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Abstract: Confidence intervals for the -quantile of a linear 

combination of N non-normal variates with a linear dependence 

structure would be useful to the financial institutions as the 

intervals enable the accuracy of the value at risk (VaR) of a 

portfolio of investments to be quantified. Presently, we construct 

100(1-α) % confidence intervals for the -quantile  using the 

procedures based on bootstrap, normal approximation and 

hypothesis testing. We show that the method based on hypothesis 

testing produces confidence interval which is more satisfactory than 

those found by using bootstrap or normal approximation. 
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1. Introduction 
Consider a portfolio consisting of N stocks. The absolute 

value of the -quantile of the return of the portfolio is called 

the value at risk (VaR) of the portfolio. 

VaR has been frequently used by commercial and   

investment banks to capture the potential loss in value of 

their traded portfolios from adverse market movements over 

a specified period. 

To evaluate VaR in the multivariate situation where N 

stocks are involved, we usually begin with the evaluation of 

a multivariate distribution for the N stocks. A common 

approach is to fit the data on returns by the multivariate 

version of the normal, Student t or skewed Student t 

distribution. Other approaches may take into account the tail-

dependence [1], and asymmetry [2-5]. A more sophisticated 

approach is one which is based on copulas [2, 6-13]. 

Presently we use an approach based on a type of non-

normal distribution called the quadratic-normal distribution 

[14-15]. To describe the approach, we first let 

 be a vector of uncorrelated variates of which 

 can be expressed as  

 

where . The variate  is said to have a quadratic-

normal distribution with parameters 0 and , and we may 

write . The mean of 
 

is 0 while the  

moment of  is given by  The 

standardized moments ,  will 

then be respectively the measures of skewness and kurtosis 

of . Next, let  be an  orthogonal matrix,  an 

vector of constants and  an 

 vector given by  

              
,                    (1) 

a vector of constants with  

 and 

  .               (2) 

When  and  is large, the distribution of the 

random variable  will have fat tails and narrow waist. As 

the matrix  represents an orthogonal transformation, and 

the vector , on the other hand represents a translation, the 

distribution of  will also have fat tails and narrow waist. 

As the distribution of stock return very often also has fat tails 

and narrow waist, and the returns of different stocks are 

usually correlated, the distribution of  given by Equation 

(1) can be used to model the joint distribution of the returns 

of N stocks. For a portfolio of N stocks, the portfolio return 

can be represented by  given by Equation (2).  

Let  be the cumulative distribution function of R and 

assume that the -quantile, , is uniquely 

defined. When  is small, the absolute value of  will 

represent the VaR which has a confidence level of 

. 

After finding an estimate for the VaR, it is usually 

desirable to access the accuracy of the VaR estimate by 

constructing a confidence interval for the VaR. 

The layout of the paper is as follows. In Sections 2, 3 and 

4, we describe respectively the procedures based on 

bootstrap, normal approximation and hypothesis testing for 

finding a confidence interval for the VaR. In Section 5, we 

compare the performance of the three methods for 

constructing confidence intervals for the VaR. In Section 6, 

we give an example which shows that multivariate quadratic-

normal distribution is able to fit a real data set obtained from 

the Kuala Lumpur Stock Exchange. 

 

2. Bootstrap Confidence Interval for γ-quantile 

First, let  be the  observed value of , 

. From the n observed values , 

, we first compute the  entry of the matrix 

 of the estimated variance-covariance of  as shown below:  

      where  . 

We next compute  where  is the  

eigen vector of  , and . By using , we compute 

   



 

2012 International Conference on Computer Engineering & Mathematical Sciences (ICCEMS 2012)                                                                                                       
            

141 

 

By using the constrained maximum likelihood procedure 

[16], we find the quadratic-normal distributions   

and  which fit   and the n observed 

values of R. Let   be the -quantile of the standard 

normal distribution. An estimate of the -quantile of R  is 

then given by 

.  

Next, we generate B values of 

, using  

 

where    

By using the constrained maximum likelihood procedure, 

we find the quadratic-normal distribution   which 

fits the values  Next let  

  

be the estimated quantile, and  the quadratic-

normal distribution which fits the B values of  

The approximately-100(1- )% bootstrap confidence 

interval for the -quantile is then given by 
 
where 

  

and  

 .                                                   

3. Confidence Intervals based on Normal 

    Approximation 

From the B values of  in Section 2, we 

can find the estimated variance  

where . Then the approximately-100(1- )% 

confidence interval based on  normal approximation for the 

-quantile is 

. 

 

4. Procedure based on Hypothesis Testing 

Consider the problem of testing  against 

. Suppose we test the above  by using the 

decision rule “Accept  at the  level if ” 

where  and  are respectively the  and 

 points of the quadratic-normal distribution 

which is used to fit the B values of   obtained when the B 

values of   are generated 

using  

 

 

where  and  

 is found  as follows: 

Firstly, for a given value of , 

we find the moment   Let 

 be such that  and the  central moment of 

the quadratic-normal distribution  is equal to  

 Then R is approximately distributed as . 

Finally,  is the value of 

 
which  minimizes  

  
subject to  

.

      

 

An approximately-100(1- )% confidence interval for the 

γ-quantile of R  is now given by {  The null hypothesis 

that  is accepted at the  level}. 

 

5. Numerical Examples 
 

Figure 1 shows 100 simulated bootstrap confidence 

intervals for the -quantile of R when  and the value 

of  is given . In the figure , the upper limits 

of the 100 confidence intervals have been arranged in an 

ascending order .    

Figures 2 and 3 show 100 possible confidence intervals 

based on normal approximation and hypothesis testing . As 

in Figure 1 , the upper limits of the 100 confidence intervals 

have been arranged in an ascending order . 

Figures 1 – 3 show that the estimated coverage probability  

of the confidence interval based on hypothesis testing is  

closer to the target value 0.95  than those of the bootstrap  

confidence interval and the confidence interval based on  

normal approximation . 

 

 
Figure 1. 100 simulated bootstrap confidence intervals for  

-quantile when  

 and 

 

 

estimated coverage probability=0.82, average length=2.3945 

--estimate of -quantile, ---true value of -quantile 
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Figure 2. 100 simulated confidence intervals based on 

normal approximation for -quantile when  

 

and  

 

estimated coverage probability=0.89, average length=2.4296 

--estimate of -quantile, ---true value of -quantile 

 

 
Figure 3. 100 simulated confidence intervals based on 

hypothesis testing procedure for -quantile when  

 

 and  

 

estimated coverage probability=0.91, average length=2.9261 

--estimate of -quantile, ---true value of -quantile 

 

Further comparison of the 3 types of confidence intervals 

can be found in Table 1 which displays the estimated 

coverage probabilities and average lengths for 10 values of 

. The 10 values of  and  are displayed 

in Table 2. The measures of skewness and kurtosis 

 of the quadratic-normal distribution with the 

given  are also included in Table 2. Table 1 shows that the 

coverage probability of the confidence interval based on  

hypothesis testing is closer to the target value 0.95 than those 

of the bootstrap confidence interval and confidence interval 

based on normal approximation . 

Table 1 also shows that the average length of the 

confidence interval based on the hypothesis testing is longer 

than those of the bootstrap confidence interval and 

confidence interval based on normal approximation. This is 

not surprising because in order to have a larger coverage 

probability , the length of the confidence interval should be 

made longer. 

 

Table 1. Estimated coverage probabilities and average 

lengths of confidence intervals for -quantile 

 

N=B=100, standard error of the estimated coverage 

probability ≈0.0218 

 

No BTP NAP HTP BTL NAL HTL 

              

1 0.82 0.89 0.91 2.39207 2.42961 2.918 

              

2 0.8 0.8 0.88 2.45177 2.49157 3.019 

              

3 0.79 0.82 0.93 2.31436 2.35217 2.9195 

              

4 0.72 0.72 0.83 2.17881 2.21492 2.634 

              

5 0.91 0.89 0.94 0.76893 0.76353 1.214 

              

6 0.85 0.86 0.91 1.26915 1.29416 1.8135 

              

7 0.79 0.85 0.87 1.81021 1.83762 2.248 

              

8 0.9 0.9 0.93 0.81293 0.8142 1.3455 

              

9 0.71 0.69 0.82 2.16665 2.20639 2.5805 

              

10 0.77 0.75 0.85 1.22067 1.24205 1.7185 

              

 

Table 2. The parameters and measures of skewness and 

kurtosis of the quadratic-normal distribution 

No      

         

1 3 16.6 0.322184 0.680924 0.065316 

  2.8 15 0.377794 0.638861 0.072964 

2 3.4 20.2 0.190061 0.770776 0.02769 

  2.6 13.4 0.450006 0.589852 0.115554 

3 3 16.7 0.300017 0.688155 0.020679 

  2.4 12 0.502252 0.547528 0.125795 

4 3.2 18.4 0.247697 0.72906 0.029551 

  1 4.4 0.955589 0.177217 0.88736 

5 -0.2 2.4 1.20867 -0.17517 -0.52415 

  2 9.4 0.62038 0.454663 0.189261 

6 0.6 3.1913 1.0745 0.055572 2.958 

  1.6 7.2 0.732179 0.359491 0.270896 

7 2 9.3 0.603592 0.45809 0.151303 

  0.4 2.8 1.11827 -0.00217 -71.0956 

8 -0.4 2.8 1.11826 -0.15408 -0.01403 

  0.8 3.8 0.99794 0.126695 1.16716 

9 3.6 22.6 0.054687 0.838405 -0.08815 

  0.4 2.7 1.15398 -0.02222 -8.11265 

10 -1 10.6 0.171503 0.387604 -1.47341 

  1.4 6.2 0.797129 0.305546 0.361719 

 

The following abbreviations are used in Table 1: 

BTP = Estimated coverage probability of confidence interval  

      based on bootstrap.        

NAP = Estimated coverage probability of confidence 

interval based on normal approximation.           

HTP = Estimated coverage probability of confidence interval 
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            based on hypothesis testing.            

BTL = Average length of confidence interval based on  

   bootstrap. 

NAL = Average length of confidence  interval based on  

   normal approximation.          

HTL = Average length of confidence interval based on  

 hypothesis testing. 

6. Applications in Finance 
The random variables  in Section 1 may be 

considered to be the returns of N stocks, and the -quantile 

 of  becomes the value at risk (VaR) of the portfolio 

consisting of these N stocks. Thus, if we can show that  can 

be written as  of which  are 

uncorrelated and , then the methods in Sections 

2 and 4 can be applied to find confidence intervals for the 

VaR of the portfolio. 

In the following analysis, the data obtained from the Kuala 

Lumpur Stock Exchange (KLSE) are used. The data are the 

daily stock prices of three companies, namely Genting Bhd., 

Gamuda Bhd. and Tanjong PLC Bhd. in the KLSE from 

Thomson Financial Datastream (01/01/1993 to 31/8/2002). 

The data for the period from 01/07/1997 to 30/06/1999 are 

excluded in the present investigation because these data were 

collected during the financial crisis in South East Asia. The 

following results in the forms of table and figure are 

extracted from Yap(2004). 

 

Table 3. Variance-Covariance matrix associated with the 

portfolio 

4.6316 0.7453 1.2520 

0.7453 4.0142 1.2299 

1.2520 1.2299 5.7027 

 

Table 4. The values of  and   for the parameters of 

the fitted distributions for , i =1 to 3 

   

1.174061 0.422125 -1.0 

   

1.133999 0.553379 -1.0 

   

1.541984 0.800266 -1.0 

 

Figure 4 shows that the distribution of the portfolio returns 

can be approximated well using the quadratic-normal 

distribution. Thus the methods in Sections 2 and 4 may be 

used to find confidence intervals for the VaR of the  

portfolio.  

Figure 4.  

  Cumulative Distribution of return for the portfolio 
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