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Abstract

Computed tomography (CT) derived Monte Carlo (MC) phantoms allow dose determination

within small animal models that is not feasible with in-vivo dosimetry. The aim of this study

was to develop a CT-derived MC phantom generated from a mouse with a xenograft tumour

that could then be used to calculate both the dose heterogeneity in the tumour volume and

out of field scattered dose for pre-clinical small animal irradiation experiments. A BEAMnrc

Monte-Carlo model has been built of our irradiation system that comprises a lead collimator

with a 1 cm diameter aperture fitted to a Cs-137 gamma irradiator. The MC model of the irra-

diation system was validated by comparing the calculated dose results with dosimetric film

measurement in a polymethyl methacrylate (PMMA) phantom using a 1D gamma-index

analysis. Dose distributions in the MC mouse phantom were calculated and visualized on

the CT-image data. Dose volume histograms (DVHs) were generated for the tumour and

organs at risk (OARs). The effect of the xenographic tumour volume on the scattered out of

field dose was also investigated. The defined gamma index analysis criteria were met, indi-

cating that our MC simulation is a valid model for MC mouse phantom dose calculations.

MC dose calculations showed a maximum out of field dose to the mouse of 7% of Dmax.

Absorbed dose to the tumour varies in the range 60%-100% of Dmax. DVH analysis demon-

strated that tumour received an inhomogeneous dose of 12 Gy-20 Gy (for 20 Gy prescribed

dose) while out of field doses to all OARs were minimized (1.29 Gy-1.38 Gy). Variation of

the xenographic tumour volume exhibited no significant effect on the out of field scattered

dose to OARs. The CT derived MC mouse model presented here is a useful tool for tumour

dose verifications as well as investigating the doses to normal tissue (in out of field) for pre-

clinical radiobiological research.
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1 Introduction

The increased interest in small-animal radiation biology research has resulted in a requirement

for improvements in the standardized dosimetry of pre-clinical irradiations [1], [2, 3]. In vivo

dose measurement can be accomplished using devices like MOSFET-based dosimeters [4–6],

Gafchromic films [7], or silica-based fibres as thermoluminescent dosimeters (TLDs) [8–14].

Computational techniques using mathematical models of systems can also be used to calculate

radiation doses. Over the past twenty years the calculation based approach has become increas-

ingly more widespread due to the constantly growing availability and power of computers

[15]. One essential application of these computerized methods is to create computational

phantoms where geometries and materials can be defined. The methods utilized to create the

geometry of computational models in anthropomorphic phantoms have progressed from por-

traying structures using quadratic equations to producing voxel-based representations [15–

19]. Similarly, the advancement in creating computational models of small animals has devel-

oped from the mathematical equation based phantom models [16, 20] to subsequently

advanced voxel-based models [21–23].

Imaging modalities like micro-CT [24] are used to produce high-resolution three-dimen-

sional images from small animals [25]. CT data can be used to generate voxelated representa-

tions of volumes and the associated tissues in computational phantoms. CT data also allows

the introduction of corrections for the tissue inhomogeneities into dose calculations during

treatment planning procedures [26, 27]. These corrections involve the determination of a rela-

tionship between tissue electron density and their corresponding Hounsfield Units (HU) [28].

Accurate dose calculations within computational phantoms have become achievable due to

the advancement of MC simulation methods [29]. Accordingly, using CT data to generate

phantoms that can simulate anatomically correct small animal models as well as accomplishing

accurate MC dose calculations within the phantoms allows providing a standard method for

reliable dosimetric analysis in pre-treatment verifications [30]. In fact, this technique benefits

from replicating the clinical treatment planning procedures in a pre-clinical setting [31]. In the

present study, we used this method for dosimetric verification of xenograft tumour-bearing

mouse irradiations.

Small animal-derived tumour xenografts have emerged as valuable preclinical model sys-

tems in radiation biology cancer research [32–34]. Tumours are often implanted in small ani-

mals subcutaneously and targeted with a conformal radiation field at different stages of the

tumours’ growth [35]. These xenographic tumours, depending on the position and size, can

generate complex dose calculations, different from the standard dosimetry for tumours within

the small animal body. One such complexity is tumour dose inhomogeneity which has effects

on radiation biology cancer studies [36]. Also, the level of absorbed doses to normal tissue (out

of field dose), caused by irradiating the xenograft tumours, can affect the parameters under

biological investigation. Therefore, it is necessary to accurately investigate the absorbed dose

in the preclinical xenograft tumour models (with different sizes) and in normal tissues when

the tumours are irradiated with collimated beams. This is the primary goal of this research.

This study is required for our radio-immunotherapy (combination of radiotherapy (RT) with

immunotherapy [37]) investigations, with one of the main interests being in the induced sys-

temic immune response distal to the initial irradiation site [38, 39]. It is critical to ensure that

the tumour is irradiated with the prescribed dose as well as ensuring that doses to critical

organs are low enough to avoid triggering an immune response directly. Several studies have

investigated the dosimetric verification of mouse models using mouse CT data previously, but

they often have not presented xenograft models [40–44]. Also, these studies have not investi-

gated the effect of xenographic tumour dimensions on the dosimetry. To address this issue, we
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generated a MC model from a micro-CT image set of a mouse with a xenograft tumour for

absorbed dose investigations. In this study, we use the term ‘MC mouse phantom’ to refer to

the CT-derived MC model of the mouse. The MC mouse phantom was used to calculate the

dose distributions and analyze DVHs for the tumour and OARs. Also, to explore the effect of

tumour volume variations on the dosimetry, the xenographic tumour diameter was modified

and DVHs were reanalysed.

This study also involves physical dose measurement for verification of MC modelling of the

irradiation system. Verification of Monte Carlo simulations is commonly accomplished by

comparing dose distributions obtained from physical dose measurements with the corre-

sponding calculated doses. Good agreement between the measured and calculated doses guar-

antees the accuracy of MC modelling. Several studies have used dosimeters within slabs of

PMMA phantom or simple water phantoms to measure the doses, comparing them with the

MC simulation results [45–50]. In this study, we use the same method for the verification of

our MC simulations.

2 Materials and methods

2.1 MC mouse phantom

A MC mouse phantom was produced from a whole-body micro-CT (Molecubes X-Cube

micro-CT, USA) image set (in DICOM format) of a mouse with 1 cm diameter growing xeno-

graphic tumour. The CT image set was then converted to an “egsphant” file (EGSnrc-based

MC phantom file) using in-house MATLAB scripts (MATLAB version R2017b, MathWorks

Inc, Natick, MA, USA). Every voxel in the MC mouse phantom corresponds to a specific type

of mouse tissue with its electron density, from the CT numbers in the image set. The materials

employed in the MC mouse phantom include AIR521ICRU, LUNG521ICRU, ICRUTIS-

SUE521ICRU, ICRPBONE521ICRU [45], representing air, lung, soft tissue, and bone. The CT

number limits for tissue segmentation were -1000 to -750 for air, -750 to -250 for lung, -250 to

350 for soft tissue, and 350 to 1000 for bone. The mouse phantom voxel size was set as

(0.2 × 0.2 × 0.3) mm3 for x-, y-, and z-axis respectively with 400, 400, and 358 voxels in the X,

Y, and Z planes respectively. There is a trade-off between voxel size and statistical accuracy for

MC calculations in small animal [45]. The selected voxel size in this study allows for sufficient

statistical accuracy while providing adequate resolution for small animal phantoms [45, 46]. In

our experimental irradiation setup, as detailed in our previous study [49], mice were posi-

tioned on a handmade polystyrene support (air equivalent material with zero attenuation in

circular shape) for irradiations and a rubber band was used to secure the tumour within the

collimated beam and distance the mouse healthy tissue from the high dose exposure of the

beam axis. To generate an accurate MC mouse phantom for absorbed dose calculation, the

mouse was scanned along with the handmade polystyrene support and the rubber band.

2.2 MC simulation of the irradiation system

2.2.1 Irradiation system. We have previously constructed an add-on lead collimator to

allow for targeted irradiation of mice [49]. In previous studies, we showed that our collimator

combined with a 137Cs source irradiator is an effective method for irradiating small animal

xenograft tumours [49–51]. The simulation of MC mouse phantom irradiation was performed

using a 1-cm diameter beam produced by the collimator [49] mounted onto a Gammacell 40

Exactor irradiator unit (Best Theratronics, ON K2K OE4, Canada) located at Transitional

Research Institute (TRI), Brisbane, Australia. The irradiator holds two 137Cs sources at the top

and bottom of the main chamber (with 0.662 MeV photon energy and total nominal activity of

111 TBq), generating 1.0 Gy/min nominal dose rate at the time of installation. The collimator
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consists of two 25 mm thick lead lids with 10 mm diameter apertures in the centre, collimating

the 137Cs sources’ beams to a 11-mm diameter circular beam (including the penumbra of the

beam). The lead collimator is 10 cm in height and diameter, with an internal chamber for plac-

ing mouse or phantom for irradiations. A steel container holds the collimator inside the Gam-

macell. Fig 1 shows all components of the add-on collimator as well as the Gammacell 40

Exactor.

2.2.2 Phase-space file generation. The BEAMnrc user code associated with EGSnrc [52,

53] was used to generate the phase-space file. The code was run on a Linux Cluster system

with a large university managed central cluster. FLATFILT14 and CONS3r (component mod-

ules of BEAMnrc code) were utilized to model the main beam geometry (generated by 137Cs

source positioned 30.5 cm from the add-on collimator’s topmost surface) and the geometry of

the lead lid with 10 mm aperture. 109 initial gamma-ray photon histories were used to generate

the phase-space file, providing information of all particles that cross the scoring-plane. The

scoring plane was situated underneath the base surface of the collimator’s top lid. Since the col-

limator’s lid has a 10-mm aperture, particles that have reached the scoring plane can mostly

pass through the aperture together with a small proportion of photons transition from the lead

lid and the scattered radiation. The phase space file was calculated with a single source of the

irradiator (the top source) and the top lid of the collimator. Then the phase space file was used

at beam angles of 0 and 180 degrees for all dose calculations in order to model the irradiation

setup of the dual sources of the irradiator. This allows for the calculation of the total radiation

dose (produced by both top and bottom sources) within the targets. Fig 2 shows BEAMnrc

component modules and the position of the scoring plane along with the phase space file used

multi-directionally at beam angles of 0˚ and 180˚. Electron impact ionization, atomic relaxa-

tions, and low energy photon interactions, such as Rayleigh scattering and bound Compton

scattering, have been included in our MC simulations [53, 54]. Also, through the condensed

Fig 1. Add-on collimator and Gammacell irradiator. A) Add-on collimator components including the top lid, 1cm aperture, internal chamber, and the steel

container to hold the collimator inside the irradiator. B) Collimator placed in the Gammacell 40 Exactor, prepared for irradiation.

https://doi.org/10.1371/journal.pone.0280765.g001
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history technique, catastrophic inelastic scattering and bremsstrahlung were taken into

account in the transport of secondary electrons [54]. Global Electron transport cut-offs

(ECUT) and Global photon transport cut-offs (PCUT) were 0.521 MeV and 0.01 MeV respec-

tively [52]. Also, the low energy thresholds for electrons and photons AE and AP were set to

0.521 and 0.01, consistent with the ECUT and PCUT parameters, respectively. These well-

established cut-off settings allow for efficient dose calculations while reducing the CPU calcu-

lation time [48]. The phase space file was calculated once in this study and was employed for

all subsequent dose calculations.

2.3 Verification of MC irradiation modelling

To ensure accurate phase-space generation and verify that our MC modelling of the irradiation

system is reliable for any specific irradiation condition, we compared measured dose profiles

obtained from a cubic polymethyl methacrylate (PMMA) phantom dose measurement (irradi-

ated with our irradiation system) with the corresponding calculated profile obtained from the

MC modelling of the PMMA phantom irradiation. The description of measuring and calculat-

ing the dose profiles are given in the next two sections.

2.3.1 PMMA phantom dose measurement. A PMMA phantom, manufactured by our

research group [50], was used for dose measurement. The phantom was made of a PMMA slab

with dimensions of (6.75 × 2.25 × 1.50) cm3 and an extrusion with diameter of

(0.50 × 0.50 × 0.75) cm3 was implanted on the side to represent the radiological characteristics

and approximate shape of a mouse soft tissue with a xenograft tumour model in the flank as

demonstrated in Fig 3A. The phantom was sliced into two equivalent slabs to allow for the

secure placement of radiochromic film. A piece of Gafchromic EBT3 film (Ashland Inc, Cov-

ington, Kentucky, USA) was first placed on the handmade polystyrene in the collimator and

was irradiated. Then the corresponding field was marked on the polystyrene support to indi-

cate the collimated field. A rectangular piece of Gafchromic EBT3 film was sandwiched

between the slabs and the phantom was placed inside the collimator, positioning the sand-

wiched Gafchromic EBT3 film right at the midplane of the collimator. Fig 3A also shows the

Gafchromic EBT3 film sandwiched between PMMA slabs. The tumour model was accurately

positioned within the indicated collimated beam and the PMMA phantom was irradiated to

obtain dose profile measurement. Fig 3B demonstrates the placement of the PMMA phantom

in the main chamber of the collimator on the polystyrene, with the tumour positioned within

the collimated beam ready for irradiation. Film dosimetry was performed based on the

Fig 2. Illustration of MC modelling of the irradiation system. MC modelling of the 137Cs source and collimator top

lid are demonstrated using BEAMnrc components. The scoring surface is positioned right below the collimator’s lid

(red line). The top and bottom red arrows represent the phase-space file used multi-directionally employed at beam

angel of 0˚ and 180˚.

https://doi.org/10.1371/journal.pone.0280765.g002
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Gafchromic film dosimetry procedure given in previous studies [50, 55], and a dose profile

measurement was obtained. The irradiated film along with the profile line and the region

where the film was exposed is demonstrated in Fig 3C.

2.3.2 PMMA phantom dose calculation. MC modelling of the PMMA phantom irradia-

tion was performed and phantom doses were calculated. Material-specific data files for the

PMMA phantom were created using EGSnrc PEGS4 [52]. The experimental irradiation set-up

of the PMMA phantom (which was described in the previous section) was replicated using

DOSXYZnrc (a user code for EGSnrc) [56]. The voxels for the PMMA phantom and outside

the phantom were set to PMMA521ICRU and ICRUAIR521 (material name for PMMA and air

in EGSnrc). The phase-space source (as described in section 2.2.2) was positioned at 0 and 180

degrees to the phantom geometry the particles transported through the voxelized phantom. The

tumour model centre point was set as the isocentre for phase-space file and dose deposited in

each voxel was calculated and written to the ’.3DDOSE’ file (default output file of DOSXYZnrc

code). The interactions explained in section 2.2.2 were also included in DOSXYZnrc simula-

tions [56]. 5 × 109 gamma-ray photon histories were used for dose calculation [47].

2.3.3 Comparison of the measured and calculated dose profiles. Gamma index analysis

was used to provide a quantitative comparison between the calculated and measured dose pro-

files. Gamma analysis is the most effective method for comparing two dose distributions [57].

It is established as the gold standard in verification procedures among all available methods

and clinical decisions are made based on its outcomes [57, 58]. Gamma analysis allows for

comparing two dose distributions with respect to dose and the space domain. In this method,

distance to agreement (DTA) (distance between a reference dose point and the closest evalu-

ated dose point) as well as dose difference (ΔD) metrics are merged into a unitless quantity

through the following equation, known as the Gamma value [58].

gð r!ref ; r
!

mÞ ¼ min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j r!ref � r!mj
2

DTA2
þ
jDð r!refÞ � Dð r!mÞj

2

DD2

s8
<

:

9
=

;
ð1Þ

where

Fig 3. Illustration of the EBT3 film sandwiched between PMMA slabs and irradiation setup. A) The GAFchromic film dosimeter sandwiched between

PMMA phantom slabs. B) The PMMA phantom was placed inside the collimator and the tumour model was situated within the marked collimated beam on

the polystyrene platform for irradiation. C) The irradiated film from the phantom irradiation is shown. Irradiation field and profile line selection are marked.

D) Cutaway drawing of the collimator with the PMMA phantom positioned at the midplane of the collimator and the film dosimeter sandwiched between

phantom slabs irradiated with Cs-137 beam. Film dosimeter, phantom slabs, and the collimator’s components are marked.

https://doi.org/10.1371/journal.pone.0280765.g003
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jDð r!refÞ � Dð r!mÞj is the dose difference and j r!ref � r!mj is the distance between the dose

points.

In this way, an acceptance region (an ellipse) is created around every single point of the ref-

erence dose distribution. This ellipse should compass the evaluated dose point to pass the

gamma test. Mathematically, gamma values of less than 1 imply that the gamma test was

passed [57]. Gamma values of less than 1 imply that the gamma test was passed [58]. The

gamma analysis was implemented using in-house MATLAB scripts. The EGSnrc dose calcula-

tion was set as the reference dose distribution and 2 mm and 2% acceptance limits were uti-

lized for DTA and ΔD, respectively [58].

2.4 MC mouse phantom dose calculation

The dose distribution on the MC mouse phantom was calculated using the DOSXYZnrc code.

The MC mouse phantom (egsphant file) was used as an input file in the DOSXYZnrc. The

coordinate of the tumour centre point was found via DICOM Viewer software [59] in the CT

image set, using real-time coordinate viewer tool, and was set as the isocentre for the phase

space file (that was generated and validated in sections 2.2.2 and 2.3 respectively). The distance

between the scoring plane and the isocentre was set to 5 cm, positioning the MC mouse phan-

tom at the midplane of the collimator MC model, where the mice are positioned for irradia-

tions in our experimental irradiation setup. The phase-space file and number of the gamma-

ray photon histories in DOSXYZnrc were set following the setup explained in section 2.3.2 for

dose calculation and the 3DDOSE file was obtained.

2.5 Dose distribution visualization and DVHs analysis

Evaluation of the MC mouse phantom calculation requires an analysis of the calculated dose

distribution, through visual dose review and dose-volume histograms. The Computational

Environment for Radiotherapy (CERR) [60], a MATLAB based toolkit, was used for dose visu-

alization and volume contouring for DVH analysis. To visualize the calculated doses on the

image set, both the CT-image set and 3DDOSE files were loaded into CERR and coronal and

sagittal isodose lines and dose colourwash were displayed. The tumour, heart, liver, Llung (left

lung), Rlung (right lung), Lkidney (left kidney), Rkidney (right kidney), and spinal column

were contoured on each slice of the CT-image set for DVHs generation. To perform an accu-

rate contouring for the tumour and all OARs, a whole-body mouse ATLAS from coregistered

x-ray CT data of a normal mouse was used as guideline [61]. To convert the calculated MC

doses to absolute dose for DVH analysis, the calibration method proposed by Popescu et al

[62] was employed. Then the DVHs were plotted for 20 Gy absolute prescribed dose.

2.6 Xenographic tumour size modification

The xenographic tumours were divided into small, medium, and large groups with diameters

of 0.5 cm, 0.75 cm, and 1 cm, respectively, based on irradiation studies on a cohort of mice in

various preclinical radiobiological research. Thus, it is vital to determine the effect that xeno-

graft tumour size may have on the MC mouse dosimetry. 3Dslicer software version 4.10.2

(http://www.slicer.org) was used to modify the dimension of the tumour model in the original

CT data. The mouse was scanned when the xenographic tumour diameter was 1 cm, which

was the maximum tumour dimension observed in all our radio-immunotherapy investigations

[49]. To generate new image sets with smaller tumours, the tumour diameter in the initial CT-

image set was reduced to 0.75 cm and 0.5 cm, and changes were saved as two new CT image

sets. The reduction of the tumour diameter was achieved by setting the voxels in the perimeter

region of the tumour to a HU of air using ‘segment editor’ and ‘simple filter’ tools in 3Dslicer.
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This allows for producing two new CT image sets and then generating the corresponding MC

mouse phantoms with a similar mouse structure and smaller tumour diameters (as demon-

strated in Fig 4) for reanalysing the DVHs in order to explore the effect of tumour volume var-

iations on the dosimetry in and out of the main radiation field.

3 Results

3.1 Verification of MC irradiation modelling

To verify the MC simulation of the irradiation system, the profile from the PMMA phantom

experimental dose measurement was compared with the corresponding calculated PMMA

phantom EGSnrc profile as shown in Fig 5A. The MC calculated doses for all points along

with the corresponding measured doses, corresponding to the profiles shown in Fig 5A, are

presented in Table 1. Also, the errors for all MC calculated doses were obtained from the

3ddose file and presented in the last column of the table. Both dose profiles were normalized

to their respective maximum doses. The gamma index between the Gafchromic EBT3 film

measurement and EGSnrc calculation is demonstrated in Fig 5B. The gamma test was passed

by all gamma index values down to 2.25 cm from the beam axis, confirming that both penum-

bra regions and the out of field doses (at 0.8 cm-2.25 cm from the beam axis) are in an excel-

lent agreement for EBT3 film measurements and EGSnrc calculation. Only two gamma values

were smaller than 1 and therefore failed the gamma test. The major deviations between the

dose profiles might arise from the statistical nature of the MC simulation as well as uncertain-

ties in the GAFchromic film dosimetry as detailed in the discussion section.

3.2 MC mouse phantom dose calculations

The calculated dose distribution within the mouse phantom was visualized on the CT image

set via isodose lines and dose colourwash in CERR (Figs 6 and 7). All doses were normalized

to Dmax (maximum dose). As shown in Fig 6, the tumour is on the left side of the mouse body

and the rubber band maintains the mouse body distance from the beam. The tumour has been

exposed to 60%-100% of Dmax while only a maximum of 7% scattered dose has been observed

within the rest of the mouse body. Doses in areas closer to the centre of the tumour are

between 90% and 100% of Dmax whereas the doses to the edges of the tumour is a maximum

60% of Dmax. As in Fig 7, the green, yellow, and orange isodose lines indicate that absorbed

dose in the surface area of the tumour varies in the range 60%-75% of Dmax. As it can be seen

in Fig 7, the purple isodose line, which encircles the mouse body structure, indicates that maxi-

mum 7% of Dmax has been distributed within the mouse body.

Fig 4. Mouse CT image set. Image A demonstrates the transversal view of a slice of the original mouse CT image set

with the maximum xenographic tumour diameter of 1 cm. Images B and C demonstrate the modified tumours with

diameters of 0.75 cm, and 0.5 cm, respectively. The xenographic tumour and the rubber band that distances the

tumour from the mouse healthy tissue are marked in image A.

https://doi.org/10.1371/journal.pone.0280765.g004
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3.3 DVH calculations

Dose calculation of the MC mouse phantom was evaluated by generating and comparing abso-

lute DVHs for tumour and OARs. The DVHs of the tumour, heart, liver, Llung, Rlung, Lkid-

ney, Rkidney, and spinal column are shown for tumour diameters of 1 cm, 0.75 cm, and 0.5

cm in Fig 8. The minimum, maximum, and mean doses for tumour and critical organs were

obtained from CERR and are summarized in Table 2 for all tumour irradiations. The DVH

indicates that the tumour volume dose varies between 12 Gy-20 Gy. As it can be seen in Fig 8,

there is good agreement between the tumours DVHs for the three different sized tumours.

This indicates that approximately an equal level of the prescribed dose was delivered to entire

volume of three tumours. However, further analysis indicated that as the tumour diameter

increased, the mean dose of the tumour slightly increased, and therefore DVH curve slightly

shifted to the right as demonstrated in Fig 8. This can also be seen in the tumours’ mean dose

results (Table 2) where the mean doses for tumour diameters of 0.5 cm, 0.75 cm, and 1 cm are

16.75 Gy, 16.92 Gy, and 17.22 Gy, respectively.

Due to the localisation and immobilisation of the tumour during irradiation, mouse body

was effectively spared and therefore absorbed doses to all OARs were minimized (1.29 Gy-1.38

Fig 5. Measured and calculated dose profiles. A) The blue line is the dose profile sampled measured across PMMA

tumour phantom exposure. The purple line is the corresponding calculated dose profile results from the EGSnrc

simulation, B) The cyan line shows the resultant gamma index trend determined between the two relative

GAFchromic film measurements and EGSnrc calculation dose profiles.

https://doi.org/10.1371/journal.pone.0280765.g005
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Table 1. Measured and calculated doses and MC dose calculation errors.

Distance (cm) Measured doses (%) MC Calculated doses (%) MC calculation errors (%)

0 100 100 0.88

0.12 99.44 97.53 0.79

0.22 97.62 98.13 0.65

0.32 94.05 99.75 1.18

0.42 82.37 90.42 0.78

0.52 62.30 62.64 0.85

0.62 34.74 35.31 1.62

0.72 15.73 14.32 1.92

0.82 13.02 11.85 2.10

0.92 10.57 10.61 2.92

1.02 10.45 11.12 2.79

1.12 11.20 11.48 3.29

1.22 9.61 9.82 2.91

1.32 9.60 9.01 3.22

1.42 9.66 8.61 2.99

1.52 9.09 8.73 2.82

1.62 9.60 8.67 3.30

1.72 9.50 8.94 1.98

1.82 9.38 9.02 3.21

1.92 9.43 8.92 2.96

2.02 9.46 7.39 3.34

2.12 9.54 7.40 2.92

2.22 9.41 7.13 3.07

2.32 9.32 6.82 2.82

2.50 9.39 6.60 2.98

Dose values for all points of the calculated profile along with the corresponding measured doses (normalized to their respective maximum doses). Dose calculation

errors are presented in the last column.

https://doi.org/10.1371/journal.pone.0280765.t001

Fig 6. Dose distribution colourwash demonstration on micro-CT images in CERR. Doses are normalized to Dmax.

The rubber band squeezes the mouse body out of the field and the accurate irradiation modelling of the tumour is

demonstrated. The dose colourwash shows approximately 60%-100% of Dmax to the whole tumour and maximum 7%

of Dmax to the normal tissue.

https://doi.org/10.1371/journal.pone.0280765.g006
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Gy) as shown in Table 2. This leads to maximum 0.14 Gy mean dose difference within the out

of field region across different organs for three tumour irradiations. This can be seen in iso-

dose line visualizations of cross-sectional slices through the phantom too (Fig 7). This causes

sharp DVHs for all organs in each plot. The DVHs of OARs are in a good agreement in the

plot due to very good sparing of the OARs as well as dose homogeneity across different organs

(Fig 8).

Fig 7. Isodose demonstration on micro-CT images in CERR. The sagittal (left) and coronal (right) isodose lines are

demonstrated. Doses are normalized to the Dmax. Isodose lines within the tumour show an increase in dose level from

the edge to the centre of the tumour. The purple isodose encircling the mouse body indicates the constant dose level of

7% of Dmax to the mouse body.

https://doi.org/10.1371/journal.pone.0280765.g007

Fig 8. DVHs plots. DVHs of the tumours and OARs for 0.5 cm, 0.75 cm, and 1 cm tumour irradiations are

demonstrated in dash, dot, and solid lines, respectively. DVHs of the tumours are in black and colours of the DVHs for

OARs are presented in the graph.

https://doi.org/10.1371/journal.pone.0280765.g008
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4 Discussion

Dose distribution determination and DVH analysis are required for preclinical radiobiological

research, for tumour dose verifications as well as investigating the absorbed doses to normal

tissue (in out of field) in small animal models. It is critical to ensure that the tumour is treated

with the desired dose and that the absorbed dose to normal tissue (in out of field) has minimal

impact on the objectives of the study. Also, it is important to verify that the out of field dose

will not harm critical organs such as the lungs or brain. Dose calculations and DVHs analysis

results justify the use of our MC phantom for small animal irradiations as they provide infor-

mation on the level of tumour dose and scattered dose surrounding the target prior to live ani-

mal RT.

Dose analysis performed in this work leads to several observations. One of the first is the

good agreement between the EGSnrc and Gafchromic film dose profile plots, as demonstrated

in Fig 5, verifying that our MC modelling of the irradiation system has sufficient accuracy for

MC mouse phantom dose calculations. As mentioned in the introduction section, several stud-

ies have used the same method for verifying MC simulations. This provides strong support for

the validity of the verification method used in this study, i.e., comparing the doses measured

within a PMMA phantom with the corresponding calculated MC doses. It is worth mentioning

that we used PMMA material in this study because it is tissue equivalent, has a reproducible

composition, is easy to machine, and it is commonly used for radiation dosimetry investiga-

tions [63–67]. Also, PMMA phantoms are typically employed for standard dosimetry practices

such as calibration of in-phantom dose rate [68, 69]. PMMA is found to be an excellent soft-

tissue substitute as its material properties such as effective atomic number and electronic den-

sity are close to that of soft tissue [70]. So, the in-house built PMMA phantom well mimics soft

tissue composition of the mouse. Similar to our method, in research conducted by Kuess et al

[71] the mouse tissues were considered PMMA equivalent for dosimetric verification

purposes.

The quality indicator for comparison of the profiles is based on the gamma analysis

method, with gamma values smaller than 1 indicative of good agreement between the GAF-

chromic film measurement and EGSnrc calculation dose profiles. The gamma test was passed

by 93 percent of the gamma values. Only two gamma index values in out of field dose region

did not pass the gamma test. This may be due in part to the statistical nature of the MC simula-

tion, with fewer photons crossing further away from the collimated field resulting in fewer

scored particles in MC calculations. This increases the uncertainty in out of field dose

Table 2. Minimum, maximum, and mean doses for the tumour and OARs.

OARs Minimum dose (Gy) Maximum dose (Gy) Mean dose (Gy)

Tumour diameter (cm) Tumour diameter (cm) Tumour diameter (cm)

0.5 0.75 1 0.5 0.75 1 0.5 0.75 1

Rlung 0.73 0.72 0.75 1.35 1.38 1.36 1.10 1.20 1.21

Llung 0.84 0.85 0.79 1.36 1.37 1.33 1.20 1.21 1.13

Spine 0.92 0.95 0.94 1.37 1.36 1.29 1.14 1.24 1.18

Heart 0.90 0.95 0.88 1.35 1.32 1.34 1.22 1.23 1.20

Liver 0.94 0.87 0.95 1.34 1.33 1.38 1.21 1.20 1.22

Lkidney 0.92 0.85 0.95 1.33 1.29 1.32 1.19 1.16 1.21

Rkidney 0.89 0.85 0.95 1.36 1.31 1.37 1.20 1.18 1.22

Tumour 12.22 12.05 12.57 20.67 20.53 20.73 16.75 16.92 17.22

Minimum, maximum, and mean doses (in Gy) for the xenographic tumour with 0.5 cm, 0.75 cm, and 1 cm diameters and critical organs in out of field.

https://doi.org/10.1371/journal.pone.0280765.t002
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calculations. A mean uncertainty of 3% was obtained in out-of-field dose calculations. To reduce

the uncertainty, especially in low-dose areas, it would be necessary to increase the number of pho-

ton histories, significantly increasing also CPU calculation times. Additionally, ±2% errors in

homogeneity throughout a sheet of Gafchromic EBT3 film [72] and curvature of EBT3 film pieces

during the scanning procedure [73] can be other sources of errors. To ensure the accuracy of our

Gafchromic EBT3 film measurement, the measured doses were compared against the correspond-

ing doses obtained from MOSKIN dosimeter as detailed in our previous study [49]. Despite all

sources of uncertainties, our MC calculation and experimental measurement were found to be

well matched, with a mean discrepancy of 4%. With this high level of agreement, we can confirm

the accuracy of our MC modelling for MC mouse phantom dose calculation.

Calculation of dose distribution within the MC mouse phantom showed a maximum out of

field dose of 7% of Dmax on the MC mouse phantom body. Both dose wash and isodose lines

demonstrate that 7% of Dmax has been uniformly distributed to all tissues in the MC mouse

phantom within the out of field region. This suggests that the phantom heterogeneity almost

did not affect the dose within the out of field region across different organs. This can be seen

in mean dose results to the OARs in Table 2 too as the maximum dose difference between dif-

ferent organs is only 0.14 Gy. As it is demonstrated in Fig 6, the collimated beam is well aligned

with the target and covers the entire tumour as the rubber band restrains the mouse healthy

tissue from the high dose exposure of the beam. This suggests that the rubber band is a useful

tool to secure the tumour in the radiation field as well as sparing the mouse body from the irra-

diation when xenographic tumour irradiation is intended in preclinical studies. The isodose

lines demonstrated that the rubber band and polystyrene support do not cause any extra scat-

tering to the mouse body. Isodose lines also indicated that absorbed dose to entire tumour var-

ies in the range 60%-100% of Dmax. This is due to the electron disequilibrium which is the

result of inadequate build-up region in the edges of the tumours. In fact, a certain depth of

tumour tissue is required before the radiation reaches its maximum amount. So, this causes

dose escalation in the centre of the tumour and leads to the tumour dose heterogeneity.

DVH analysis results suggest that irradiation of mice with our irradiation method can deliver

an inhomogeneous dose to the xenographic tumour as well as minimizing the absorbed dose to

other critical organs. The tumour DVHs indicate that it is quite challenging to deliver a homo-

geneous prescribed dose to the whole xenographic tumour volume. DVHs were plotted for 20

Gy, which is the prescribed dose in all our radio-immunotherapy investigations. However, as it

can be seen in Fig 8, only 10% of 1 cm diameter tumour volume is exposed to 20 Gy. Due to the

tumour dose heterogeneity (approximately 12 Gy-20 Gy), the mean dose to the tumour is 17.22

Gy (Table 2). To achieve a homogenous tumour dose, the tumour could be covered with a

water equivalent bolus in order to provide adequate build-up for beam delivery to the tumour.

The other method to deliver the prescribed dose to the whole tumour volume is by delivering a

significantly higher dose to the tumour centre to achieve clinically acceptable prescribed tumour

dose coverage (e.g., 95% of the prescription dose) everywhere. It must be highlighted that our

specific study ultimately aims at investigating abscopal effects of RT [50], for which we do not

need to deliver a homogeneous dose to the whole target [49], but only deliver enough dose to a

certain fraction of the target [74, 75]. So, at this stage, it was not essential to employ a bolus for

tumour irradiations in our experiments. Future directions of this study will aim to achieve and

investigate homogeneous radiation dose to tumour using the method we offered in this study.

The DVHs of organs show that the maximum out of field dose to OARs is 1.38 Gy when

tumours are irradiated with 20 Gy prescribed dose. This is a desirable out of field dose in our

radio-immunotherapy investigations as such a low dose does not induce the immune response

directly [76, 77] therefore allowing us to investigate any true induced systemic immune

response stimulated by irradiating the xenographic tumour. It is also unlikely that 1.38 Gy out-
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of-field dose causes any radiation harm to OARs [78]. The good agreement between three

DVH plots for small, medium, and large tumours in Fig 8 implies that variation of the xeno-

graphic tumour volume has no significant effect on the DVH of OARs out of the collimated

field. This indicates that the scattered radiation caused by increasing the tumour diameter is

insignificant. Based on this, the dosimetric verifications performed in the experiments are

valid at all stages of mice irradiations, when tumours grow within the range of the investigated

tumour dimensions.

There are important advantages of our findings on dose distributions in mouse micro-CT

data. Firstly, the issues arising in small animal dosimetry for the heterogeneous material prop-

erties of murine subjects are more complex than many research groups have addressed in their

studies by using simplified approaches like water equivalent phantoms or simplified mouse

phantoms [3, 79]. Alternatively, our approach allows for the demonstration of the applicability

of MC phantoms to provide accurate dose data of actual murine subjects applying accurate

material properties. Secondly, most studies that applied mouse CT data to perform dosimetric

verification of mice irradiations have employed image-guided sophisticated small animal RT

systems. So, there is still a lack of a workflow for dosimetric evaluation of small animal irradia-

tions using irradiation methods that have no imaging capabilities like our system. Our study

offers a useful method of dosimetric evaluation of small animal RT irradiated with irradiation

systems with no imaging capabilities. This provides a quantitative method for characterizing

such small animal irradiation methods.

5 Conclusion

The CT-derived MC model of a mouse with a xenographic tumour we have introduced is a

useful tool for radiation dosimetry investigations within small animal models in various pre-

clinical radiobiological research. The gamma test was passed by 93 percent of the gamma val-

ues, confirming the validity of our MC modelling for MC mouse phantom dose calculation.

Dose calculation and DVHs results demonstrated that the tumour has been exposed to 60%-

100% of Dmax (corresponding to 12 Gy-20 Gy for a 20 Gy prescription dose) while the scat-

tered dose within the rest of the mouse body was only a maximum of 7%. The tumours DVHs

also showed that the tumours have been exposed to heterogeneous doses, suggesting that it is

challenging to deliver a homogeneous prescribed dose to the whole xenographic tumour vol-

ume. The DVHs of OARs showed a maximum out of field dose of 1.38 Gy across different

organs. This is low enough to not directly cause the immune response, allowing us to explore

the induced systemic immune response distal to the initial irradiation site. Variation of the

xenographic tumour volume exhibited no significant effect on the DVHs of OARs. Therefore,

the dosimetric verifications performed in our study are valid at all stages of tumour growth.
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