onthe other band, if ¥ € #(2,n,n) wheree=a;+ax+a3 =
1t — 1, then by Lemma 2.1(ii) with j = 2, we have

Sp—2 (5) - Sp—l(?) > —a1{2—n).

Since ¥ € €(G), sp—2(G) —sp—2(Y) = 0 and this implies that either # =2 or else n > 2
andag; =0, Ifn=2,thene =1 and ¥ = T + K, where T is a path on 4 vertices and hence
Ye _#£(2,3).

Therefore assume that # > 2 and @) = 0. Since sp—2(G) —sp—2(¥) =0, by Lemma 2.1(ii),
¥ has no coincidence pair. As such, the subgraph induced by the az edges in E; (respectively
the a3 edges in E3) in ¥ is isomorphic to Kj 4, (respectively K] 4,). Therefore we have,

n{C,Y) = (;)2"'2(;) +(a2+a3)(;) _i ailn=ai) _gi (;t)

=2

(’21)2-1-2('21) —i—(az-l—as)((g) —n)+ (‘”;1) + (‘”;1)
- (5) () e

= n(CZ‘:a G) —azaz

This implies that either az =0 and a3 =e=n—lorelse s =0anday=e=n—-1.
Either case implies that ¥ =2 H + K, for some bipartite graph #. By Lemma 3.1(ii), H is
connected. Note that H has n + 2 vertices and 2n —e = n+ 1 edges. That is, H € Z43 and
hence ¥ € _#{n,n+1). The proof is now complete. 1

Next, we show that K,,_3,,+1 is chromatically unique if » > 5. In what follows, we
let A(m,n) = (1) +2(""V (D) + (n—m) (7). Then we have A(m,n) = n(C}, Knnns1) +
Ymn(n —m).

Theorem 3.2. For any integer n > 5, K;_3 nnv1 is chromatically unigue.

Proof. Let G denote the graph K. 3 » n41. Assume that ¥ € %(G) and ¥ is not isomorphic
to G. Applying Theorem 2.1 and Lemma 3.1¢), it follows that ¥ € 2 3(n —2,n,n). By
Lemma 2.1(ii) with j =2, we have

sp-2(G) —sp-2(¥) 2 2a;.

Since Y € ¥(G), we must have s,_2(G) — 5,—2(¥) = 0 and this implies that a; = 0. Note
that e = 3, that is, a» +a3 = 3. Let E; U E3 = {e1,€2,e3}. Note that neither E; nor Ej is
an empty set because otherwise ¥ = H +K,, for some bipartite graph H, which by Lemma
3.1(0), implies ¥ is isomorphic to G. Without loss of generality, we may assume that e, e; €
E; and e3 € E3. Since sp_2(G) —sp—2(Y) =0, by Lemma 2.1(i1), ¥ has no coincidence pair.
Thus there are three possible cases for Y : e) and e are not incident, or they have a common
vertex in the partite set having n vertices, or a common vertex in the partite set having n —2
vertices. Let X1, X2, X5 represent Y corresponding to these three cases.

It is routine to check that for each i € {1,2,3}, n{C},X;) = A(n — 3,n) — x; where x; =
% —12n+8, x2 =3n* — 13n+10and x3 = 3n* — 13n+12. Since A(n—3,n) =n(C},K,—3,
an+1 )+ 3n(n—3)/2, it follows that n(C;, X;) < r{C;,G) for each i € {1,2,3} and the proof
is complete. 1
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Theorem 3.3. Suppose m and n are natural numbers such that 2 < m < n. Then there
exists a natural number N(m) (depending on m) such that Ky, n ut1 is chromatically unique
whenever n > N(m).

Proof. Let G denote the graph K, » ,+1. Assume that ¥ € €(G) and Y is not isomorphic
to G. Applying Theorem 2.1 and Lemma 3.1(), it follows that ¥ € £*(m+ 1,n,n) where
e = n —m. We shall obtain a contradiction by showing that if » is sufficiently large, then
(C,Y) < n(C}, Knpny1) forany ¥ € 2¢(m+1,n,n) where e =n —m. By Lemma 2.1(ii)
with j =2, we have
5p-2(G) = 5p2(¥) 2 (n— (m+1))ar.

Since Y € ¥(G), we must have 5,_2(G) —sp—2(¥) = 0 and this implies that either n = m+1
orelse a; = 0. If n = m+ 1 then G is chromatically unique by Theorem 2 of [3] (see also
Theorem 3 of [4]). Hence assume that a; = 0. Note thatif Bz =@ orif B3 =@, thenY = H +
K, for some bipartite graph H, which by Lemma 3.1(1), implies ¥ is isomorphic to G. Hence
as # 0 and az # 0. Since 5,_32(G) — 5,—2(¥) = 0, by Lemma 2.1(ii), ¥ has no coincidence
pair. Now, for any ¥ € J¢(m+ 1,n,n), we sce that n(C},Y) = A(m,n) —en* + g(n) for
some linear function g(n). Since A(m,n) = n(C},Kmpnnt1) +mn{n—m)/2, and e = n—m,
it follows that n(C,Y) = n(C},Kuppt1) — en 2 —e*nf2 +g(n).

Hence, it follows that —en?/2 — e?n/2 +g(n) < 0if n > N(m) for some natural number
N(m) (which depends on m). Consequently, #(C,Y) < n{C}, Kmpunt1)- |
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