Kong Mun Lo, See Mun Lee and Edward R. T. Tiekink*

Crystal structure of dichlorido-bis(4-chlorophenyl- κC^{1})(2,2'-bipyridyl- $\kappa^{2}N$,N')tin(IV), C₂₂H₁₆Cl₄N₂Sn

https://doi.org/10.1515/ncrs-2021-0326 Received August 11, 2021; accepted August 29, 2021; published online September 8, 2021

Abstract

C₂₂H₁₆Cl₄N₂Sn, monoclinic, P_{2_1}/n (no. 14), a = 10.0393(1) Å, b = 14.4490(2) Å, c = 14.1502(2) Å, $\beta = 92.846(1)^{\circ}$, V = 2050.07(5) Å³, Z = 4, $R_{gt}(F) = 0.0224$, $wR_{ref}(F^2) = 0.0590$, T = 100 K.

CCDC no.: 2106188

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.13 \times 0.10 \times 0.06 \text{ mm}$
Wavelength:	Cu <i>K</i> α radiation (1.54184 Å)
μ:	14.8 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	25,880, 3647, 0.036
Criterion for I _{obs} , N(hkl) _{gt} :	$l_{\rm obs} > 2 \sigma(l_{\rm obs}), 3497$
N(param) _{refined} :	262
Programs:	Bruker [1], SHELX [2, 3], WinGX/
	ORTEP [4]

of the atoms including atomic coordinates and displacement parameters.

Source of material

The (4-chlorophenyl)₂SnCl₂ precursor was prepared as per the literature procedure [5]. Equimolar quantities of (4-chlorophenyl)₂SnCl₂ (0.5 g, 1.2 mmol) and 2,2'-bipyridyl (Sigma, 0.2 g, 1.2 mmol) were dissolved separately in ethanol (50 mL). The solutions were mixed to give a white precipitate which was recrystallised from methanol to afford colourless crystals of the title compound. Yield: 0.41 g (60.1%). **M.pt** (Stuart SMP30 digital melting point apparatus; uncorrected): 509–511 K. **IR** (Bruker Vertex 70v FTIR Spectrometer; cm⁻¹): 1600(s) ν (C=N), 1594 (m) ν (C=C), 1084 (m) ν (C–N). ¹H NMR (Bruker Ascend 400 MHz NMR spectrometer; DMSO-*d*₆; ppm relative to Me₄Si): δ 7.40–7.47 (m, 4H, Ph–H), 7.62–7.67 (m, 4H, Ph–H), 7.70–7.75 (m, 6H, Pyr–H), 8.21–8.28 (m, 2H, Pyr– H). ¹³C{¹H} **NMR** (as for ¹H NMR): 121.6, 123.4, 128.8, 129.8, 134.3, 136.9, 138.9, 148.9, 157.4.

Experimental details

The H atoms were geometrically placed (C–H = 0.95 Å) and refined as riding with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$. Owing to poor agreement, seven reflections (as detailed in the deposited CIF) were omitted from the final cycles of refinement.

Comment

Having the attributes of hydrogen-bonding, for example, directionality and strength, halogen-bonding is well-

This work is licensed under the Creative Commons Attribution 4.0

გ

^{*}Corresponding author: Edward R. T. Tiekink, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, E-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Kong Mun Lo and See Mun Lee, Research Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

[∂] Open Access. © 2021 Kong Mun Lo et al., published by De Gruyter. © ву International License.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Atom	x	у	z	U _{iso} */U _{eq}
Sn	0.48922 (2)	0.34213 (2)	0.34646 (2)	0.00959 (7)
Cl1	0.35554 (6)	0.44407 (4)	0.44585 (4)	0.01527 (14)
Cl2	0.73368 (6)	0.36947 (5)	0.38890 (4)	0.01501 (14)
Cl3	0.49888 (7)	0.66403 (5)	0.00763 (5)	0.01858 (15)
Cl4	0.48966 (7)	0.00721 (5)	0.67177 (5)	0.01939 (15)
N1	0.5352 (2)	0.22738 (16)	0.23146 (15)	0.0120 (5)
N2	0.2884 (2)	0.28155 (16)	0.27707 (15)	0.0114 (4)
C1	0.4930 (3)	0.44484 (19)	0.23635 (18)	0.0117 (5)
C2	0.3745 (3)	0.48319 (19)	0.19884 (18)	0.0135 (5)
H2	0.292026	0.463369	0.222010	0.016*
C3	0.3748 (3)	0.5503 (2)	0.12777 (18)	0.0144 (6)
H3	0.293527	0.575887	0.102478	0.017*
C4	0.4957 (3)	0.57877 (19)	0.09485 (18)	0.0145 (6)
C5	0.6149 (3)	0.5425 (2)	0.13087 (19)	0.0162 (6)
H5	0.697138	0.563035	0.107763	0.019*
C6	0.6131 (3)	0.4756 (2)	0.20149 (19)	0.0142 (6)
H6	0.694846	0.450346	0.226428	0.017*
C7	0.4888 (3)	0.23218 (19)	0.44930 (18)	0.0125 (5)
C8	0.6047 (3)	0.1833 (2)	0.47377 (19)	0.0152 (6)
H8	0.684796	0.198237	0.444123	0.018*
C9	0.6055 (3)	0.1131 (2)	0.54082 (19)	0.0158 (6)
H9	0.685144	0.079962	0.557020	0.019*
C10	0.4880 (3)	0.09214 (19)	0.58364 (18)	0.0142 (6)
C11	0.3709 (3)	0.1393 (2)	0.56072 (19)	0.0154 (6)
H11	0.291089	0.124002	0.590499	0.019*
C12	0.3720 (3)	0.2093 (2)	0.49344 (19)	0.0144 (6)
H12	0.292007	0.242092	0.477280	0.017*
C13	0.6593 (3)	0.2006 (2)	0.21367 (19)	0.0159 (6)
H13	0.732261	0.228985	0.247745	0.019*
C14	0.6852 (3)	0.1330 (2)	0.1473 (2)	0.0189 (6)
H14	0.774118	0.114378	0.137105	0.023*
C15	0.5790 (3)	0.0933 (2)	0.0965 (2)	0.0203 (6)
H15	0.593860	0.047696	0.049885	0.024*
C16	0.4506 (3)	0.1207 (2)	0.1143 (2)	0.0180 (6)
H16	0.376438	0.094166	0.079883	0.022*
C17	0.4312 (3)	0.1878 (2)	0.18311 (18)	0.0127 (5)
C18	0.2954 (3)	0.21638 (19)	0.20850 (18)	0.0129 (5)
C19	0.1812 (3)	0.1775 (2)	0.1660 (2)	0.0170 (6)
H19	0.187879	0.132879	0.117149	0.020*
C20	0.0579 (3)	0.2040 (2)	0.1951 (2)	0.0196 (6)
H20	-0.020962	0.177475	0.166768	0.024*
C21	0.0498 (3)	0.2694 (2)	0.2659 (2)	0.0182 (6)
H21	-0.034149	0.288067	0.287551	0.022*
C22	0.1674 (3)	0.3069 (2)	0.30448 (19)	0.0152 (6)
H22	0.162202	0.352600	0.352434	0.018*

established in crystals of molecules containing halide atoms [6, 7]. In this context and during the course of structural studies of relatively halide-rich diorganotin dichlorides [5, 8, 9], crystals of the title adduct (4-chlorophenyl)₂SnCl₂(2,2'-bipyridyl), hereafter (I), were isolated.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids). The tin atom in (I) is located on a general position and is coordinated by two chloride atoms [Sn-Cl1, Cl2 = 2.4772(6) & 2.5285(6) Å], two nitrogen atoms [Sn-N1, N2 = 2.384(2) & 2.366(2) Å] and two ipsocarbon atoms [Sn-C1, C7 = 2.153(3) & 2.155(3) Å] of the 4-chlorophenyl groups. A significant discrepancy is noted in the Sn-Cl bond lengths with the longer Sn-Cl2 bond being trans to the N2 atom, forming the shorter of the Sn–N bonds; the 4-chlorophenyl groups are opposite each other. However, it is noted that previously reported DFT calculations indicated non-systematic variations in the geometric parameters involving tin atom may be generally ascribed to the influence of molecular packing effects, for example for compounds of the general formula R₂SnCl₂(bipyridyl-type ligand) [10, 11]. Although the C₂Cl₂N₂ donor set approximates an octahedron, there are deviations from 180° noted for the trans angles, i.e. C1-Sn-C7 is 175.97(10)°, Cl1-Sn-N1 is 158.38(6)° and Cl2-Sn-N2 is 162.43(6)°. These distortions may be ascribed, at least in part, to the tight N1-Sn-N2 chelate angle of 69.47(8)°.

There are several crystal structures related to (I) available in the literature. Thus, the two polymorphs of Ph_2SnCl_2 (2,2'-bipyridyl) [12, 13] and that of (4-tolyl)₂SnCl₂ (2,2'-bipyridyl) [14] adopt the same structural motif, as does the compound closely related to (I) where 2,2'-bipyridyl is replaced by 1,10-phenanthroline [8].

The most notable interactions in the crystal are of the type chlorophenyl-C–Cl··· π (pyridyl, chlorophenyl) and π $(pyridyl) \cdots \pi$ (chlorophenyl). For the former interactions, each chloride of the chlorophenyl groups is located in a bay defined by two rings $[C4-Cl3\cdots Cg(N1-C13-C17)^i: Cl3\cdots Cg(N1-C17)^i: Cl3\cdots$ $(C17)^i = 3.5402(13)$ Å with angle at Cl3 = 169.76(11)°; C4- $Cl_3 \cdots Cg(Cl_{-C6})^i$: $Cl_3 \cdots Cg(Cl_{-C6})^i = 3.5353(13)$ Å with angle at $Cl3 = 88.91(9)^{\circ}; C10 - Cl4 \cdots Cg(N1 - C13 - C17)^{\ddot{u}}: Cl4 \cdots Cg(N1 - C17)^{\ddot{u}}: Cl$ $C17)^{ii} = 3.4013(13)$ Å with angle at Cl4 = $171.47(11)^{\circ}$; $C10-C14\cdots Cg(C7-C12)^{ii}$: $C14\cdots Cg(C7-C12)^{ii} = 3.6311(13)$ Å with angle at Cl4 = 86.88(9)° for symmetry operations (i): 1-x, 1-y, -zand (ii): 1-x, -y, 1-z] with the result a supramolecular chain can be discerned along [0-11]. Based on the C-Cl···Cg angles, each chloride atom forms an end-on C–Cl $\cdots \pi$ interaction with a pyridyl ring and a side-on C–Cl $\cdots\pi$ interaction with a 4-chlorophenyl ring. The connections between the chains to consolidate a three-dimensional architecture are the π (pyridyl) $\cdots \pi$ (chlorophenyl) contacts [Cg(N2, C18–C22) \cdots $Cg(C7-C12)^{iii} = 3.7972(16)$ Å, angle between rings = 11.41(13)° and the slippage = 2.12 Å for (iii): -1/2+x, 1/2-y, -1/2+z].

Additional data on the molecular packing was achie ved by the calculation of the Hirshfeld surfaces and two-dimensional fingerprint plots (full and delineated into individual contacts) with Crystal Explorer 17 [15] using literature procedures [16]. As is usually the case, H···H contacts dominate, at 33.1%. Other significant contributions to the surface contacts are due to Cl···H/H···Cl [29.0%], C···H/H···C [16.3%] and Cl···C/C···Cl [11.5%]. The next most significant contribution comes from Cl···Cl contacts, at 2.0%, but these, e.g. Cl1···Cl1^{*iv*} = 3.5962(8) Å [(*iv*): 1–*x*, 1–*y*, 1–*z*] are at distances longer than the van der Waals radii of 3.50 Å [17] and are unlikely to be structure directing. Similar lack of formation of Cl···Cl halogen-bonding interactions was noted for the other aforementioned chloride-rich diorganotin dichloride species [5, 8, 9].

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: Sunway University Sdn Bhd (Grant No. GRTIN-IRG-01-2021).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

- Rigaku Oxford Diffraction. CRYSALIS^{PRO}; Rigaku Corporation: Oxford, UK, 2018.
- Sheldrick G. M. A short history of SHELX. Acta Crystallogr. 2008, A64, 112–122.
- 3. Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.
- Farrugia L. J. WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 2012, 45, 849–854.
- Lo K. M., Lee S. M., Tiekink E. R. T. Crystal structure of dichloridobis(4-chlorophenyl-κC¹)tin(IV), C₁₂H₈Cl₄Sn. Z. Kristallogr. N. Cryst. Struct. 2021, 236.
- Cavallo G., Metrangolo P., Milani R., Pilati T., Priimagi A., Resnati G., Terraneo G. The halogen bond. *Chem. Rev.* 2016, *116*, 2478–2601.

- Tiekink E. R. T. Characterising supramolecular architectures in crystals featuring I...Br halogen bonding: persistence of X...X' secondary-bonding in their congeners. *Crystals* 2021, *11*, 433.
- Lo K. M., Lee S. M., Tiekink E. R. T. Crystal structure of dichloridobis(4-chlorophenyl-κC¹)-(1,10-phenanthroline-κ²N,N') tin(IV), C₂₄H₁₆Cl₄N₂Sn. Z. Kristallogr. N. Cryst. Struct. 2020, 235, 695–697.
- Lo K. M., Lee S. M., Tiekink E. R. T. Crystal structure of transdichloridobis(4-chlorophenyl-κC¹)-(1,10-phenanthroline-κ²N,N') tin(IV) dimethylsulphoxide solvate, C₂₆H₂₂Cl₄N₂OSSn. *Z. Kristallogr. N. Cryst. Struct.* 2020, *235*, 1327–1329.
- Buntine M. A., Hall V. J., Kosovel F. J., Tiekink E. R. T. Influence of crystal packing on molecular geometry: a crystallographic and theoretical investigation of selected diorganotin systems. *J. Phys. Chem.* 1998, *102*, 2472–2482.
- Buntine M. A., Hall V. J., Tiekink E. R. T. The crystal and molecular structures of R₂SnCl₂(1,10-phenanthroline), R = iPr, Cy, CH₂Ph and R₂ = Me, Ph: a comparison between solid state and theoretical structures. *Z. Kristallogr. - Cryst. Mater.* 1998, *213*, 669–678.
- Harrison P. G., King T. J., Richards J. A. Structural studies in maingroup chemistry. Part VI. Crystal and molecular structure of 2,2'bipyridyldichlorodiphenyltin. J. Chem. Soc., Dalton Trans. 1974, 1723–1726.
- Cox M. J., Tiekink E. R. T. Crystal structure of 2,2'-bipyridyldichlorodiphenyltin (tetragonal form), C₂₂H₁₈Cl₂N₂Sn. Z. Kristallogr. - Cryst. Mater. 1994, 209, 291–292.
- Kumar Das V. G., Wei C., Keong Y. C., Mak T. C. W. Crystal and molecular structure of 2,2'-bipyridyldichlorodi(*p*-tolyl)tin(IV). *J. Organomet. Chem.* 1986, 299, 41–49.
- Turner M. J., Mckinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D., Spackman M. A. CRYSTAL EXPLORER (v17); The University of Western Australia: Australia, 2017.
- Tan S. L., Jotani M. M., Tiekink E. R. T. Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. *Acta Crystallogr.* 2019, *E75*, 308–318.
- 17. Spek A. L. checkCIF validation ALERTS: what they mean and how to respond. *Acta Crystallogr.* 2020, *E76*, 1–11.