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Abstract: Two new oxidovanadium(V) complexes, (HNEt3)[VVO2L] (1) and [(VVOL)2μ-O] (2), have 

been synthesized using a tridentate Schiff base ligand H2L [where H2L = 

4-((E)-(2-hydroxy-5-nitrophenylimino)methyl)benzene-1,3-diol] and VO(acac)2 as starting metal 

precursor. The ligand and corresponding metal complexes are characterized by physicochemical 

(elemental analysis), spectroscopic (FT-IR, UV–Vis, and NMR), and spectrometric (ESI–MS) 

methods. X-ray crystallographic analysis indicates the anion in salt 1 features a distorted 

square-pyramidal geometry for the vanadium(V) center defined by imine-N, two phenoxide-O, 

and two oxido-O atoms. The interaction of the compounds with CT–DNA was studied through 

UV–Vis absorption titration and circular dichroism methods. The results indicated that complexes 

showed enhanced binding affinity towards DNA compared to the ligand molecule. Finally, the in 

vitro cytotoxicity studies of H2L, 1, and 2 were evaluated against colon cancer (HT-29) and mouse 

embryonic fibroblast (NIH-3T3) cell lines by MTT assay. The results demonstrated that the com-

pounds manifested a cytotoxic potential comparable with clinically referred drugs and caused cell 

death by apoptosis. 
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1. Introduction 

In the family of the vanadium complexes, the oxoidovanadium Schiff base com-

plexes are the most rapidly growing class owing to their rich underlying features and 

vital role during the process of interaction with various biomolecules [1]. Although va-

nadium exists in different oxidation states from −III to +V, for the higher oxidation states 

(+IV and +V), vanadium is highly stable and can form oxophilic complexes [2–4]. Oxi-

dovanadium complexes have various roles in biochemical processes, such as nitrogen 

fixation, haloperoxidation, and glycogen metabolism [5,6]. In recent years, the investiga-

tion of the antifungal, antibacterial, and anticancer activities of these complexes has be-

come the main subject of many studies. Recently, there is a growing interest in the in 

vitro and in vivo studies of vanadium complexes towards the treatments of diabetes and 

cancer [7,8]. After the discovery of many oxidovanadium drugs, 

bis(maltolato)oxovanadium(IV), BMOV, as glucose and lipid-lowering insulin mimetics, 

the focus on these types of compounds was stimulated [9]. Additionally, the anticancer 

activity of vanadium complexes has been widely examined on trial carcinogenesis and 

tumor-bearing animals [10,11]. The anticancer activity of several oxidovanadium com-

plexes has recently received attention due to physiochemical changes in the solution 

medium leading to reduced systemic toxicity with beneficial effects [12,13]. There are 
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also reports that vanadium accumulates in cancerous cells and tissues more than in 

normal cells [11,14]. For this reason, vanadium complexes have displayed promising 

cytotoxicity against various human cancer cell lines and these complexes were found to 

show better selectivity and higher cytotoxicity with reduced side effects. Therefore, at-

tempts are being made to develop anticancer drugs using these oxidovanadium(V) 

complexes as suitable alternatives to platinum-based drugs [15]. 

In addition, Schiff bases play an immense role in coordination chemistry due to their 

ability to stabilize metal ions in various oxidation states, and their participation in nu-

merous catalytic applications and biological activities [16–18]. The formation of stable 

metal complexes is due to the nitrogen lone pair of electrons present in the azomethine 

(−N=CH) backbone of the ligand molecule [18,19]. Various types of Schiff base ligands 

have been explored for their fascinating and significant properties, for example, com-

plexing ability towards a wide range of transition metals, and applications in biological 

activity [20,21]. Certain oxidovanadium(V) Schiff base complexes have been reported 

earlier as model compounds, displaying biomolecular interactions with proteins and 

bio-ligands such as DNA [8,22,23]. Additionally, it is demonstrated that with increase in 

substitution and planarity of ligands, DNA interactions are enhanced [24]. Furthermore, 

metal complexes which can effectively interact with DNA under physiological conditions 

are considered to be possible contenders for use as therapeutic agents in medicinal ap-

plications and for genomic research [24,25]. Therefore, attempts are being made to de-

velop anticancer drugs using these oxidovanadium(V) complexes as suitable alternatives 

to platinum-based drugs. Reportedly, polyphenolic/polyhydroxy compounds can pre-

vent oxidative damage as they can scavenge reactive oxygen species such as hydroxyl 

radicals and superoxide anions. The prooxidant properties of polyphenolic compounds 

may contribute to tumor cell apoptosis [26–28]. In consideration of the inherent property 

of phenols and other polyhydroxy compounds particularly for medicinal and pharma-

cological applications [29,30], their corresponding complexes might be crucial for inves-

tigation for anticancer activity. 

In continuation of our previous work on the synthesis, characterization, and bio-

logical studies of vanadium(V/IV) complexes [8,13,31–45], here we report a new mono-

nuclear dioxidovanadium(V) (1) as well as an oxido-bridged dinuclear oxidovanadi-

um(V) (2) complex, each with a tridentate ONO donor Schiff base ligand derived from 

2,4-dihydroxybenzaldehyde and 2-amino-4-nitrophenol. Considering the therapeutic 

potential of the synthesized polyphenolic ligand molecule [27,30,46], corresponding ox-

idovanadium(V) complexes were synthesized to further investigate their pharmacologi-

cal activities such as DNA interaction and anticancer activities. The primary objective of 

this current work was to investigate the significant characteristics of these ligand(H2L) 

and oxidovanadium(V) complexes in terms of their applications as anticancer agents. The 

synthesized ligand and respective complexes were characterized by various spectro-

scopic (FT-IR, UV–Vis, and NMR), spectrometric (ESI–MS) techniques and the purity of 

the compounds were confirmed by CHN analysis. Furthermore, the single-crystal X-ray 

crystal structure of 1 was determined. The binding of the complexes toward CT–DNA 

was studied by UV–Vis absorption titration and circular dichroism. Finally, the cytotoxi-

city of the synthesized compounds was determined against HT-29 cell lines by MTT as-

say and for comparison a normal cell line, mouse embryonic fibroblast (NIH-3T3), was 

used. 

2. Results and Discussion  

2.1. Synthesis 

New mononuclear dioxidovanadium(V) (1) and oxido-bridged dinuclear oxi-

dovanadium(V) (2) complexes were synthesized by the reaction of the metal precursor 

[VIVO(acac)2] with a tridentate ONO donor Schiff base ligand(H2L) derived from con-

densation of 2,4-dihydroxybenzaldehyde and 2-amino-4-nitrophenol under reflux con-
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ditions. Scheme 1 depicts the synthetic methods of preparation of the complexes. The 

compounds were characterized by several spectroscopic (FT-IR, UV–Vis, and NMR) and 

spectrometric (ESI–MS) methods, and their purity was further confirmed by CHN ele-

mental analysis. The structure of 1 was determined by single-crystal X-ray crystallog-

raphy.  

 

Scheme 1. Outline of the pathways for the synthesis of (HNEt3)[VVO2L] (1) and [(VVOL)2μ-O] (2). 

2.2. Spectral Characteristics 

2.2.1. IR Spectroscopy 

Selected spectroscopic data of ligand (H2L) and respective complexes (1 and 2) have 

been compiled in the Experimental Section. The IR spectrum of the free ligand (H2L) ex-

hibits one sharp band in the region 3205 cm–1 due to ν(O–H) stretching vibrations, which 

is absent in the corresponding metal complexes due to deprotonation of phenolic hy-

drogen [40]. Furthermore, the stretching band found in the region 1632–1607 cm–1 clearly 

indicates the presence of ν(C=N) in the ligand as well in the complexes [38]. In addition, 

two additional new stretching bands appeared in the region 888 and 947 cm–1 assigned to 

the two ν(V=O) stretching of cis-ν(V=O) groups in 1 whereas for 2 it is observed in the 

region 891 and 975 cm–1. These stretching vibrations are in agreement with the terminal 

V=O groups present in related oxidovanadium(V) complexes [43]. Additionally, a new 

stretching band observed at 819 cm−1 assigned to the ν(V−O−V) residue of complex 2 

which further indicates the existence of a dinuclear species [45]. The representative IR 

spectra of the ligand (H2L) and its corresponding complex 1 are depicted in Figure S1. 

2.2.2. Electronic Spectra 

The UV-visible spectra of the ligand (H2L) and its complexes (1 and 2) were recorded 

in DMSO with a complex concentration of 1.6 × 10−4 M (Figure 1). The spectrum of the free 

ligand shows two strong absorptions in the region 317 and 278 nm whereas their respec-
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tive complexes show three strong absorption bands in the region 446–264 nm. The low 

energy absorption bands observed for the complexes in the region 422 and 446 nm could 

be attributed to ligand to metal charge transfer (LMCT) transition whereas the high en-

ergy bands appeared in the UV region (361–264 nm) are likely to be due to ligand center 

transitions [34]. 

 

Figure 1. UV–Vis spectra of H2L, 1, and 2 (1.6 × 10−4 M) in DMSO. 

2.2.3. NMR Spectra 

The 1H and 13C{1H} NMR data of ligand was recorded in DMSO-d6. The spectrum of 

H2L exhibits two compounds connected via intermolecular hydrogen bonding as shown 

in Figure S2 due to which two equivalent sets of protons obtained in the NMR. The 1H 

NMR spectra of H2L show singlet resonances in the downfield region in the range δ = 

10.92–8.95, and 8.21 ppm due to –OH, and –CH (azomethine) protons, respectively [42]. 

The aromatic protons were observed in the expected range between δ = 8.20‒6.27 ppm 

[37]. However, in 1, the spectra suggests a mononuclear vanadium(V) complex and it 

exhibits a singlet for each –OH and –HC=N in the region 10.34 and 9.39, ppm respectively 

[42]. The aromatic protons were observed in the expected range between δ = 8.59‒6.77 

ppm and additionally two sets of resonances that is, a quartet at δ = 3.08 and a triplet at 

1.15 ppm were observed for N–CH2- and –CH3, respectively in the aliphatic region, which 

are attributed to the presence of a triethylammonium counterion [42]. In the case of 2 two 

equivalent sets of protons are observed which are attributed to dimerization of the complex 

through μ2-oxido-bridging. The spectra exhibit singlets in the regions δ = 10.44‒9.39 and 

8.66 ppm for –OH and –HC=N, respectively. The aromatic protons were observed in the 

expected range between δ = 8.66‒6.18 ppm [45]. The representative spectra of 1 (1H, 13C, and 
51V NMR) and 2 (1H, and 51V NMR) are depicted in the ESI section (Figures S3–S7). 

2.2.4. ESI Mass Spectra 

The mass spectral data for 1 and 2 were recorded in acetonitrile solution (Figures S8 

and S9). The ESI mass spectra display characteristic molecular ion peaks at m/z 480.10 and 

694.97 for 1 and 2, respectively. In addition to the molecular ion peak, the complex 1 

shows a peak at m/z 467.19 corresponding to the [M + H+ + 0.5 H2O]+ aggregate.  
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2.3. Single-Crystal X-ray Crystallography of 1 

Crystals of salt 1 were obtained enabling a structure determination by X-ray crys-

tallography. Salt 1 crystallizes in the triclinic space group P1̄ with two independent tri-

ethylammonium cations and two complex anions comprising the crystallographic 

asymmetric unit. The molecular structure of the first independent anion is shown in 

Figure 2a while those of the other constituents of the asymmetric unit are shown in Fig-

ure S10. Selected geometric parameters for the independent anions are listed in Table 1. 

The vanadium atom is penta-coordinated within a NO4 donor set provided by an 

imine-N1, two phenoxide-O1, O2, and two oxido-O3, O4 atoms. The five-coordinate 

geometry is distorted from the ideal square-pyramidal and trigonal-bipyramidal geom-

etries as quantified in the values of τ [47]. For the ideal geometries, τ = 0.0 and 1.0, re-

spectively, whereas in the experimental structures τ computes to 0.26 (anion “a”) and 

0.24 (anion “b”). In this description, the V1 atom lies 0.4691(6) Å above the least-squares 

plane through the O1, O2, O4 and N1 atoms [r.m.s. deviation = 0.1663 Å] in the direction 

of the oxido-O3a atom; the comparable parameters for the V2-anion are 0.4935(6) and 

0.0939 Å, respectively. The bond valency for the vanadium atoms, as calculated in 

PLATON [48], amount to 5.07 and 5.11, respectively, consistent with the assignment of 

vanadium(V) centers. 

 

Figure 2. (a) Molecular structure of the first independent complex anion of salt 1 showing atom 

labelling scheme and displacement ellipsoids at the 70% probability level and (b) overlay diagram 

of the independent complex anions of 1: red image, the molecule shown in (a). The molecule anions 

have been overlapped so the O1, C1, and C2 atoms are coincident. 

Table 1. Selected geometric parameters (Å, °) for the independent anions in salt 1. 

Parameter Anion “a” Anion “b” 

V–O1 1.9152(9) 1.8942(9) 

V–O2 1.9735(9) 1.9191(9) 

V–O3 1.6219(10) 1.6356(10) 

V–O4 1.6463(9) 1.6473(10) 

V–N1 2.1658(11) 2.1968(11) 

C7–N1 1.3033(17) 1.2942(17) 

O1–V–O2 155.41(4) 140.66(4) 

O3–V–O4 109.05(5) 108.51(5) 

N1–V–O4 140.02(5) 155.17(5) 
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The tridentate mode of coordination of the Schiff base dianion leads to the formation 

of six- and five-membered chelate rings. The best description of the six-membered ring is 

based on an envelope with the V1 atom being the flap atom. Here, the V1 atom lies 

0.5624(15) Å out of the plane of the remaining atoms [r.m.s. deviation = 0.0348 Å]; the 

equivalent parameters for the second independent anion are 0.5256(15) and 0.0429 Å, 

respectively. By contrast, the five-membered ring for anion “a” is essentially planar ex-

hibiting a r.m.s. deviation of 0.0239 Å with the maximum deviation of 0.0311(6) Å being 

for the N1a atom. However, an envelope conformation is the best description for the 

five-membered chelate ring of anion “b” whereby the V2 atom lies 0.5978(19) Å out of the 

plane of the remaining four atoms [r.m.s. deviation of 0.0066 Å]. The conformational 

differences between the molecules are highlighted in the overlay diagram of Figure 2b. 

Some significant differences in geometric parameters are apparent, especially, the elon-

gation of the V1–O2(phenoxide) bond length compared with the other comparable 

bonds, and the elongation of the V2–N1(imine) bond as well as differences of up to 15° 

in the O1–V–O2 and N1–V–O4 bond angles. Although these may relate to conforma-

tional disparities, the influence of hydrogen bonding interactions cannot be discounted. 

The presence of hydroxyl-O–H…O(oxido) hydrogen bonds link the two independent 

anions into a two-molecule aggregate as shown in Figure 3; the geometric parameters 

characterizing the identified hydrogen bonding interactions in 1 are listed in Table 2. 

These hydrogen bonding interactions are consistent with the lengthening of the V–O4 

bond lengths compared with the V–O3 bonds. Appended to the two-molecule aggregate 

are the triethylammonium cations which form charge-assisted N–H…O3 hydrogen bonds. 

The N3a-cation also forms a hydrogen bond to the O2 atom indicating the H1n atom is 

bifurcated; this interaction accounts, at least partially, for the lengthening of the V1–O2 

bond (see above). As illustrated in Supplementary Figure S11, the four-molecule aggre-

gates are assembled into a three-dimensional architecture featuring hydroxyphenyl-C–

H…O(phenoxide), nitrophenyl-C–H…O(oxide, hydroxyl), methylene-C–H…O(phenoxide, 

oxide and nitro) and methyl-C–H…O(oxide) interactions, as detailed in Table S1. 

Table 2. Geometric parameters (Å, °) characterizing the identified hydrogen bonding contacts 

between the constituents of the asymmetric unit of salt 1 leading to a four-molecule aggregate. 

A H B H…B A...B A–H…B 

O5a H1o O4b 1.825(12) 2.6548(14) 171.3(18) 

O5b H2o O4a 1.830(15) 2.6640(14) 171.7(17) 

N3a H1n O2a 2.466(13) 3.2244(15) 145.4(13) 

N3a H1n O3a 2.224(12) 2.9473(15) 139.8(14) 

N3b H2n O3b 1.918(12) 2.7904(16) 170.7(14) 

 

Figure 3. The four-molecule aggregate in 1 features hydroxyl-O–H…O(oxido) and charge-assisted 

N–H…O3 hydrogen bonds shown as orange and blue dashed lines, respectively. 
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There are relatively few structural precedents for 1 in the crystallographic literature. 

Arguably the most closely related structure is that of [Et3NH][VO2L] where L is the 

1-(((5-chloro-2-oxidophenyl)imino)methyl)naphthalen-2-olate dianion [11]. Here, a very 

similar square-pyramidal coordination geometry is noted with each chelate ring having 

an envelope conformation as seen for anion “b” in 1. 

2.4. DNA-Binding Studies 

2.4.1. UV–Vis Absorption Studies 

The interactions of metal complexes with DNA provide the binding information of 

metal complexes with the DNA helix [49]. Therefore, the absorption study was per-

formed by maintaining the concentration of the complexes constant (25 μM) with varying 

DNA concentrations from 0 to 100 μM. Upon increasing the CT–DNA concentration, 

hypochromic shifts are observed in both the complexes for the maximal peaks (Figure 4). 

Generally, hypochromism or hyperchromism shifts often are observed in the absorption 

spectrum of a metal complex when the complex interacts with DNA [50]. Hypochromism 

in absorption spectra is generally associated with the binding of complexes to DNA 

through the intercalation mode [51]. To compare the DNA-binding affinity of these 

compounds quantitatively, their intrinsic binding constants were calculated with the aid 

of the following equation: [52] 

[���]

 �� −  ��

=
[���]

 �� − ��

+  
1

 ��(�� − �� )
 (1)

where [DNA] is the concentration of DNA base pairs, Kb is binding constant and εa, εf, and 

εb are the apparent extinction coefficients for the complex i.e., Abs/[complex] in the 

presence of DNA, in absence of DNA and fully bound of DNA, respectively. A plot of 

[DNA]/(εa − εf) vs. [DNA] gave a slope and an intercept equal to 1/(εb − εf) and 1/Kb(εb − εf), 

respectively, while the binding constant Kb was calculated from the ratio of the slope to 

the intercept. The intrinsic binding constants Kb were found to be 2.81 × 104 and 2.35 × 104 

M−1 for 1 and 2, respectively (Table 3). From the binding constant values, it is clear that 

complex 1 interacts more strongly with CT−DNA. However, the free ligand H2L itself 

shows good binding activity (1.59 × 104 M−1) with DNA molecules [53,54]. 

  

Figure 4. Absorption spectroscopic study of complex 1 (a) and 2 (b) (25 μM) with increasing con-

centrations of CT–DNA (0–100 μM). The inset shows the plots of [DNA]/(εa – εf) versus [DNA] for 

the titration of the prepared compounds with CT–DNA.  
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Table 3. DNA-binding parameters for 1, 2, and H2L. 

Complex Binding Constants (Kb) (M−1) 

1 2.81 × 104 

2 2.35 × 104 

H2L 1.59 × 104 

2.4.2. Circular Dichroism Studies 

Circular dichroism (CD) studies were performed to investigate the conformational 

changes in CT–DNA upon interaction with the new compounds. The spectra show two 

significant CD bands in the UV region, a positive band at 275 nm due to base stacking 

whereas a negative band at 245 nm is due to right handed helicity [38,51]. In intercalation 

mode of small molecules, there occurs perturbation in the spectra whereas for groove 

binding and electrostatic interaction there will be minimal or no perturbation [38,51]. 

However, from Figure 5, it is observed that there are significant changes in the CD spec-

tra of CT–DNA which further suggest that the tested compounds bind to CT–DNA in an 

intercalating mode. 

 

Figure 5. Circular dichroism spectra of CT–DNA (150 μM) in the presence and absence H2L, and 

complexes (1 and 2) in 50 mM Tris–HCl buffer (pH 7.4). The path length of the cuvette was 5 mm. 

2.5. Cytotoxicity 

According to GLOBOCAN 2020, disease occurrence and mortality due to colorectal 

cancer has increased to 1.9 million. Moreover, it has been placed as the third most and 

second most incidences in terms of mortality in both male and female, respectively. 

Furthermore, the incidence of colorectal cancer has been reported to be the most in east-

ern Asian countries such as India. Therefore, in this study we have chosen a most ag-

gressive colorectal cancer cell line HT-29 [55]. Hence, the cytotoxicity of the oxidovan-

dium(V) complexes (1 and 2) were measured against HT-29 cancer and NIH-3T3 normal 

cells by MTT assay and were compared to the ligand (H2L) alone. The IC50 values are 

listed in Table 4, and the cell viability percentage diagrams are depicted in Figure 6. 

Specifically, the cytotoxicity of 1 and 2 exhibited IC50 values 8.56 ± 0.62, and 9.09 ± 0.03 

μM, respectively, while that of the ligand alone was determined to be 7.75 ± 0.53 μM 

against HT-29 cancer cell line. These findings suggest that with respect to the ligand, the 

coordination to vanadium did not improve its activity; in fact, H2L is marginally more 

active than both of the complexes. As mentioned earlier, the polyphenol groups in ligand 

molecule (H2L) induce apoptosis in cancer cells which is the primary reason towards the 

enhanced toxicity [28,53]. 
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Furthermore, the cytotoxicity of the tested complexes was studied against the nor-

mal cell line NIH-3T3. The NIH-3T3 cell line is one of the most frequently used cell lines 

as the results provided by these tests can easily be compared with data published in the 

literature [56,57]. The results indicated there was a decrease in the cell viability upon the 

same exposure of the compounds. This result indicates that tested complexes were less 

damaging towards NIH-3T3 as compared to cancer cell lines. Additionally, it was ob-

served that the ligand precursor H2L is more selective against HT-29 cells than both 

complex molecules with selectivity index (SI) = 8.94, whereas SI values for 1 and 2 are 7.92 

and 8.77, respectively. On the other hand, under the same experimental conditions the 

tested compounds exhibited comparable cytotoxicity against HT-29 compared with 

commonly used chemotherapeutic drugs such as cisplatin [58]. Furthermore, the results 

obtained on the present study may be also compared with previously reported oxi-

dovanadium(V) complexes of Schiff base ligands such as [VO(sal-L-tryp)(Me-ATSC)], 

[VO(sal-Ltryp)(N-ethhymethohcarbthio)]∙H2O) and, 

[VO(sal-L-tryp)(acetylethTSC)]∙C2H5OH with IC50 ˃ 47 μM against HT-29 cell lines [59]. 

Additionally, we can also compare our results with recent work where two ox-

ido-bridged vanadium(V) complexes of Schiff base ligands 

[{VVO(R-salval)(H2O)}(μ2-O){VVO(R-salval)}] and [{VVO(R-vanval)(CH3OH)}2(μ2-O)] (val 

= valine, sal = salicylaldehyde, and van = o-vanillin) were investigated for cytotoxic 

studies against human hepatoma cell line with IC50 values > 200μM [7].

 

Figure 6. The effect of 1, 2, and H2L on the cell viability of HT-29 and NIH-3T3 cells after 48 h of 

exposure, taking 10, 50, and 100 μM concentrations of the compounds. The cell viability was cal-

culated by MTT assay. Data were reported as the mean ± SD for n = 4. *** p < 0.0001 was considered 

statistically significant. 

Table 4. IC50 values of H2L and Complexes (1 and 2) taking 10, 50, and 100 μM concentrations. 

Compound IC50 (μM) 

 HT-29 NIH-3T3 

1 8.56 ± 0.62 67.85 ± 5.48 

2 9.09 ± 0.03 79.77 ± 4.00 

H2L 7.75 ± 0.53 69.32 ± 4.42 

2.6. Nuclear DAPI Staining Assay 

To examine the apoptotic potential of test compounds in HT-29 cells, DAPI staining 

assay was conducted. Chromatin condensation, cell shrinkage, and nuclear fragmenta-

tion during the process of apoptosis (type I programmed cell death) is a distinguishing 

marker of nuclear change [51]. For this assay HT-29 cells were treated with 20 μM of H2L, 

1 and 2, respectively and then the cells were incubated for 24 h before DAPI nuclear 

staining. Later, the image of cells was captured under fluorescent microscope fitted with 
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a DAPI filter. The nuclear blebbings and brightly condensed chromatin bodies were 

marked by arrows in Figure 7. 

 

Figure 7. Study of apoptosis by morphological changes in nuclei of HT-29 cells. Arrows show the 

morphological changes in the nuclei of HT-29 cells observed on applying H2L, 1, and 2 in compar-

isons to control. 

3. Materials and Methods 

3.1. Materials 

All the starting materials such as 2-amino-4-nitrophenol, and 

2,4-dihydroxybenzaldehyde were purchased from Sigma Aldrich and used without fur-

ther purification. Reagent grade solvents were dried and distilled prior to use. 

[VO(acac)2] was prepared by the reported method [60]. MTT (3-[4, 

5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium), DAPI (4′, 

6-diamidino-2-phenylindoledihydrochloride), and CT–DNA were purchased from Sigma 

Aldrich (St. Louis, MO, USA). HT-29 and NIH-3T3 cell lines were procured from Na-

tional Centre for Cell Science (NCCS), Pune, India. CHN analyses were carried out on a 

Vario ELcube CHNS Elemental analyzer. ESI–MS data of the complexes were recorded 

on a Waters XEVO G2-XS QTOF MS instrument operating in positive ion mode. IR 

spectra were recorded on a Perkin-Elmer Spectrum RXI spectrophotometer. 1H and 13C 

NMR spectra were recorded on a Bruker Ultrashield 400 MHz spectrometer in the pres-

ence of SiMe4 as the internal standard. Electronic spectra were recorded on a Shimadzu 

spectrophotometer (UV-2450). 

3.2. Synthesis of Ligands 

The Schiff base ligand H2L was synthesized by refluxing 

2,4-dihydroxy-benzaldehyde and 2-amino-4-nitrophenol in equimolar ratio in ethanol 

following a standard procedure [13]. The resulting compound was isolated through fil-

tration, washed with ethanol, and dried over fused CaCl2 under desiccator conditions. 

The molecular structure of the compound was confirmed by elemental and spectroscopic 

(FT-IR, UV–Vis, and NMR (1H, 13C{1H}) analysis). 

H2L: Yield: 67%. Anal. calcd. for C13H10N2O5 (274.23): C, 56.94; H, 3.68; N, 10.22. Found: C, 

56.81; H, 3.61; N, 10.18. IR (KBr pellet, cm–1): 3205 ν(O–H); 1632 ν(C=N). UV–Vis (DMSO) 

[λmax, nm (ε, M−1 cm−1)]: 317 (6817), 278 (6812). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 

10.92 (s, 1H, –OH), 10.35 (s, 2H, –OH), 9.25 (s, 1H, –OH), 8.95 (s, 2H, –OH), 8.21 (s, 2H, 

HC=N–), 8.20–6.27 (m, 12H, aromatic). 13C{1H} NMR (100 MHz, DMSO-d6): δ (ppm) = 

191.51, 167.47, 165.67, 165.39, 163.71, 162.04, 156.52, 153.69, 140.32, 140.19, 137.87, 133.30, 
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131.57, 130.21, 124.65, 118.13, 116.72, 115.64, 115.53, 114.73, 112.83, 110.52, 110.16, 109.11, 

103.01, 102.67. 

3.3. Synthesis of Oxidovanadium(V) Complexes  

(HNEt3)[VVO2L] (1). This was synthesized by refluxing the H2L (0.27 g, 1 mmol) and 

VO(acac)2 (0.265 g, 1 mmol) in hot absolute ethanol (20 mL) using triethylamine as a base 

for 4 h. Dark brown crystals were obtained from the filtrate after 2–4 days. The crystals 

were filtered and washed with ethanol for X-ray structure determination. 

(HNEt3)[VVO2L] (1): Yield: 0.32 g (70%). Anal. calcd. for C19H24N3O7V (457.35): C, 49.90; H, 

5.29; N, 9.19; found C, 49.87; H, 5.22; N, 9.12. IR (KBr pellet, cm−1): 2986 ν(O–H), 1607 

ν(C=N), 947, 890 ν(V=O). UV–Vis (DMSO) [λmax, nm (ε, M−1 cm−1)]: 428 (6242), 317 (4331), 

265 (4356). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 10.34 (s, 1H,–OH), 9.39 (s, 1H, 

HC=N–), 8.59–6.17 (m, 6H, aromatic), 3.09 (m, 6H, N-CH2), 1.17 (m, 9H, –CH3). 13C{1H} 

NMR (100 MHz, DMSO-d6): δ (ppm) = 169.41, 165.60, 159.26, 136.92, 136.81, 136.33, 

133.50, 125.03, 124.63, 116.14, 115.22, 114.86, 111.05, 46.26, 9.31. 51V NMR (DMSO-d6): δ 

(ppm) = –527.86. ESI–MS: m/z 480.1007 [M + Na]+. 

[(VVOL)2μ-O] (2). This complex was synthesized by refluxing the H2L (0.27 g, 1 mmol) 

and VO(acac)2 (0.265 g, 1 mmol) in hot MeCN (20 mL) for 4 h. Dark brown crystalline 

materials were obtained from the filtrate after 2–4 days. The crystalline materials were 

filtered and washed with ethanol. [(VVOL)2μ-O] (2): Yield: 0.45 g (66%). Anal. calcd. for 

C26H16N4O13V2 (694.30): C, 44.98; H, 2.32; N, 8.07; found C, 44.92; H, 2.22; N, 8.13. IR (KBr 

pellet, cm−1): 2986 ν(O–H), 1607 ν(C=N), 975, 891 ν(V=O). UV–Vis (DMSO) [λmax, nm (ε, 

M−1 cm−1)]: 446 (6037), 361 (1956), 264 (2450). 1H NMR (400 MHz, DMSO-d6): δ (ppm) = 

10.44 (s, 1H, –OH), 8.63 (s, 2H, –OH), 8.01–6.18 (m, 12H, aromatic). 13C{1H} NMR (100 

MHz, DMSO-d6): δ (ppm) = 168.18, 163.71, 159.21, 156.82, 143.28, 141.33, 131.72, 121.78, 

118.32, 117.56, 111.07, 108.71, 102.88. 51V NMR (DMSO-d6): δ (ppm) = −575.27, −530.96. 

ESI–MS: m/z 694.9722 [M + H]+. 

3.4. Single-Crystal X-ray Crystallography 

X-ray Intensity data for a brown crystal of 1 (0.06 × 0.19 × 0.24 mm) were measured at 

100 K on Rigaku/Oxford Diffraction XtaLAB Synergy diffractometer (Dualflex, AtlasS2) 

fitted with CuKα radiation (α = 1.54178 Å) so that θmax = 67.1° (= 100% completeness). 

Data reduction, including Gaussian absorption correction, was accomplished with 

CrysAlisPro [61]. The structure was solved by direct-methods [62] and refined (aniso-

tropic displacement parameters and H atoms in the riding model approximation) on F2 

[63]. The O- and N-bound H atoms were located from Fourier difference maps and re-

fined with distance constraints of O–H = 0.84 ± 01 Å and N–H = 0.88 ± 01 Å, respectively. 

A weighting scheme of the form w = 1/[σ2(Fo2) + (0.043P)2 + 0.792P], where P = (Fo2 + 

2Fc2)/3, was introduced towards the end of the refinement. The molecular structure dia-

grams were generated with ORTEP for Windows [64] with 70% displacement ellipsoids, 

and the packing diagrams were drawn with DIAMOND [65]. Crystal data and refine-

ment details are given in Table 5. 

Table 5. Crystallographic data and refinement details for salt 1. 

Formula [C6H16N][C13H8N2O7V] 

Molecular weight 457.35 

Crystal system triclinic 

Space group P1̄ 

a/Å 10.8226(1) 

b/Å 10.9399(2) 

c/Å 17.3389(3) 

α/° 79.412(1) 
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β/° 78.905(1) 

γ/° 86.861(1) 

V/Å3 1979.82(5) 

Z 4 

Dc/g cm−3 1.534 

μ/mm−1 4.621 

Measured data 46958 

Unique data 7061 

Observed data (I  2.0σ(I)) 6958 

No. parameters 559 

R, obs. data; all data 0.025; 0.026 

Rw, obs. data; all data 0.072; 0.072 

Range of residual electron  

density peaks/eÅ−3 −0.58–0.23 

3.5. DNA-Binding Experiments 

3.5.1. UV–Vis Absorption Studies 

The interaction of the ligand and its respective oxidovanadium(V) complexes (1 and 

2) with CT–DNA was investigated by the absorption titration method with a Shimadzu 

spectrophotometer (UV–2450) [39,40,42,51]. The absorption titration of DNA was con-

ducted by using a fixed concentration of metal complex (25 μM) in 50 mM Tris–HCl 

buffer (pH = 7.4), with gradual increases in concentration of the CT–DNA from 0 to 100 

μM. Each of the above experiments was performed in triplicate at room temperature and 

the incubation time was 5 min after the subsequent addition of CT–DNA for each time to 

equilibrate DNA and the complexes properly. 

3.5.2. Circular Dichroism Studies 

Circular dichroism study was performed in a JASCO J-1500 CD Spectrophotometer 

at 25 °C using a quartz cell with 5 mm path length [51]. CD spectra of CT–DNA (150 μM) 

were collected both in the presence and absence of complexes (25 μM) at a wavelength 

range of 230–350 nm in 50 mM Tris–HCl buffer (pH 7.4) (HiMedia), after averaging three 

accumulations and a scan speed of 200 nm/min. 

3.6. Cytotoxicity Analysis through MTT Assay 

The cytotoxicity of the ligand molecule and its respective vanadium(V) complexes 

was evaluated against colon cancer (HT-29) and mouse embryonic fibroblast (NIH-3T3) 

cells using the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium) assay [42]. 

All cell lines were cultured in DMEM (Dulbecco′s phosphate-buffered saline) medium 

supplemented with 10% FBS (Fetal bovine serum) and maintained at 37 °C in a CO2 in-

cubator (5% CO2) and humidified atmosphere (95% humidity). During the MTT assays, 

cells were seeded in 96-well plates at a density of 6 × 103 cells per well after cell counting 

in a hemocytometer and allowed for 70–80% confluence. Then complexes and the ligand 

were dissolved in DMSO at a concentration of 100 mM and suitably diluted in DMEM 

media to achieve final working concentrations of 10, 50, and 100 μM. After 12 h of initial 

seeding, the HT-29 and NIH-3T3 cells were treated with the above prepared concentra-

tions of each complex and further subjected to incubation for 48 h. MTT was dissolved in 

the DPBS (Dulbecco′s Modified Eagle Medium) solution and was added to the culture 

medium. After additional 3 h incubation at 37 °C, the media were carefully removed and 

200 μL of DMSO was added to each well and the absorbance values were determined by 

spectrophotometry at 595 nm with a microplate reader spectrophotometer (Perkin-Elmer 

2030). The results were expressed as percentages of the control. 

% cell viability = [mean OD of the treated cell/mean OD of the control] × 100 
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IC50 value of the compounds was calculated from the absorbance concentration plot 

following standard procedure [51,66]. 

3.7. Nuclear DAPI Staining Assay 

The morphology of nucleus during the cell death of cells in response to treatment 

with the complexes was investigated using fluorescence microscopy (Olympus IX 71). 

DAPI (4′, 6-diamidino-2-phenylindoledihydrochloride) stain was used for this nuclear 

staining assay and was performed according to a standard procedure previously re-

ported [67]. Accordingly, HT-29 cells were treated with treated (20 μM of compound for 

24 h) and untreated cells were fixed with 4% paraformaldehyde for 15 min. Then the cells 

were stained with DAPI and incubated for 5 min at 37 °C after washing two times with 

DPBS. Finally, again after washing with DPBS, the cells were examined by fluorescence 

microscopy. 

4. Conclusions 

In this work, two new oxidovanadium(V) complexes (HNEt3)[VVO2L] (1), and 

[(VVOL)2μ-O] (2) have been synthesized using a Schiff base ligand (H2L) derived from 

2,4-dihydroxybenzaldehyde and 2-amino-4-nitrophenol. The ligand and complexes were 

characterized by FT-IR, UV–Vis, and NMR (1H, 13C, and 51V) spectroscopy, ESI–MS, and 

the purity was confirmed by CHN analysis. The molecular structure of 1 was determined 

by X-ray crystallography indicating a distorted square-pyramidal geometry for the va-

nadium(V) center defined by imine-N, two phenoxide-O, and two oxido-O atoms. 

DNA-binding experiments were conducted using a UV–Vis absorption titration method 

and circular dichroism studies and the results suggested that the ligand as well as the 

complexes have considerable DNA-binding propensity. From the results, complex 1, 

displayed maximum DNA-binding activity with Kb = 2.81 × 104 M−1. From circular di-

chroism studies it was further confirmed that the synthesized molecules interacted with 

DNA through the intercalation mode. Finally, from the results of cytotoxicity studies it is 

confirmed that all the tested compounds including the ligand molecule induce cell death 

against HT-29 cells mainly through the apoptotic mode. However, the ligand molecule 

with IC50 = 7.75 ± 0.53 μM was found more cytotoxic than its corresponding complexes. In 

addition, the cytotoxicity of ligand and complexes was also studied against NIH-3T3 

normal cells, and it was found to be relatively less damaging towards them. In summary, 

the present group of compounds should stimulate further in vitro and in vivo studies of 

related compounds as part of the quest to develop new drugs for the treatment of cancer. 
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