
Thinking in imperative or objects? A study on how novice programmer thinks
when it comes to designing an application

Sim, Tze Ying
School of Interdisciplinary Studies

Sunway University
Subang Jaya, Malaysia
tzeyings@sunway.edu.my

Abstract—Novice programming is a challenging subject to
teach and learn. However, programming is an essential skill
that is required by many majors apart from Computer
Science. The challenges in a novice programming subject
change according to the programming language used. At
the beginning of the 90s, the object-oriented programming
was introduced. Detienne claimed that it is easier for pro-
grammers to program using the object-first approach as
humans think naturally in objects. The IEEE and ACM joint
task force on Computing Curriculum proposed two tracks of
curriculum, one for imperative-first and the other for object-
first implementation. However, most of the work conducted
on novice programming focused on the issues of syntax
errors, reducing the possibilities of syntax error through
a new or adapted programming environment. This paper
will present the preliminary work to investigate if students
will naturally think in objects or a series of steps. Three
intervention methods were implemented in three different
workshops. The intervention methods are the object-first, the
imperative-first and the problem-solving-first. The students
are then requested to design an application. Through the
design, the research will identify if the students use the
object-first or the imperative-first design. Assuming that
the object-first intervention group will design primarily in
objects, and the imperative-first intervention group in a
series of steps, the problem-solving intervention will be the
”neutral” group. The object-first design is reflected through
the attributes and methods of a particular object. The
imperative-first design is identified if the solution contains a
series of steps. The findings show that most of the students
designed the application using a series of steps reflecting
the imperative-first design. This finding should be included
when considering if imperative-first or object-first should be
the way forward for a novice programming subject.

Index Terms—engineering education, computer science ed-
ucation, object oriented programming, logic programming

1. Introduction

Novice programming subject refers to the first pro-
gramming subject for a student. This subject is commonly
known as CS1 in many institutions. The average failure
rate in the class is 30% to 50% [1]. There are different
challenges related to a novice programming subject [2],
[3], [4], [5]. The student would need to firstly, under-

stand and analyse the problem. Next, they would need
to identify the possible solution and design the solution.
Finally, implement the solution in a new language and
tool. Various work had been conducted on the challenges
of novice programming, for example:

• identifying the programming language that is suit-
able for novice programming and simplification
of the language [6] [7], analysis on the error
messages [8], [9], [10], [11]

• better development environment, through the use
of block programming or integrated development
environment [12], [13], [14], [15], [16], [17] and

• increasing the motivation for students to be in-
volved in the subject [18], [19], [20], [21].

For the past 20 years, with the introduction of object-
oriented programming (OOP), more institution is using
OOP based languages as the language for the novice
programming subject. Currently, there are two main camps
regarding the curriculum of novice programming, the
imperative-first and the object-first.

Detienne [22] mentioned that object-first should be the
way forward as it is natural to think in objects. However,
very few of the research looks into how a student thinks.
There had been work to look into the mental model of
students when they use on using specific tools, improving
the design process, and concept maps [23], [24], [25],
[26], [27]. There had also been some discussion if OOP
languages should be used as an introductory language
in a novice programming subject [18]. The objective of
this research is to study how students think naturally,
especially when comparing imperative-first vs object-first
thinking. Understanding how students think may influence
us on how to conduct a novice programming class. This re-
search work is a part of an on-going project. The literature
review will introduce a brief history of the programming
languages and the work conducted in the area of the
novice programming environment. Next, the methodology
for this research will be presented, followed by findings
and discussion. Finally, a summary and future work will
be discussed.

2. Literature Review

A novice programmer is required to identify the prob-
lem, propose a solution, design the solution and implement
the solution. The programming language will influence the

way the solution is implemented. The programming lan-
guage will also affect the challenges faced by the students.
The first subsection of the literature review will discuss
the challenges concerning programming languages. The
second subsection reviews the research work to support
novice programming. The third subsection presents the
work related to the mental model and skills.

2.1. History of Programming Languages

The challenges in novice programming due to the
choice of languages had been discussed by researchers
[28], [29], [30]. Each generation of programming lan-
guage was designed for a specific purpose and had it’s
set of challenges [31].

The earliest programming language is the machine
language, with bits of 1s and 0s. It is challenging to use
the representation of 1s and 0s to instruct the computer
to perform a specific action [32]. The next generation of
language is assembly language. Assembly language uses
specific syntax to represent low-level language instruc-
tions. It consists of short instruction like ADD, MOV, and
SUB. Assembly language is more natural to understand
as compared to the machine language. Instead of having
to write the instruction in 1s and 0s, simple instructions
can be used. This improves the comprehension of the
code. Both machine language and assembly language are
hardware dependent.

At the beginning of the 1950s, procedural languages
became more popular. Procedural languages have ”English
like” syntax and is easier to be deciphered by a human.
Among the earliest procedural languages are FORTRAN,
BASIC, COBOL and C. With the feature of more English
like syntax and not hardware dependent, it is more flex-
ible for the novice programming class to be taught. The
procedural languages are executed step-by-step and can
be grouped into functions or procedures [33]. Procedural
languages are also known as imperative language.

At the beginning of the 1990s, a new type of high-
level language emerged. It is known as the OOP language.
The OOP language intends to address two attributes not
covered by the procedural language. They are information
hiding and implementation of objects. The four concepts
that encompass object-oriented programming are abstrac-
tion, polymorphism, inheritance, and encapsulation. The
recommendation of ”Computing Curriculum by the ACM
and IEEE Joint Task Force” includes both imperative-
first and object-first syllabus [34]. Detienne, an object first
advocates, claim that teaching novice programming using
the object-first concept is more straight forward as the
world consists of objects [22].

2.2. Research on Novice Programming

Even though the high-level language used today are
more straightforward as compared to the low-level lan-
guages, novice programmers still face problem concerning
the syntax. Research on error messages faced by novice
programmer concludes that most of the mistakes are due to
syntax errors [10]. The other two categories of error are
semantic error and type error [?]. Students have issues
with the syntax error at the beginning of the semester,
and the errors declined as the semester progress. Tools

were developed to assist students when they encounter the
error messages, for example, by getting help from archive
solution or contacting an instructor [9]. Other ways to
utilise the error messages include teaching students the
debugging process [35], providing better description and
solutions to the error messages [29], and generation of
questions based on the error messages [8], [9], [29], [36].

Apart from working with error messages, other fellow
researchers looked at eliminating the syntax error through
block programming [37]. Block programming allows a
novice programmer to drag and drop the required com-
mand to construct the programming code. No typing is
needed, therefore eliminating the syntax errors. Examples
of popular block programming are ”Scratch” by Mas-
sachusetts Institute of Technology [38], [39], ”Alice” by
Carnegie Mellon University, and ”Snap!” by University
of California, Berkeley. The elimination of syntax errors
allows students to concentrate on the logic of the program
and students can complete the tasks sooner [16]. The
tools mentioned generally do not support object-oriented
programming, except for the creation of objects [40].

2.3. Computational Thinking

According to Andy and Gomez [41], the most chal-
lenging part of solving a problem is the problem abstrac-
tion and decomposition. Computational thinking encom-
passes the skills required to solve a problem in a novice
programming class. Computational thinking is embedded
in different field of studies [42], [43], [44]. The concepts
include logical thinking, pattern recognition, abstraction,
decomposition, and algorithms [45]. Decomposition is to
breakdown a bigger problem to smaller parts, abstraction
focuses on the general ideas, pattern recognition is iden-
tifying the similarities and differences in an issue, and
algorithms is the steps and orders on how a problem can
be solved. Each concept is related to each other. The
ability to identify patterns, and understanding logic, can
help one to propose a more efficient algorithm to solve
the problem. The ability to decompose a problem will
also help the student to see the bigger picture and the
details of the problem. Research has shown that students
who demonstrate computational skills tend to do better in
a novice programming class [46].

3. Methodology

The objective of this project is to identify if students
will ”naturally” think in object or a series of steps. Three
one hour session of workshops were conducted. Based
on the literature review that students who demonstrate
computational skills tend to do better in a novice pro-
gramming class, the workshops started by introducing
two computational thinking concepts logical thinking and
pattern recognition. Students are then given 5 minutes to
answer two questions from each category. The correct
answers will be discussed after all students complete the
quiz.

Next, each group was provided with activity con-
cerning specific concepts related to novice programming.
They are problem-solving, imperative-first programming,
and object-first programming. The students were allocated

TABLE 1. WORKSHOP SCHEDULE

Activities Duration
(minutes)

Opening remarks 5
Introduction to computational
thinking 5

Pre-test questions 5
Problem solving/Imperative
first/Object first 15

Designing an application 15
Closing remarks 5
Total duration 50

15 minutes to complete the activities. The activities are
described as follows:

• The problem-solving group were given two simple
problems to solve. The first is to sum all the
integers between 1 and 100. The second activity
is provided the current year and the year of birth,
derive the age of a person. They are encouraged
to submit as many solutions as possible.

• The imperative-first group need to
complete the ”Wonder Woman Challenge”
(https://www.madewithcode.com/projects/wonderwoman).
The focus here is a series of steps. There are
only three puzzles. The first is a single series of
actions. The second puzzle requires students to
use a loop with a series of steps within and after
the loop. The third puzzle put together a series of
steps within a loop and introduced the condition
statement.

• The object-first group need to complete
the ”App Lab Introduction” activity
(https://code.org/educate/applab). The students
learnt the two basic concepts of an object, namely
properties and methods. They were required to do
simple programming to configure the properties,
and actions (methods) of objects like image, text
or shapes.

Following that, all three groups of students are then
given the same problem to solve. They were provided
paper and pen to document their solution. The students
were not specifically taught how to solve the problem.
They were given the statement:

In order to assist children, learn Mathematics better,
you are required to help create a system that will generate
Mathematics question and answers. If the questions are
answered correctly, a message Good Job will appear. The
questions will be displayed one by one. A final score will
be displayed at the end of the ten questions.

Students were only given the instruction Work in pairs
and write or sketch your solution. It need not take a spe-
cific format. You can also imagine that you are developing
an application for the children. The students were only
provided 15 minutes to write or sketch their solution. The
solutions will be collected at the end of 15 minutes.

Finally, the last 5 minutes of the workshop was used
to conclude the workshop. The summary of the activity is
shown in Table 1. The duration of each workshop is 55
minutes, and the students who took part in this workshop
are high school students in Year 10 and Year 11.

3.1. Pre-test Questions

There were four pre-test questions asked. Two ques-
tions were on logic and the other two on pattern recog-
nition. The pre-test questions were taken from Khan
Academy LSAT Preparation Test. The two selected ques-
tions are as shown in Figure 1. The two pattern recog-
nition questions were taken from the website ”iqtestex-
perts.com”. They are displayed in Figure 2.

Figure 1. Logic Test Questions

Figure 2. Pattern Recognition Questions

3.2. Analysis on Application Designed

Each group of students were given 15 minutes to
sketch or write their design on a piece of paper. They
were requested to work in pairs. However, some stu-
dents choose to work individually. The frequency of each
method calculates each preference. The researcher and
another independent party then evaluate each piece of
the paper. The design is categorized as imperative first,
object first or a combination of imperative and object. The
characteristic of the different categories are as below:

• Imperative first - design consist of step by step
elaboration in text or diagram

• Object first - design reflects property and specific
methods related to the object

• Imperative + Object - design includes an object
with property or methods and step by step of the
process

The most common identification of a possible object-
based design is when the students design the application
interface with properties and methods. Object first design
elaborates on the property and actions of a specific object.
Multiple screens can be used, but the property and action
are clearly defined. However, if the design is a simple
application interface without object and properties indi-
cation, but the screens are used to describe the different
phase of the application, it will be considered as imper-
ative first. This is because the idea behind the design is
still the individual steps and the sequence on how this
application should function. For the design that includes
both aspects, it is considered as design with object first
and imperative attributes. The following designs are con-
sidered as imperative-first design.

• Figure 3 is a sample of text describing each step
of the process,

• Figure 4 describe the steps of the application using
a flow chart,

• Figure 5 describes the steps using a simple graph-
ical user interface. However, the graphical inter-
face in figure 5 did not indicate any property or
behaviour. Therefore, the interfaces are not consid-
ered to be influenced by objects. Rather, they are
a series of steps expressed in graphical interfaces.

The following designs are considered a combination
of object and imperative design.

• Figure 6 and figure 7 both use graphical user
interface with flows indicating the steps of the
application. The graphical user interface showed
the action that should take place when a button is
clicked. Figure 8 is text-based description. How-
ever, within the text, behaviour and property of
objects can be identified.

There were no designs that reflect the only object-first
design.

Figure 3. Sample of imperative-first design using text

4. Findings and Discussion

The pre-test questions serve as a baseline to the ability
of students in each of the group. It is crucial to demon-
strate that the students in all the categories have a similar
capability in logic and pattern recognition. Generally,

Figure 4. Sample of imperative-first design using flowchart

Figure 5. Sample of imperative-first design using graphical interface

Figure 6. Detailed interfaces reflecting object and imperative design

Figure 7. Basic interfaces reflecting object and imperative design

Figure 8. Text description indicating behaviour of an object and the
actions

most of the students scored at least three out of the four
questions right (see table 2). The null hypothesis assumes
that the means between the different groups are equal.
Using the one-way Anova mean comparison test, the value
for significance difference is 0.171. Stating the significant
difference at sigma value of 0.05, the Anova test with the
value of sigma 0.171 shows that there is no significant
difference between the means of the different categories.
Therefore, it can be assumed that the students in the
different group have a similar level of capability in terms
of logic and pattern recognition (see table 3).

It is possible that the students who were exposed to
the imperative-first activities will prefer the imperative
design, and the students who were exposed to the object-

TABLE 2. PERCENTAGE OF CORRECT ANSWERS FOR PRE-TEST

Category 0
Correct

1
Correct

2
Correct

3 Correct

Object First 1 (5%) 0 (0%) 3 (15%) 16 (80%)
Imperative First 0 (0%) 0 (0%) 2 (13%) 14 (88%)
Problem Solving 0 (0%) 3 (11%) 8 (29%) 17 (61%)

TABLE 3. ONE WAY ANOVA TEST FOR PRE-TEST RESULT

Sum Sum of
Squares

df Mean
Square

F Sig.

Between Groups 1.488 2 0.744 1.818 0.171
Within Groups 24.950 61 0.409
Total 26.437 63

TABLE 4. PERCENTAGE OF CATEGORY FOR APPLICATION DESIGNED

Category Imperative
Design

Object + Im-
perative De-
sign

No Answer

Object First 12 (60%) 8 (40%) 0 (0%)
Imperative First 11 (69%) 3 (13%) 2 (13%)
Problem Solving 19 (68%) 2 (7%) 7 (25%)

first activities will prefer the object-first design. Therefore,
the problem-solving group of students will serve as the
”neutral” group. From analyzing the design application
of all the three groups of students, it is observed that
majority of the students demonstrated a series of steps,
which implied the imperative-first idea, in their design
(see table 4). More than 60% each category of students
demonstrated the imperative-first thoughts in the design.
The imperative-first group has the highest percentage at
69%, followed by the problem-solving group at 68%, and
the object-first group at 60%.

The highest percentage of the group that demonstrated
the object and imperative design, at 40%, is the group
who did the object first exercise through the ”App ap-
plication” activities. This may due to having exposed to
the way ”buttons and screens” works during the ”App
application” exercise. Students apply what they have learnt
into the design of the application. The students who did
imperative-first, and problem-solving first, have 13% and
7% implementing object and imperative design, respec-
tively. It is also interesting to observe that a majority of the
student who went through the ”problem solving” exercise,
implemented the designs in steps, only 2 out of 28 students
or 7% of the students designed in objects.

Using the one-way Anova analysis with design im-
plemented as the factor, two mean tests were conducted.
The first test, let null hypothesis be ”there is no sig-
nificant difference in frequencies between the imperative
first, object first or no implementation”. The sigma is at
0.003 (see table 5). Therefore, the null hypothesis cannot
be accepted. There is a significant difference between
the frequencies for imperative first, object first and no
implementation.

The second test is to remove the empty design. There-
fore, for the second test, let the null hypothesis be ”there
is no significant difference in frequencies between the
imperative first and the object first design”. The sigma
value of the one way Anova mean comparison is at 0.22
(see table 6). Therefore, the null hypothesis cannot be
accepted. There is a significant difference between the
frequencies for imperative first and object first design.
This finding is contrary to Detienne’s claim that it is more
natural to think in object [22].

TABLE 5. ONE WAY ANOVA TEST FOR IMPERATIVE, OBJECT OR NO
DESIGN

Sum Sum of
Squares

df Mean
Square

F Sig.

Between Groups 8.380 2 4.190 6.618 0.003
Within Groups 38.620 61 0.633
Total 47.000 63

TABLE 6. ONE WAY ANOVA TEST FOR IMPERATIVE AND OBJECT
DESIGN

Sum Sum of
Squares

df Mean
Square

F Sig.

Between Groups 3.918 1 3.918 5.602 0.022
Within Groups 37.064 53 0.699
Total 40.982 54

4.1. Limitation to Studies

Even though the classification was done by two in-
dependent parties, it is possible that bias could have
occurred. It will be helpful for the classification to be
done by more parties to ensure consistency. Therefore,
the researcher provided the link to the files in the section
5 for potential reviewers.

5. Summary and Future work

This research reflected on the preliminary finding that
it is NOT natural to think in object as proposed by
Detienne [22]. Instead, when designing, it is more natural
to think in steps. Majority of the students, regardless
of the intervention method, implemented the imperative-
first design. As fellow educators, we may want to re-
consider if object-first should be the way forward for a
novice programming subject. One of the challenges in the
object-first implementation is novice programmers have
difficulties in determining the functions and scopes of an
object [47]. Since it is more natural for students to think
in steps, the focus of novice programming should address
the problem solving instead of adding new concepts in
regards to objects.

It is also interesting to note that students who are
exposed to the problem-solving-first method, which is the
neutral method, are more keen to implement the impera-
tive first design. If this a sign that we ”naturally” think
in steps and orders, then the novice programming subject
be taught using a problem-solving method. Many novice
programming class will introduce the concept before pro-
viding a student to solve the problem. There may be a
difference if we reverse the process, with students having
to propose a solution before the lecturers teach them the
structure that corresponds to their idea. This may bring a
better impact to the learning.

Moving forward, the following is planned:
• Further experimental workshops will be conducted

with other groups of participants to confirm the
finding of this research.

• The impact of problem solving first vs structured
concepts first will be investigated.

For fellow researchers who are interested in us-
ing this set of data, the raw files are available at
http://bit.ly/Object-Imperative.

Acknowledgment

I want to thank my colleague Dr Lau, Sian Lun, for
being my sparring partner to discuss the various ideas
presented in this paper; and Ms Vikaneswari Shanmugan,
for advising on the statistical analysis. I would also like to
thank Sunway University for supporting this work through
the internal grant funding.

References

[1] C. Watson and F. W. Li, “Failure rates in introductory
programming revisited,” in Proceedings of the 2014 conference on
Innovation & technology in computer science education - ITiCSE
’14, 2014, pp. 39–44.

[2] E. Lahtinen and T. Ahoniemi, “Kick-Start Activation to Novice
Programming - A Visualization-Based Approach,” Electronic
Notes in Theoretical Computer Science, vol. 224, no. C, pp.
125–132, 2009.

[3] M. Piteira and C. Costa, “Computer programming and novice
programmers,” in Proceedings of the Workshop on Information
Systems and Design of Communication, 2012, pp. 51–53.

[4] D. Mccall and M. Kölling, “Meaningful Categorisation of Novice
Programmer Errors,” in IEEE Frontiers in Education Conference
(FIE) Proceedings, 2014, pp. 1–5.

[5] A. Luxton-Reilly, “Learning to Program is Easy,” Proceedings
of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education - ITiCSE ’16, pp. 284–289, 2016.

[6] A. Robins, J. Rountree, N. Rountree, A. Robins, J. Rountree, and
N. Rountree, “Learning and Teaching Programming : A Review
and Discussion,” vol. 3408, no. April, pp. 37–41, 2003.

[7] K. M. Ala-Mutka, “A Survey of Automated Assessment
Approaches for Programming Assignments,” Tech. Rep. 2, 2005.

[8] M. Barr, S. Holden, D. Phillips, and T. Greening, “An exploration
of novice programming errors in an object-oriented environment,”
Tech. Rep. 4, 1999.

[9] M. Amaratunga and S. Rajapakse, “An Interactive Programming
Assistance Tool (iPAT) for Instructors and Novice Programmers,”
in The 8th International Conference on Computer Science &
Education (ICCSE 2013), no. Iccse, Colombo, Sri Lanka, 2013,
pp. 680–684.

[10] A. Altadmri and N. C. C. Brown, “37 Million Compilations,”
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education - SIGCSE ’15, pp. 522–527, 2015.

[11] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin,
and C. Mooney, “Effective compiler error message enhancement
for novice programming students,” Computer Science Education,
vol. 26, no. 2-3, pp. 148–175, 2016.

[12] P. DePasquale, J. A. N. Lee, and M. A. Pérez-Quiñoness,
“Evaluation of subsetting programming language elements in a
novice’s programming environment,” in Proceedings of the 35th
SIGCSE technical symposium on Computer science education -
SIGCSE ’04, 2004, p. 260.

[13] Y. Hosanee and S. Panchoo, “An Enhanced Software Tool to Aid
Novices in Learning Object Oriented Programming (OOP),” in
Computing, Communication and Security (ICCCS), 2015 Interna-
tional Conference on, Pamplemousses, 2015.

[14] M. Hu, M. Winikoff, and S. Cranefield, “Teaching Novice
Programming Using Goals and Plans in a Visual Notation,” p.
4352, 2012.

[15] M. Kölling, N. C. C. Brown, and A. Altadmri, “Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Program-
ming,” in Proceedings of the Workshop in Primary and Secondary
Computing Education, 2015, pp. 29–38.

[16] T. W. Price and T. Barnes, “Comparing Textual and Block
Interfaces in a Novice Programming Environment,” Proceedings
of the eleventh annual International Conference on International
Computing Education Research - ICER ’15, pp. 91–99, 2015.

[17] K. Roy, W. C. Rousse, and D. B. Demeritt, “Comparing the mobile
novice programming environments: App Inventor for Android vs.
GameSalad,” in Proceedings - Frontiers in Education Conference,
FIE, 2012.

[18] A. Pears, S. Seidman, L. Malmi, L. Mannila, E. Adams,
J. Bennedsen, M. Devlin, and J. Paterson, “A survey of literature
on the teaching of introductory programming,” in ITiCSE-WGR
’07: Working group reports on ITiCSE on Innovation and
technology in computer science education, 2007, pp. 204–223.

[19] T. Howles, “A study of attrition and the use of student learning
communities in the computer science introductory programming
sequence,” Computer Science Education, vol. 19, no. 1, pp. 1–13,
3 2009.

[20] A. Robins, “Learning edge momentum: a new account of
outcomes in CS1,” Computer Science Education, vol. 20, no. 1,
pp. 37–71, 2010.

[21] T. Y. Sim, “Exploration on the impact of online supported methods
for novice programmers,” in 2015 IEEE Conference on e-Learning,
e-Management and e-Services, IC3e 2015, 2016, pp. 158–162.

[22] F. Détienne, “Assessing the cognitive consequences of the object-
oriented approach: a survey of empirical research on object-
oriented design by individuals and teams,” Interacting with Com-
puters, vol. 9, pp. 47–72, 1997.

[23] E. Dillon, M. Anderson, and M. Brown, “Comparing mental
models of novice programmers when using visual and command
line environments,” in Proceedings of the 50th Annual Southeast
Regional Conference on - ACM-SE ’12, 2012, p. 142.

[24] L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating and
improving the models of programming concepts held by novice
programmers,” Computer Science Education, vol. 21, no. 1, pp.
57–80, 3 2011.

[25] A. Mühling, “Aggregating concept map data to investigate the
knowledge of beginning CS students,” Computer Science Educa-
tion, vol. 26, no. 2-3, pp. 176–191, 2016.

[26] E. Vagianou, “Program working storage: a beginner’s model,”
in Proceedings of the 6th Baltic Sea conference on Computing
education research Koli Calling 2006 - Baltic Sea ’06, 2006,
p. 69.

[27] T. VanDeGrift, T. Caruso, N. Hill, and B. Simon, “Experience
Report: Getting Novice Programmers to THINK about Improving
their Software Development Process,” Proceedings of the 42nd
ACM technical symposium on Computer Science Education -
SIGCSE ’11, p. 493, 2011.

[28] A. Altadmri and N. C. C. Brown, “37 Million Compilations: In-
vestigating Novice Programming Mistakes in Large-Scale Student
Data,” in SIGCSE ’15 Proceedings of the 46th ACM Technical
Symposium on Computer Science Education, 2015, pp. 522–527.

[29] B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin,
and C. Mooney, “Effective compiler error message enhancement
for novice programming students,” Computer Science Education,
vol. 26, no. 2-3, pp. 148–175, 7 2016.

[30] T. Wyeld and Z. Barbuto, “Don’t Hide the Code!: Empowering
Novice and Beginner Programmers Using a HTML Game Editor,”
2014 18th International Conference on Information Visualisation,
pp. 125–131, 2014.

[31] J. Joque, “The Invention of the Object: Object Orientation
and the Philosophical Development of Programming Languages,”
Philosophy and Technology, vol. 29, no. 4, pp. 335–356, 2016.

[32] David Hemmendinger, “Machine language,” 2016.

[33] R. Decker and S. Hirshfield, “Educators’ Symposium - A
Case for, and an Instance of, Objects in CS1,” in Addendum
to the Proceedings on Object-Oriented Programming, Systems
Languages & Applications, OOPSLA, no. October. New York:
Association for Computing Machinery, 1992, pp. 3019–312.

[34] The Joint Task Force on Computing Curricula ACM IEEE-
Computer Society, “Computer Science Curricula 2013 Curriculum
Guidelines for Undergraduate Degree Programs in Computer Sci-
ence,” ACM, IEEE Computer Society, Tech. Rep., 2013.

[35] J. H. Cross, T. D. Hendrix ’, and L. A. Barowsm ’, “Using the
debugger as an integral part of teaching CS1,” in 32d ASEE/IEEE
Frontiers in Education Conference. Boston: IEEE, 2002, pp. F1G–
1– F1G–6.

[36] G. Evangelidis, V. Dagdilelis, M. Satratzemi, and V. Efopoulos,
“X-compiler: Yet another integrated novice programming environ-
ment,” Proceedings - IEEE International Conference on Advanced
Learning Technologies, ICALT 2001, pp. 166–169, 2001.

[37] C. M. Lewis and C. M., “How programming environment shapes
perception, learning and goals,” in Proceedings of the 41st ACM
technical symposium on Computer science education - SIGCSE
’10. New York, New York, USA: ACM Press, 2010, p. 346.

[38] J. Maloney, K. Peppler, Y. B. Kafai, M. Resnick, and N. Rusk,
“Programming by choice: urban youth learning programming with
scratch,” SIGCSE ’08 Proceedings of the 39th SIGCSE technical
symposium on Computer science education, pp. 367–371, 2008.

[39] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
computer science concepts with Scratch,” Computer Science
Education, vol. 23, no. 3, pp. 239–264, 9 2013.

[40] T. Y. Sim and S. L. Lau, “Online Tools to Support Novice Pro-
gramming,” in IEEE Conference on e-Learning, e-Management &
e-Services, 2018.

[41] A. Gomes and A. Mendes, “A teacher’s view about introductory
programming teaching and learning: Difficulties, strategies and
motivations,” in Proceedings - Frontiers in Education Conference,
FIE, 2015.

[42] J. Walden, M. Doyle, R. Garns, and Z. Hart, “An informatics
perspective on computational thinking,” in Proceedings of the
18th ACM conference on Innovation and technology in computer
science education - ITiCSE ’13. New York, New York, USA:
ACM Press, 2013, p. 4.

[43] B. B. Morrison, B. Dorn, and M. Friend, “Computational Thinking
Bins,” in Proceedings of the 50th ACM Technical Symposium on
Computer Science Education - SIGCSE ’19. New York, New
York, USA: ACM Press, 2019, pp. 1018–1024.

[44] L. Pollock, C. Mouza, K. R. Guidry, and K. Pusecker, “Infusing
Computational Thinking Across Disciplines,” pp. 435–441, 2019.

[45] Y. Dong, V. Catete, R. Jocius, N. Lytle, T. Barnes, J. Albert,
D. Joshi, R. Robinson, and A. Andrews, “PRADA,” in Proceedings
of the 50th ACM Technical Symposium on Computer Science
Education - SIGCSE ’19. New York, New York, USA: ACM
Press, 2019, pp. 906–912.

[46] L. Gouws, K. Bradshaw, and P. Wentworth, “First year student
performance in a test for computational thinking,” p. 271, 2013.

[47] A. Ebrahimi and C. Schweikert, “Empirical study of novice pro-
gramming with plans and objects,” Tech. Rep. 4, 2006.

