Online Tools to Support Novice Programming: A Systematic Review

Tze Ying Sim
Center for American Education,
Sunway University
Bandar Sunway, 47500 Malaysia
Email: tzeyings @ sunway.edu.my

Abstract—Novice programming is a challenging subject to
both the students and the educators. A novice programmer
is required to acquire new knowledge to solve a problem
and propose a solution systematically. This is followed by
constructing the solution in a development environment that
they are unfamiliar with. This research looks at the chal-
lenges faced by a novice programmer and the online methods
that are popular to assist the students. Online block pro-
gramming is a popular option. One of the software that had
been implemented in the various research project is Scratch.
From the reviewed research, it shows that the trend is moving
towards an intelligent tutoring system, where students can
have personalized engagement for their learning experience.
This paper presents a systematic review conducted using the
keywords “’novice programming”, ”introductory”, ”CS1”,
“difficulties”, ”’challenges”, and “’threshold concepts”. From
the review conducted, it is observed that most of the work
is carried out to ease the implementation of the solution
through an integrated development environment, and block
programming. On the support for instructors, the discussion
on curriculum and challenges in CS1 tops the chart. This is
followed by active learning through online tools.

Keywords—educational technology, computer science educa-
tion, engineering education

1. Introduction

Novice programming is considered as the first pro-
gramming subject taken by a student. This student will
be referred to as a novice programmer in this paper. Pro-
gramming is a challenging subject from a few dimension.
Firstly, students are required to dissect a set of problem
and propose solutions that might be able to solve the
problem. The solution may be easy when described in
human terms and words; however, it may be challenging
when needed to be phrased in a way that the computer
can understand and execute. In order, for the students
to implement the solution, they will need to learn to
“talk” to the computer, using a new language. Normally,
the new language requires the students to be expressed
using a new tool. Therefore, it is not surprising to observe
that novice programming classes have about 30% to 50%
failure rate [1], [2], [3]. From personal observation, the
average percentage is between 40% and 50%, when con-
sidering both the withdrawal and failure rate. When only
considering the failure rate, it is between 30% and 33%.

Sian Lun Lau

Dept. of Computing and Information Systems,

School of Science and Technology,
Sunway University
Bandar Sunway, 47500 Malaysia
Email: sianlunl@ sunway.edu.my

Studies have shown that one of the most effective ways to
have a higher passing rate is to have a small class where
discussion towards the different effort to teach and learn
programming can take place [3], [4]. However, having
small class size is challenging as universities continue to
cut on resources, and the class size continues to grow.

This paper will first look into the literature review
concerning challenges in novice programming. This will
then be followed by the method used for the literature
review. The challenges are then categorized. Results and
discussion will present the prominent findings from this
literature review that are related to online tools. One of the
main areas of interest for the most researcher is the support
for students through block programming. There are a few
online tools available. Next, the work on using online
technology to overcome the challenge of engagement in
big class size will be discussed. Finally, the conclusion
and future work will be presented.

2. Literature Review

2.1. Challenges in Novice Programming

All of the papers reviewed suggest that students need
to solve problems in a novice programming classes. They
need to then implement the proposed solution in a devel-
opment environment. There are three main technical chal-
lenges to a novice programming course. The challenges
are listed below:

1) Propose a solution to the problem,

2) Construct the solution in a formal manner

3) Implement the solution using a new tool (i.e. the
development environment).

In order to propose the solution and construct the
solution in a formal order, the suitable steps arranged in
the correct order are important [5]. Having formalized the
solution, the students would need to implement it in a
tool that is new to them. When considering each of the
challenges as steps a student needs to go through before
proposing a solution, they are all considered as higher
order thinking activities.

There are various methodology to support the software
development life cycle (SDLC) [6]. One of the earliest
methods is the waterfall model. The waterfall model was
designed to develop a large system and has its drawbacks
of users not able to identify all the required requirements,

and developers fail to see the effort and complication of
development. However, the waterfall model had been the
basic model for other development like prototyping, agile
programming, and rapid application development. For the
purpose of this paper, the general term SDLC will be
used to refer to the development phases. The steps for
development are:

1) Planning and defining requirement analysis
2) Designing the solution

3) Implementing the formalized solution

4) Testing the solution

5) Documentation and Deployment

Most novice programming classes include the plan-
ning, designing, implementing and testing phase [7]. As
the projects for novice programming are small, students
may repeat the implementing, and testing phase repeat-
edly, and when needed the design phase again.

3. Methodology

A systematic review was conducted using the key-
words “novice programming”, “CS1”, "introductory pro-
gramming”, “threshold concepts”, “difficulties”, and
“challenges”. Database searched are mainly from the As-
sociation for Computing Machinery (ACM), Institute of
Electrical and Electronics Engineers (IEEE). The articles
were published between 1998 and 2018. The articles are
then categorized according to the phases in the waterfall
model as well as the pedagogy support for the instructor.
When possible, a paper will be marked in one category.
However, if the focus area of multiple sections, then
multiple categories will be checked. The description for
each of the development phase are as follows:

1) Problem abstraction and solution proposal

2) Formalizing the solution

3) Implementing the formalized solution through
tools support

4) Testing the implemented solution

5) Documentation and submission of work

Apart from looking at the need of the students. The
support for the instructor is also given attention. The sup-
port for instructors is divided into the following categories:

1) Active learning through tools

2) Active learning without using tools

3) Assessment tools

4) Curriculum and Threshold Concepts

5) Collaborative learning and other pedagogy ideas

The word tools in the support for the instructor over-
laps with the tools in the development phase. Tools to
implement the solution are applicable to both categories.
For a paper that covers both pedagogy with the support
of an implementation tool, then the ”x” will be marked
at the implementation tool column. If the tool is not
an implementation tool, for example, an iPad, blended
learning, or online tools, then the ”x” will be marked at the
pedagogy support column. If a tool is used to investigate
certain ideas, but most of the discussion in the paper is not
about the impact of the tools but on the idea, alongside
with other methods, then the ”x” will be marked at the
pedagogy support. To the best possible, each paper will
be assigned to the column most relevant to its content.

TABLE 1. PAPERS MAPPED TO THE DEVELOPMENT PHASE

Development Phase Pubh_
References cation

for CS1 Count

Problem abstraction

and solution Proposal 0 (0%

Formalizing the

solution 0 (0%)

Error Messages [8] [9] [10] [11] (2076%)

New Programming [12] [13] [14] [15] [16] [17] 20
Environment [18] [19] [20] [21] [22] [23] (58.8%)

Hands On Project/ [24] [25] [26] 5

Robot (14.7%)
Testing the 1
implemented solution (2.9%)
Documentation & 1
Submission of Work 2.9%)

TABLE 2. PAPERS MAPPED TO THE SUPPORT FOR INSTRUCTOR

Publi-
Support for Instructor References cation

Count
Active learning [é;]] [éi]] [éz]] [[32?][3%}][3[%] 23
through tools (24.0%)

[38] [39] [40] [41]

Active learning [42] [43] [44] [45] [46] [5] 11

without using tools (11.5%)
Assessment tools [47] [48] [49] [50] [51] [52] (11115%)
Curriculum and [53] [54] [7] [55] [56] [57] 24

Threshold Concepts [58] [59] (25.0%)

[60] [61] [62] [63] [64] [65] 27

Other pedagogy ideas [66] [3] [67] [68] (28.1%)

4. Results

The papers analyzed are between 1998 and 2018.
There are not so many papers returned for the year 2017
and 2018. The peak three years are between 2013 and
2015. This is followed by 2010, 2012, and 2016. When
listing the references for each of the categories, only
publications in the last five years, starting from 2013 are
listed. 34 papers were mapped under the development
phase, and another 98 were mapped under the support
for instructor.

When categorizing the focus area of each reviewed
paper according to the software development phase, most
of the papers focused on the implementation phase. The
main idea here is to simplify the process of implemen-
tation through enhanced integrated development environ-
ment (IDE), minimizing syntax errors when typing the
code through block programming, and increasing students’
interest through hands-on projects. Please see Table 1 for
more information.

When looking into support for the lecturer, it is ob-
served that most of the work done in a single area is in
relation to the curriculum and the threshold concepts of
csl (25.8%). This is followed by active learning through
tools at 24.7%. Other pedagogy ideas that stands at 28.1%
includes various methods like self-regulated learning, pair
programming, social learning, mental model, etc. Please
see Table 2 for more information.

5. Discussion

From the result of 34 publications that are directly
related to a specific phase in the development cycle, 32 of
them concern the implementation of the solution. Almost
no research or support was explicitly designed to support
the other phases in the development cycle, which is the
main focus in novice programming environment. Novice
programming environment involves the development of
block programming and the enhancement of IDE by mak-
ing error messages more understandable. On the other
hand, as for the support for instructors, the most focused
area is active learning through tools engagement. One of
the trends observed in this category is the use of online
tools to support the teaching and learning activities. Ex-
amples of tools include generation of questions, intelligent
tutoring system, and blended learning. For the following
discussion, the focus would be on tools that support block
programming and intelligent tutoring system.

5.1. Novice Programming Environment

Novice programming environment covers the various
initiative to make novice programming easier. In a con-
ventional system, the student would need to translate the
formalized solution to codes that need to be typed in either
through an IDE or a text-based interface. This proves to
be challenging as the student faces problems with the
syntax [10]. By using the drag-and-drop interface in block
programming, this completely eliminates the syntax error
[19], [34], and students only need to concentrate on the
structure and logic of the program. From the twenty arti-
cles reviewed, there were about twenty programming en-
vironment identified. However, some of the environments
are not included in Figure 1 as: the authors did not manage
to find the tool online for verification or the tools are de-
veloped to support learning through visualization, but not
making a change in the way the program is implemented.
The examples are Jeliot (http://cs.joensuu.fi/jeliot/) and
Jeeroo (http://home.cc.gatech.edu/dorn/jeroo).

Firstly, the genre of tools will be discussed. Most of
the tools allow the students to creatively develop their
application except Gidget. Gidget is similar to "Hour of
Code” where students are provided with a set of online
games (exercises) to understand the fundamentals of the
programming structure. Upon completion of all the re-
quired level, the level designer will be enabled where
students can create their own levels and share it with
other users [69]. Game development is the most popular
genre. Game development motivates students participa-
tion in CS1. They are able to create, play own games,
and evaluate games from their peers. The second most
popular genre is narrative. Narrative allows the user to
create stories. These tools are also able to create some
simple games. Hence, the genre “Narrative/Game”. The
category application is given to tools that also supports
other application apart from narrative and game.

Most of the tools identified are available for free. Only
three tools have the “pay option”. They are Construct2,
GameMaker, and GameSalad. Even professionals can use
these tools to develop games for sale. Not all of them are
online tools. About 50% of the tools are available online
and the other 50% requires users to download the IDE

for offline development. The advantage of using the tool
online is no setup is required. The student only needs to
register and login via the web interface to work on their
project. Automatic step by step tracing helps the students
to visualize the impact of each line of code. This feature is
provided by Scratch. Using Scratch each execution step in
highlighted in the workspace. Snap! highlights the whole
block of codes that is currently active. It does not go
through each of the individual lines of code (or in this
case lines of blocks). As for other tools, the current active
code will not be shown when the program run.

One of the debates in the curriculum of CS1 is the
imperative first vs. object first concept [70]. Many institu-
tions introduce the Object Oriented Programming (OOP)
concepts even in the imperative first concept. Therefore,
it will be helpful if some of the OOP concepts like Ab-
straction, Polymorphism, Inheritance, and Encapsulation
(APIE), can be included in the tool. The tools that are
marked with “support OOP” introduces the concept of
class and objects or instances. The objects created can
be customized values can be assigned to their properties.
The objects have defined methods that can be called for
execution. Greenfoot even visualizes the class diagram as
part of the development interface.

When reviewing the development method, the tools
are grouped into drag and drop method (also commonly
known as the block-based programming) or text-based
method. The former comes with the advantage of zero syn-
tax error. There will be no worry of a missing semicolon,
misplaced curly brackets, misplaced bracket, using the
wrong keywords, etc. Students can drag the relevant block,
and configure the parameters within the block. However,
one major challenge is the industry does not program with
block-based programming. Eventually, the students need
to move on to text-based programming. Most of the text-
based programming required for the listed tools are the
programming of events for a particular object. Most of
the tools which apply the drag and drop method do not
support the transition to text (see Figure 1). However,
there are two tools that the coding methods are labeled
as drag and drop but they support the transition to text
programming. This is because, the blocks are designed to
look like complete programming code, with parameters
that are modifiable. One unique tool is Greenfoot. Green-
foot uses frame-based programming, where the codes are
typed. However, they are grouped according to blocks,
for example, if-block, while-block, etc. It is not possible
to drag and drop a block to part of the code that it is
syntactically not supposed to be. The tool is between
block-based programming and text-based programming.

From the list of tools listed, Scratch is the most
popular, with seven publications. This is followed by App
Inventor with 3, Alice, Game Salad, Blue] and Raptor
have 2 publications each. However, I believe the trend
will change for the future. Scratch is good tool to in-
troduce the basic concepts. This is suitable to introduce
problem-solving skills to high school students, or even as a
workshop for a novice programmer. A novice programmer
will eventually progress on to higher level programming
subject, and be developing actual applications. Therefore,
it is important for the tool to support the transition to text-
based programming, and the development of the various
applications. Having reviewed the tools, we would pro-

o

” e |2

Te |2E

o = G

Sl 5|28 |EE

_ T |85 2|25 |us

Novice a v E = 5 wo |5 E
Programming T £ |82l g 5 2 ¥l 5%
Environments Website Genre = s |la#w| 3 35|28
Alice 2 https://www.alice.org/ Narrative/Game Free No No No |DD No
Alice 3 https://www.alice.org/ Narrative/Game Free No No | Yes |DD Yes
Applnventor http://appinventor.mit.edu/explore/ Application Free Yes | No | Yes |DD Yes
Construct 2 https://www.construct.net/ Game Development | Free/Paid Yes No | Yes |Text No
GameMaker https://www.yoyogames.com/gamemaker |Game Development | Free/Paid No No | Yes |Text Yes
GameSalad https://edu.gamesalad.com/ Game Development | Free/Paid No No | Yes |DD No
Gidget https://www.helpgidget.org/ Game Development Free Yes | No No |Text Yes
Greenfoot
(continuation of
Blue J) https://www.greenfoot.org/door Application Free No No | Yes |Frame Yes
Looking Glass https://lookingglass.wustl.edu/ Narrative/Game Free No No | Yes |DD No
Pencilcode https://pencilcode.net/ Narrative/Game Free Yes No No |DD No
Raptor https://raptor.martincarlisle.com/ Application Free No | Yes | Yes |DD&Text | No
Scratch https://scratch.mit.edu/ Narrative/Game Free Yes | Yes No |DD No
Snap! https://snap.berkeley.edu/ Application Free Yes | No | Yes |DD No
Tululoo http://www.tululoo.com/ Game Development Free No No Yes |Text Yes

Figure 1. Development tools reviewed

pose App Inventor and Greenfoot. Among the two, Green-
foot will be the preferred choice, as it allows students to
type the code while limiting the potential syntax errors.

5.2. Intelligent Programming Tutors

An Intelligent Programming Tutor (IPT) is defined as
an intelligent tutoring system that is specifically created
for programming education [34]. The purpose of the cre-
ation of such tools is to provide computer-assisted learning
with adaptive or personalized features. IPTs can be a
useful tool in novice programming education because a
learner can learn at his own pace in a one-to-one tutoring
setting and still get personalized assistance offered by
an IPT with similar outcome or benefits as compared to
human tutoring [71].

Pillay [72] analyzed several IPTs in 2005 and devel-
oped a generic architecture for the development of IPTs.
The analysis of IPTs mentioned in [72] identified the
five main functions, which include presentation and ex-
planation of programming concepts, provision of different
programming problems for learning purposes, assistance
to help students to solve various programming problems,
assessment of students’ programming quality as well as
assistance to debug programs for semantic errors.

iSnap [20] is an IPT that offers on-demand, next-step
hints to novice programming students. It is an extension to
the Snap! Novice Programming Environment (NPE). The
hints are generated using Contextual Tree Decomposition
(CTD), a data-driven algorithm. Students’ solutions are
recorded and used as data to provide recommendations
and hints for future students’ attempts. On-demand hints
will only be provided if a student selects to ask for a
hint via a Help button. The pilot study discovered several
challenges, including students’ bottom-up programming
behavior, over-reliance on help and difficulty understand-
ing the ideas behind the hints.

Hooshyar et al. [73] applied a flowchart-based IPT to
improve problem-solving skills of novice programmers.
The authors argue that there are three advantages: Firstly,
the process of problem-solving is emphasized. Secondly,
it enables learners’ engagement by providing an inter-
active problem-solving environment. Thirdly, Bayesian
Networks is used to assist the students’ learning progress.
44 students tested the system and the overall experience
was positive. Improvement in problem-solving skills can
be observed in the outcome.

The above examples are by no means exhaustive.
However, common attributes can be observed in these
examples: problem-solving skills have been the common
focus in these IPTs. Also, the use of an algorithm and
machine learning can also help to make these tools more
useful and effective in helping novice programmers to
learn programming. More importantly, submitted answers
and attempts are a good source of information that can be
used to train the models needed in these IPTs. Particularly
the weaker students who need more time and guidance,
such IPTs may be helpful for them to learn at their own
pace.

6. Conclusion and Future Work

The paper reviewed about 130 articles from the past
20 years and concluded that

1) most of the research in supporting novice pro-
gramming focused on the implementation of new
programming environments that either simplify
the mechanism of solution implementation, en-
hance students understanding on the code through
output visualization or memory visualization, or
increase students’ interest to the subject by cre-
ating narrative and games.

2) in order to support the instructor, various work
on curriculum and pedagogy had been conducted,

especially in the area of active learning with tool
support

3) in order to overcome the issue of increasing
student and staff ratio, intelligent programming
tutors are implemented to support the learning
needs of students.

For future work, it will be interesting to see

1) new programming environment to further support
other development phases like solution design,
and documentation.

2) further development of the intelligent program-
ming tutors to engage students learning

References

(1]

(2]

[3]

[4]

[3]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

J. Bennedsen and M. E. Caspersen, “Failure rates in introductory
programming,” ACM SIGCSE Bulletin, vol. 39, no. 2, p. 32, 2007.

A. Gomes and A. Mendes, “A teacher’s view about introductory
programming teaching and learning: Difficulties, strategies and
motivations,” in Proceedings - Frontiers in Education Conference,
FIE, 2015.

C. Watson and F. W. Li, “Failure rates in introductory
programming revisited,” in Proceedings of the 2014 conference on
Innovation & technology in computer science education - ITiCSE
'14, 2014, pp. 39-44.

X. Suo, “Session T2A Toward More Effective Strategies in Teach-
ing Programming for Novice Students,” in IEEE International Con-
ference on Teaching, Assessment, and Learning for Engineering
(TALE), Hong Kong, 2012, pp. T2A1-T2A3.

T. Y. Sim, “Exploration on the impact of online supported methods
for novice programmers,” in 2015 IEEE Conference on e-Learning,
e-Management and e-Services, IC3e 2015, 2016, pp. 158—162.

V. M. Font Jr., The Ultimate Guide to the SDLC, 1st ed. North
Carolina: A FrontLife Publication, 2012.

A. Luxton-Reilly, “Learning to Program is Easy,” Proceedings
of the 2016 ACM Conference on Innovation and Technology in
Computer Science Education - ITiCSE 16, pp. 284-289, 2016.

A. Altadmri and N. C. C. Brown, “37 Million Compilations,”
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education - SIGCSE 15, pp. 522-527, 2015.

M. Amaratunga and S. Rajapakse, “An Interactive Programming
Assistance Tool (iPAT) for Instructors and Novice Programmers,”
in The 8th International Conference on Computer Science &
Education (ICCSE 2013), no. Iccse, Colombo, Sri Lanka, 2013,
pp. 680-684.

B. A. Becker, G. Glanville, R. Iwashima, C. McDonnell, K. Goslin,
and C. Mooney, “Effective compiler error message enhancement
for novice programming students,” Computer Science Education,
vol. 26, no. 2-3, pp. 148-175, 7 2016.

N. C. Brown and A. Altadmri, “Investigating Novice Programming
Mistakes:Educator Beliefs vs Student Data,” in Proceedings of
the tenth annual conference on International computing education
research - ICER ’14, 2014, pp. 43-50.

J. Good and K. Howland, “Natural language and programming:
Designing effective environments for novices,” in Proceedings
of IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC, 2015.

F. Hermans and E. Aivaloglou, “Do code smells hamper novice
programming? A controlled experiment on Scratch programs,” in
IEEFE International Conference on Program Comprehension, vol.
2016-July, no. Section IV, 2016, pp. 1-10.

Y. Hosanee and S. Panchoo, “An Enhanced Software Tool to Aid
Novices in Learning Object Oriented Programming (OOP),” in
Computing, Communication and Security (ICCCS), 2015 Interna-
tional Conference on, Pamplemousses, 2015.

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

M. Ichinco and C. Kelleher, “Exploring novice programmer exam-
ple use,” in Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC, 2015.

M. Koélling, N. C. C. Brown, and A. Altadmri, “Frame-Based
Editing: Easing the Transition from Blocks to Text-Based Program-
ming,” in Proceedings of the Workshop in Primary and Secondary
Computing Education, 2015, pp. 29-38.

M. Kolling and F. McKay, “Heuristic Evaluation for Novice Pro-
gramming Systems,” ACM Transactions on Computing Education,
vol. 16, no. 3, p. 30, 2016.

O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
computer science concepts with Scratch,” Computer Science
Education, vol. 23, no. 3, pp. 239-264, 9 2013.

S. Papadakis, M. Kalogiannakis, V. Orfanakis, and N. Zaranis,
“Novice Programming Environments. Scratch & App
Inventor,” Proceedings of the 2014 Workshop on Interaction
Design in Educational Environments - IDEE 14, pp. 1-7, 2014.

T. W. Price and T. Barnes, “Comparing Textual and Block
Interfaces in a Novice Programming Environment,” Proceedings
of the eleventh annual International Conference on International
Computing Education Research - ICER 15, pp. 91-99, 2015.

J. Robertson, “Rethinking how to teach programming to
newcomers,” Communications of the ACM, vol. 57, no. 5, pp.
18-19, 2014.

D. Weintrop, “Blocks, text, and the space between: The role of
representations in novice programming environments,” Proceed-
ings of IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC, vol. 2015-Decem, no. C, pp. 301-302, 2015.

T. Wyeld and Z. Barbuto, “Don’t Hide the Code!: Empowering
Novice and Beginner Programmers Using a HTML Game Editor,”

2014 18th International Conference on Information Visualisation,
pp. 125-131, 2014.

L. Major, T. Kyriacou, and P. Brereton, “The effectiveness of
simulated robots for supporting the learning of introductory pro-
gramming: a multi-case case study,” Computer Science Education,
vol. 24, no. 2-3, pp. 193-228, 2014.

R. Mason and G. Cooper, “Mindstorms robots and the application
of cognitive load theory in introductory programming,” Computer
Science Education, vol. 23, no. 4, pp. 296-314, 12 2013.

M. A. Rubio, R. Romero-zaliz, C. Maifioso, and A. P. D. Madrid,
“Enhancing an introductory programming course with physical
computing modules,” 2014.

H. Amer and W. Ibrahim, “Using the iPad as a pedagogical tool to
enhance the learning experince for novice programing students,” in
IEEE Global Engineering Education Conference, EDUCON, 2014.

T. Arabacioglu and R. Akar-Vural, “Using facebook as a LMS?”
Turkish Online Journal of Educational Technology, vol. 13, no. 2,
pp- 202-215, 2014.

M. Armoni and J. Gal-Ezer, “High school computer science
education paves the way for higher education: the Israeli case,”
Computer Science Education, vol. 24, no. 2-3, pp. 101-122, 7
2014.

H. Awni, A. Rekhawi, and S. S. Abu Naser, “An
Intelligent Tutoring System for Learning Android Applications
Ul Development,” International Journal of Engineering and
Information Systems, vol. 2, no. 1, pp. 2000-0, 2018.

T. Ball and B. Zorn, “Teach foundational language principles,”
Communications of the ACM, vol. 58, no. 5, pp. 30-31, 2015.

M. Bower, B. Dalgarno, G. E. Kennedy, M. J. W. Lee, and
J. Kenney, “Design and implementation factors in blended
synchronous learning environments: Outcomes from a cross-case
analysis,” Computers and Education, vol. 86, pp. 1-17, 2015.

J. Campbell, D. Horton, and M. Craig, “Factors for Success in
Online CS1,” in Innovation and Technology in Computer Science
Education (ITiCSE), 2016, pp. 320-325.

T. Crow, A. Luxton-Reilly, and B. Wuensche, “Intelligent tutoring
systems for programming education,” Proceedings of the 20th
Australasian Computing Education Conference on - ACE 18, pp.
53-62, 2018.

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]
(471

(48]

[49]

[50]

[51]

[52]

[53

—

M. R. Donggil Song, Eun Young Oh, “Interacting with a Con-
versational Agent System for Educational Puroposes in Online
Courses,” 22017 10th International Conference on Human System
Interactions (HSI), pp. 3-7, 2017.

Y. lizuka, S. Enari, and K. Kinoshita, “Designing a novice pro-
gramming environment for RoboCup Soccor 2D simulation,” Pro-
ceedings - 2nd IIAI International Conference on Advanced Applied
Informatics, 1IAI-AAI 2013, pp. 401-402, 2013.

A. S. Kim and A. J. Ko, “A Pedagogical Analysis of Online
Coding Tutorials,” Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education - SIGCSE
’17, pp. 321-326, 2017.

S. Kurkovsky, “Mobile game development: improving student
engagement and motivation in introductory computing courses,’
Computer Science Education, vol. 23, no. 2, pp. 138-157, 6 2013.

S. Matsumoto, K. Okimoto, T. Kashima, and S. Yamagishi,
Human-Computer Interaction. Theory, Design, Development and
Practice, K. M., Ed. Springer, Cham, 2016, vol. 9731.

R. Matthews, H. S. Hin, and K. A. Choo, “Novice Programming
Students’ Perception of Learning Object,” 2013 International
Conference on Informatics and Creative Multimedia, pp. 292-297,
2013.

D. Mccall and M. Kélling, “Meaningful Categorisation of Novice
Programmer Errors,” in IEEE Frontiers in Education Conference
(FIE) Proceedings, 2014, pp. 1-5.

T. B. Bati, H. Gelderblom, and J. van Biljon, “A blended learning
approach for teaching computer programming: design for large
classes in Sub-Saharan Africa,” Computer Science Education,
vol. 24, no. 1, pp. 71-99, 1 2014.

K. L. Eranki and K. M. Moudgalya, “Application of program
slicing technique to improve novice programming competency in
spoken tutorial workshops,” Proceedings - IEEE 6th International
Conference on Technology for Education, T4E 2014, pp. 32-35,
2014.

D. Horton and M. Craig, “Drop, Fail, Pass, Continue,” in
Proceedings of the 46th ACM Technical Symposium on Computer
Science Education - SIGCSE ’15, 2015, pp. 235-240.

M. Ichinco, A. Zemach, and C. Kelleher, “Towards generalizing
expert programmers’ suggestions for novice programmers,” in Pro-
ceedings of IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC, 2013.

T. Y. Sim, “My Learning Journal,” 2015.

J. C. Caiza and J. M. del Alamo Ramiro, “Programming
Assignments Automatic Grading: Review of Tools and
Implementations,” 7th International Technology, Education and
Development Conference, pp. 5691-5700, 2013.

A. Luxton-Reilly and A. Petersen, “The Compound Nature
of Novice Programming Assessments,” in Proceedings of the
Nineteenth Australasian Computing Education Conference on -
ACE 17, 2017, pp. 26-35.

S. Nutbrown and C. Higgins, “Static analysis of programming
exercises: Fairness, usefulness and a method for application,”
Computer Science Education, vol. 26, no. 2-3, pp. 104-128, 7
2016.

A. Shargabi, S. A. Aljunid, M. Annamalai, S. M. Shuhidan, and
A. M. Zin, “Tasks That Can Improve Novices’ Program Compre-
hension,” in IEEE Conference on e-Learning, e-Management and
e-Services, Malacca, 2015, pp. 32-37.

S. Shuhidan, M. Hamilton, and D. D’Souza, “A taxonomic study
of novice programming summative assessment,” Conferences in
Research and Practice in Information Technology Series, vol. 95,
no. Ace, pp. 147-156, 2009.

J. Vahrenhold and W. Paul, “Developing and validating test
items for first-year computer science courses,” Computer Science
Education, vol. 24, no. 4, pp. 304-333, 10 2014.

A. S. Alardawi and A. M. Agil, “Novice Comprehension of Object-
Oriented OO Programs: An Empirical Study,” in Information Tech-
nology and Computer Applications Congress (WCITCA), 2015,
2015.

[54]

[55]

[56]

(571

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

(70]

(71]

[72]

(73]

P. Alston, D. Walsh, and G. Westhead, “Uncovering Threshold
Concepts in Web Development: An Instructor Perspective,” ACM
Transactions on Computing Education, vol. 15, no. 1, pp. 1-18,
2015.

M. Piteira and C. Costa, “Learning Computer Programming: Study
of difficulties in learning programming,” International Conference
on Information Systems and Design of Communication, pp. 75-80,
2013.

K. Sanders and R. McCartney, “Threshold Concepts in Computing
: Past , Present , and Future,” in Proceedings of the 16th Koli Call-
ing International Conference on Computing Education Research,
Finland, 2016, pp. 91-100.

D. Shinners-Kennedy and S. A. Fincher, “Identifying threshold
concepts,” in Proceedings of the ninth annual international ACM
conference on International computing education research - ICER
’13, 2013, p. 9.

C. Thevathayan and M. Hamilton, “Supporting Diverse Novice
Programming Cohorts through Flexible and Incremental Visual
Constructivist Pathways,” in Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science
Education - ITiCSE ’15, 2015, pp. 296-301.

G. Walker, “A cognitive approach to threshold concepts,” Higher
Education, vol. 65, no. 2, pp. 247-263, 2013.

Y. B. Kafai and Q. Burke, “The social turn in K-12 programming,”
Proceeding of the 44th ACM technical symposium on Computer
science education - SIGCSE ’13, p. 603, 2013.

M. Maleko, M. Hamilton, D. D’Souza, and F. Scholer, “Un-
derstanding and analysing novice programmer interactions in a
facebook programming group,” in Proceedings - 2014 Interna-

tional Conference on Teaching and Learning in Computing and
Engineering, LATICE 2014, 2014, pp. 112-119.

C. S. Miller, “Metonymy and reference-point errors in novice
programming,” Computer Science Education, vol. 24, no. 2-3, pp.
123-152, 7 2014.

A. Miihling, “Aggregating concept map data to investigate the
knowledge of beginning CS students,” Computer Science Educa-
tion, vol. 26, no. 2-3, pp. 176-191, 2016.

C. Ott, A. Robins, P. Haden, and K. Shephard, “Illustrating
performance indicators and course characteristics to support
students self-regulated learning in CS1,” Computer Science
Education, vol. 25, no. 2, pp. 174-198, 4 2015.

J. Rountree, A. Robins, and N. Rountree, “Elaborating on
threshold concepts,” Computer Science Education, vol. 23, no. 3,
pp. 265-289, 9 2013.

A. Tafliovich, J. Campbell, and A. Petersen, “A student perspective
on prior experience in CS1,” in Proceeding of the 44th ACM
technical symposium on Computer science education - SIGCSE
’13, 2013, p. 239.

S. Willman, R. Lindén, E. Kaila, T. Rajala, M.-J. Laakso, and
T. Salakoski, “On study habits on an introductory course on
programming,” Computer Science Education, vol. 25, no. 3, pp.
276-291, 7 2015.

M. Zarb and J. Hughes, “Breaking the communication barrier:
guidelines to aid communication within pair programming,”
Computer Science Education, vol. 25, no. 2, pp. 120-151, 4 2015.

M. J. Lee and A. J. Ko, “A Demonstration of Gidget, A
Debugging Game for Computing Education !” Tech. Rep.

The Joint Task Force on Computing Curricula Association
for Computing Machinery IEEE-Computer Society, “Computer
Science Curricula 2013 Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science,” ACM, IEEE Computer
Society, Tech. Rep., 2013.

J. A. Kulik and J. D. Fletcher, “Effectiveness of Intelligent Tutoring
Systems: A Meta-Analytic Review,” Review of Educational
Research, vol. 86, no. 1, pp. 42-78, 2016.

N. Pillay and V. R. Jugoo, “An investigation into student
characteristics affecting novice programming performance,” ACM
SIGCSE Bulletin, vol. 37, no. 4, p. 107, 2005.

D. Hooshyar, R. B. Ahmad, M. Yousefi, F. D. Yusop, and S.-J.
Horng, “A Flowchart-Based Intelligent Tutoring System for Im-
proving Problem-Solving Skills of Novice Programmers,” Journal
of Computer Assisted Learning, vol. 31, no. 4, pp. 345-361, 2015.

