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A B S T R A C T

Acanthamoeba spp. are free living amoeba (FLA) which are widely distributed in nature. They are opportunistic
parasites and can cause severe infections to the eye, skin and central nervous system. The advances in drug
discovery and modifications in the chemotherapeutic agents have shown little improvement in morbidity and
mortality rates associated with Acanthamoeba infections. The mechanism-based process of drug discovery de-
pends on the molecular drug targets present in the signaling pathways in the genome. Synthetic libraries provide
a platform for broad spectrum of activities due to their desired structural modifications. Azoles, originally a class
of synthetic anti-fungal drugs, disrupt the fungal cell membrane by inhibiting the biosynthesis of ergosterol
through the inhibition of cytochrome P450 dependent 14α-lanosterol, a key step of the sterol pathway.
Acanthamoeba and fungi share the presence of similar sterol intermediate, as ergosterol is also the major end-
product in the sterol biosynthesis in Acanthamoeba. Sterols present in the eukaryotic cell membrane are one of
the most essential lipids and exhibit important structural and signaling functions. Therefore, in this review we
highlight the importance of specific targeting of ergosterol present in Acanthamoebic membrane by azole com-
pounds for amoebicidal activity. Previously, azoles have also been repurposed to report antimicrobial, anti-
parasitic and antibacterial properties. Moreover, by loading the azoles into nanoparticles through advanced
techniques in nanotechnology, such as physical encapsulation, adsorption, or chemical conjugation, the phar-
macokinetics and therapeutic index of the drugs can be significantly improved. The current review proposes an
important strategy to target Acanthamoeba using synthetic libraries of azoles and their conjugated nanoparticles
for the first time.

1. Introduction

Acanthamoeba is a free-living ameba (FLA), isolated from wide
variety of environments such as soil, water supplies, swimming pools,
hospitals etc. (De Jonckheere, 1991). FLA can resist to extreme condi-
tions such as extended time of desiccation, high/low temperatures, pH
and radiations (Khan, 2006). In addition to its natural distribution,
Acanthamoeba can be opportunistically pathogenic, being identified as
the causative agent of Acanthamoeba keratitis (AK) which is a painful
and sight-threatening infection of the cornea, and granulomatous
amoebic encephalitis (GAE) which is rare but a fatal central nervous
system (CNS) infection (Culbertson et al., 1961; Jones et al., 1975).
Acanthamoeba can enter the body via a break in the skin or inhalation of

wind-blown cysts and may cause cutaneous, nasopharyngeal and dis-
seminated infection and subsequently spread hematogenously to the
CNS leading to GAE.

The life cycle of Acanthamoeba consists of two stages: an actively
feeding, dividing trophozoite and a dormant cyst. The trophozoite stage
exists in the favorable conditions (neutral pH, availability of sources of
nutrients, optimal temperature of about 30 °C). They feed on bacteria,
yeast, algae or small organic particles and their size measures between
25 to 40 µm (Khan, 2006). The double-walled wrinkled cyst is com-
posed of an ectocyst and an endocyst ranging in size from 13 to 20 µm
and varies from species to species. The outer wall consists of proteins
and polysaccharides, while the inner wall possesses cellulose. Cyst
formation occurs under adverse environmental conditions such as food
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deprivation, desiccation, and changes in temperature and pH
(Dudley et al., 2009).

1.1. Current treatment options against Acanthamoeba infections

For the past several decades, there has been little improvement in
the morbidity and mortality associated with Acanthamoeba diseases.
Antimicrobial chemotherapy is the most widely used method of treating
infections caused due to Acanthamoeba with various combinations of
drugs such as amphotericin B, trimethoprim-sulfamethoxazole, ri-
fampin, ketoconazole, fluconazole, sulfadiazine, miltefosine etc
(Marciano-Cabral, 2003). The rate of development of novel anti-acan-
thamoebic chemotherapies of translational value and the lack of in-
terest of the pharmaceutical industry in developing such che-
motherapies have been disappointing (Khan et al., 2017). Hence, there
is an urgent need to develop a targeted therapeutic approach to identify
drugs that can affect Acanthamoeba viability without affecting the host
cells.

1.2. Acanthamoeba keratitis

Acanthamoeba spp. are most commonly introduced to the eye by
contact lenses that have been exposed to the organism through the use
of contaminated lens solution, using homemade saline-based solution
or tap water, or from wearing contact lenses while bathing or swim-
ming (Lorenzo-Morales et al., 2015). Acanthamoeba keratitis (AK) is a
rare disease in which amoebae invade the cornea. Clinical symptoms
are often corneal pain and photophobia, which may be disproportionate
to the appearance of the eye. At early stages scattered epithelial ero-
sions, anterior stromal haze, nummular keratitis and variable stromal
edema associated with keratitis precipitates on endothelium was ob-
served in Acanthamoeba keratitis (Garg et al., 2017). A diagnosis of AK
should be considered when chronic corneal ulcers are unresponsive to
the antibiotic therapy. Rapid diagnosis of the disease is paramount in
lowering the number of patients who require penetrating keratoplasty
(Sadiq et al., 1998), which was the only form of rehabilitation. Kera-
toplasty was effective in eliminating infectious pathogens and also
prevented the recurrence of the same infection is most cases, but in
some rare cases it proved to be unsuccessful (Kumar and Lloyd, 2002).

Currently therapeutic agents have been tried in various combina-
tions, but none of the managements have proved to be particularly
effective (Schuster and Visvesvara, 2004a). Furthermore, it is also im-
portant to consider drugs that act effectively against cysts forms.
Usually treatments based on biguanide (0.02% of polyhexamethylene
biguanide or 0.02% chlorhexidine digluconate) in conjunction with a
diamidine (0.1% propamidine isethionate or 0.1% hexamidine) are
recommended (Pérez-Santonja et al., 2003). If bacteria are also asso-
ciated with the infection, addition of antibiotics, i.e., neomycin or
chloramphenicol is suggested. The presence of antibiotics limits pos-
sible bacterial infection or, at the very least, eliminates the food source
for Acanthamoeba. Imidazoles such as miconazole, itraconazole and
ketoconazole have been used with limited success (Berger et al., 1990;
D'Aversa et al., 1995; Ishibashi et al., 1990).

1.3. Granulomatous amoebic encephalitis (GAE)

GAE is a subacute to chronic granulomatous infection of the CNS
caused by the species of Acanthamoeba., Balamuthia mandrillaris and
Sappina pedate. These CNS infections are reported to occur in mostly
immunocompromised individuals like post-transplantation, HIV infec-
tion etc., and occasionally in immunocompetent hosts (Marciano-
Cabral and Cabral, 2003; Stidd et al., 2012).

The successful treatment depends on early diagnosis of these GAE
cases. Most of the cases are detected at late stages and hence high
mortality has been observed. Retrospective analysis of survival cases
reveals a combination of surgical resection of the affected lesion and a

regimen of multiple antibiotics (Orozco et al., 2011). Current ther-
apeutic agents include a combination of ketoconazole, fluconazole,
sulfadiazine, pentamidine isethionate, amphotericin B, azithromycin,
itraconazole or rifampin that may be effective against CNS infections
but have severe side-effects (Schuster and Visvesvara, 2004b). Recent
studies have suggested that alkyl phosphocholine compounds, such as
hexadecyl phosphocholine, exhibit anti-Acanthamoeba properties as
well as the ability to cross the blood-brain barrier and may thus have
value in the treatment of GAE (Walochnik et al., 2002). Miltefosine,
azoles, pentamidine, and cotrimoxazole were used in the treatment of
>90% successfully treated GAE cases. Recent in vitro studies show lo-
peramide, haloperidol, apomorphine, procyclidine, and amiodarone as
promising drugs that can be utilized in the treatment of GAE infections
(Kulsoom et al., 2014).

1.4. Cutaneous acanthamoebiasis

The cutaneous infections are characterized by nodules and skin ul-
cerations and demonstrate Acanthamoeba trophozoites and cysts. The
cutaneous infections are most common in patients with AIDS, with or
without CNS involvement (DELUOI et al., 1996; Casper et al., 1999;
Niederkorn, 2002). The treatment of acanthamoebiasis has not been
well established and is based largely on in vitro sensitivity of the or-
ganism to several chemotherapeutic agents. Therapy is less successful
when CNS involvement occurs. However, successful treatments of cu-
taneous acanthamoebiasis using itraconazole, pentamidine, 5-fluor-
ocystosine, and topical chlorhexidine gluconate and ketoconazole
cream have been reported (Helton et al., 1993; Slater et al., 1994).

1.5. Azole compounds as therapeutic agent against free-living amoebae

Azoles are basically five-member heterocyclic compounds con-
taining one or more different hetero atom out of which at least one must
be nitrogen and another like sulfur or oxygen. Synthesis of compounds
incorporating five-membered heterocyclic rings have been attracting
interest over the past decade because of their various applications such
as propellants, explosives, pyrotechnics and chemotherapy (Chavez and
Parrish, 2009). Azole heterocycles represent one of the most active
classes of compounds which possess a wide spectrum of biological ac-
tivities such as antibacterial, antifungal and antimicrobial activities
(Anderluh et al., 2009; Çolak et al., 2010). In the field of medicinal
chemistry, azoles are widely used and studied class of antimicrobial
agents due to their safety profile and high therapeutic index
(Ashok et al., 2007). Azole compounds with electron-rich nitrogen
heterocycles play an important role in medicinal field and thus they can
bind easily with the enzymes and receptors in organisms through weak
interactions thereby exhibiting various bioactivities (Peng et al., 2013).
Among the important pharmacophores responsible for antimicrobial
activity, the azole scaffolds are considered as a viable lead structure for
the synthesis of more efficient antimicrobial agents (Rostom et al.,
2009).

Azoles inhibit the synthesis of sterols in fungi by inhibiting cyto-
chrome P450-dependent 14α-lanosterol demethylase, which removes
the methyl group on C-14 of lanosterol, a key intermediate step in the
formation of ergosterol in the fungal cell membrane (Bryskier, 2005). In
protozoa, sterol biosynthesis pathway is absent in strict anaerobic or-
ganisms, including human pathogens, Giardia, Entamoeba, Cryptospor-
idium, and Trichomonas (Desmond and Gribaldo, 2009). In a variety of
free-living and symbiotic protist species, some of which are important
human parasites, are reported to synthesize sterols de novo. Thus, the
sterol biosynthesis pathway is present in free-living amoebas like
Acanthamoeba and Naegleria (Raederstorff and Rohmer, 1985, 1987;
Lamb et al., 2015).

Azole compounds alter plasma membrane permeability in fungi
(Bodey, 1992). Thus, the research for effective chemotherapeutic
agents can be focused on those with the mechanisms of action that
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modify the plasma membrane of these eukaryotic organisms, which
causes loss of essential ions and upsets water balance in the cell
(Schuster, 1993).

1.6. Anti-parasitic activity of azoles

Although azoles are originally developed as antifungal agents, azole
compounds have also been explored for activity on kinetoplastids such
as Leishmania since these parasites also require ergosterol for their
metabolism and share this biosynthetic pathway with fungi. Among the
several drugs tested (fluconazole, itraconazole, ketoconazole), only
ketoconazole was found to be consistently efficacious and is now used
for the treatment of cutaneous leishmaniasis infections caused by L.
Mexicana (Nagle et al., 2014). Imidazoles containing compounds have
received considerable attention in the search for leishmaniasis che-
motherapy due to the success of agents such as ketoconazole, micona-
zole, econazole, and clotrimazole in treating fungal infections, thus
lending credence to the possible utility of this broad class of compounds
in other types of infections (Nagle et al., 2014). Ketoconazole and
Itraconazole have been shown to be potent antiproliferative agents
against Trypanosoma cruzi, both in vitro and in vivo. Ketoconazole can
eliminate T. cruzi amastigotes from a tissue culture system. At very low
temperatures also, it was effective in causing changes in the sterol
composition of trypomastigotes, but it did not affect the propagation or
sterol composition of the human tissue host-cell (Goad et al., 1989).

For bacterial infections and pathogenic protozoan parasites, 2-me-
thyl 5 nitro imidazole-based drugs are being used for years
(Mukherjee and Boshoff, 2011; Upcroft et al., 1999). Currently, 2-me-
thyl 5 nitroimidazole derivatives which are available in the market are
tinidazole, ornidazole, secnidazole and are highly recommended for the
treatment of stages of amoebiasis (Azam and Agarwal, 2007). Dioxa-
zole, bearing oxygen and nitrogen both, also displayed significant in-
hibitory activity against E. histolytica (Bhat et al., 2009).

There are numerous anti-amoebic azole drugs used in medical
practice like metronidazole and tinidazole, which kills amoeba in the
host tissue and organ (Singh et al., 2009). Metronidazole is a ther-
apeutic agent of choice for amoebiasis and is also used in combination
with antimicrobial drugs against yeast infections. Under anaerobic
conditions inside the cell, it is reduced to a cytotoxic nitro radical and
binds non-specifically to the organism's DNA and enzymes, which are
thus inactivated (Rasmussen et al., 1997). But high doses of drugs may
have some severe side effects and resistance to this drug in many pa-
thogenic bacteria and protozoa (Adagu et al., 2002). Benzimidazole and
its derivatives are widely used in searches for new drugs (Craigo et al.,
1999). Biological assays against E. histolytica indicate that, with the
very few exceptions, most of the benzimidazole derivatives demon-
strated higher activity than metronidazole (Singh et al., 2009).

Voriconazole has been tested against trophic stages of several clin-
ical isolates of Acanthamoeba spp., and other free-living amoebae such
as Balamuthia mandrillaris, Naegleria fowleri. Voriconazole had little or
no inhibitory or amoebicidal effect upon the growth of Balamuthia
amebae at all concentrations tested but was found to have a potent
inhibitory effect when tested against Acanthamoeba spp. (Schuster et al.,
2006). In 1993, Schuster found that the triazoles, fluconazole and
itraconazole were ineffective against A. polyphaga, while the imidazoles
bifonazole and clotrimazole were effective against all types of Acan-
thamoeba spp. infections (Schuster, 1993). Clotrimazole and miconazole
were reported as equally effective in vitro against Naegleria (Duma and
Finley, 1976). Ketoconazole was found to be as effective as amphoter-
icin B against a clinical isolate of Naegleria but less so fluconazole and
itraconazole (Tiewcharoen et al., 2002). The results of anti-amoebic
activities of azole drugs against free-living amoebae are summarized in
table 1.

Table 1
Comparative list of azole drugs against Acanthamoeba.
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1.7. Current molecular drug targets in Acanthamoeba

An interesting approach to the prediction of potential drug targets,
designated “differential genome display" has been proposed by Huynen
and co-workers (Huynen et al., 1997). The approach relies on the fact
that the genomes of parasites generally code for fewer proteins than the
genomes of free-living organisms. The genes that are present in the
genome of the parasites, but absent in the human host genome, are
therefore likely to be considered as candidate drug targets
(Chaudhary and Roos, 2005).

Acanthamoeba spp. belongs to eukaryotes, therefore they share
functional homologies with the mammalian cells. As many of the drugs
cannot be prescribed at effective concentrations due to their unwanted
adverse effects. This is particularly relevant for the treatment of
amoebal brain infection, where drugs are given intravenously and are
expected to cross the blood-brain barrier to access the central nervous
system for targeting the intracerebral parasite. In this process, drugs
penetrate many other tissues in the body and can affect their physiology
before reaching the target site at the desired concentration. Hence,
there is a need to develop a targeted therapeutic approach
(Siddiqui et al., 2016). The target must be essential for growth and
viability, and for critical stages of pathogenesis (Sakharkar et al., 2004).
Some of the enzymes like trypanothione reductase and PPi-dependent
phosphofructokinase had relatively narrow phylogenetic distribution
and could be proposed as potential drug targets against A, polyphaga
(Ondarza, 2007). Several drugs have been reported which targets the
cell membrane, intracellular components, nucleic acid-acting drugs,
inhibiting protein synthesis, and enzyme acting agents against

Acanthamoeba. The main drug targets that can be identified in human
parasites are discussed as follows:

1.8. Signaling biomolecules

The mechanism of encystation and excystation in Acanthamoeba
encodes the presence of specific signaling molecules such as proteins
composing cyst wall (CSP21) (Hirukawa et al., 1998), cellulose synth-
esis pathway, and polyphenol oxidase (Anwar et al., 2020). The evi-
dence of protein kinase C like genes, cell cycle proteins (CDK, CDC2b)
(Mengue et al., 2019), apoptotic proteins (caspase 1 & 3, MCA Atg3,
Atg8, etc.) (Kosec et al., 2006; Meslin et al., 2007), signaling pathways
such as PI3K, MAP kinase (Siddiqui et al., 2010) provides us with the
potential molecular drug targets in Acanthamoeba (Anwar et al., 2020).

1.9. Enzymes

Amoebae produce a variety of proteases that can participate in the
damage of corneal tissue. Amoebic proteolytic enzymes include serine
proteases (Hadas and Mazur, 1993; Mitra et al., 1995), contact-de-
pendent metalloproteases (Khan et al., 2000), elastases (Ferrante and
Bates, 1988), cysteine proteases (Wu et al., 2018), and cytotoxic pro-
teases induced by mannose-mediated adhesion (Leher et al., 1998).
Proteinases play an important role in various biological actions in
Acanthamoeba, including host tissue destruction, pathogenesis, and di-
gestion of phagocytosed food (Hong et al., 2002; Kim et al., 2006;
Serrano-Luna et al., 2006). The cysteine and serine proteases are re-
garded as the major drug targetsMcGrath, 1999). In Acanthamoeba, the

Fig. 1. Scheme of sterol biosynthesis in Acanthamoeba adapted from (Thomson et al., 2017). All these products were identified by GC-MS.
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cysteine protease inhibitor E64d was found to slow encystment and
inhibit proteolytic activity (Leitsch et al., 2010).

Other enzymes involved in the metabolic pathways of
Acanthamoeba, especially during the transition period of cyst into tro-
phozoite and vice versa, have also been identified (Anwar et al., 2020),
which include isocitrate lyase and dehydrogenase (Mehdi and Garg.,
1987), glycolate, S-adenosyl- L-methionine decarboxylase (Hugo and
Byers., 1993), phospholipase A2 (Mortazavi et al., 2011) fructose bi-
sphosphate aldolase and enolase (Bouyer et al., 2009).

1.10. Sterols

De novo sterol biosynthesis from squalene takes place in the most
eukaryotes and in lower eukaryotes with an aerobic lifestyle and this
reaction occurs in the endoplasmic reticulum (Desmond and
Gribaldo, 2009). Sterols also act as a precursor for regulatory molecules
that modulate growth, division, differentiation and development pro-
cesses (Lepesheva and Waterman, 2007; Nes, 2011). Ergosterol is the
major end-product of sterol biosynthesis in Acanthamoeba. There was
no evidence of cholesterol, desmosterol, campesterol, stigmasterol or 7-
dehydrostigmasterol. Number of canonical ergosterol precursors was
found including lanosterol, 4,4-dimethyl-cholesta-8, 14,24-trienol, 4-
methyl-zymosterol carboxylate, 5,7,24(28) ergostatetra-3-enol. How-
ever 14-dimethyl lanosterol was not detected instead 4,4, dimethyl
cholesta-8-ene which is likely reversible intermediate derivative of 14-
dimethyl lanosterol was detected (Thomson et al., 2017). A summary of
the sterol biosynthesis pathway in Acanthamoeba spp. is presented in
Figure 1.

1.11. Azoles as sterol targeting agents against Acanthamoeba

Since azoles inhibit the synthesis of sterols in fungi by inhibiting
cytochrome P450 dependent 14α-lanosterol, the presence of ergosterol
in the membrane would account for the sensitivity of Acanthamoeba to
the azole compounds. Hence, the isolates of Acanthamoeba spp., were
assessed in the presence of five different azoles such as econazole, mi-
conazole, sulconazole, tioconazole and voriconazole. Except for the
voriconazole other azoles had no effect or had very little effect on the
strains. Voriconazole was the most effective of the drugs tested which
could induce actual cell death. Ergosterol levels were reduced in vor-
iconazole tested cultures and inhibited Acanthamoeba 14α-demethylase
and resulted in inhibition of ergosterol production (Thomson et al.,
2017). Although sterol biosynthesis involves multiple steps, so far only
two of them have become major targets for systemic clinical drugs.
Statins (cholesterol-lowering agents), which act upstream of the
pathway, at the step of mevalonate production (Superko et al., 2012),
while azoles, inhibitors of CYP51, serve as the most widely used anti-
fungals (Denning and Bromley, 2015; Lass-Flörl, 2011). Flucoazole
(oral) and ketoconazole (systemic) have been used for the treatment of
Acanthamoeba keratitis (Amoils and Heney, 1999; Cerva, 1989),
whereas clotrimazole can be helpful in controlling recurrent infections
after penetrating keratoplasty (Driebe et al., 1988). A recent review
published by Elsheikha et al., 2020 also discussed that the use of oral
voricanzole in combination therapy with miltefosine, has shown to
decrease the size of brain lesions and serological titres in an im-
munocompetent patient having GAE a study done by (Webster et al.,
2012). Although, many review articles have been published on the
treatment of Acanthamoeba infections, but this is the first review of its
kind which focuses only on the azoles and their synthetic libraries along
with their nanoconjugation for their potential use against Acantha-
moeba.

1.12. Use of nanoparticles to improve drug efficacy

Nanoparticles are the elementary structures of nanotechnology and
are important materials for fundamental studies and various

applications including their bioactivities (Patil et al., 2012). Synthesis
of a variety of drug particle of nano-size along with their specific
physical and chemical properties has been involved in the preparation
of novel therapeutics (Brigger et al., 2012; Merisko-Liversidge et al.,
2003). By controlling the definite structure of nanoscale dimensions,
their surface structure can be modified, which can help in the improved
bioavailability of poorly absorbed drugs and a drug can be delivered
efficiently.

The development of novel and efficient nanoparticle-based anti-
microbial drugs against resistant microbes is among the major interests
in biomedical research (Rai et al., 2012). Nanoparticles used as drug
delivery agents are generally <100 nm in dimension and consist of
different biodegradable materials such as natural or synthetic polymers,
lipids, or metals. Nanoparticles are taken up by cells more efficiently
than micro molecules and therefore could be used as effective transport
and delivery systems (Suri et al., 2007). By loading drugs into nano-
particles through physical encapsulation, adsorption, or chemical con-
jugation, the pharmacokinetics and therapeutic index of the drugs can
be significantly improved (Zhang et al., 2010). A few types of nano-
particles including liposomes, polymeric nanoparticles, solid lipid na-
noparticles and dendrimers have been widely investigated as anti-
microbial drug delivery platforms. The most widely used nanoparticles
include gold, silver, titanium oxide and iron nanoparticles (El-
Ansary and Al-Daihan, 2009). Figure 2 summarizes the advantages of
nanoparticles in suitable drug delivery applications.

1.13. Nanoparticles used against Acanthamoeba

Gold nanoparticles are well suited for a wide range of biological
applications because of their unique range of biological applications
because of their physical and chemical properties (Pissuwan et al.,
2010). As gold is inert, it exhibits weak cytotoxic effects; thus it is
considered as the nanoparticle of choice when performing conjugations
with various biomolecules and ligands to develop strategies for tar-
geting pathogens (Connor et al., 2005). At present, there are only few
reports for the use of nanoparticles against free living amoeba. Among
metal nanoparticles, gold and silver conjugated with different drugs
and natural compounds have been effective against A. castellanii
(Anwar et al., 2018c; Aqeel et al., 2016; Padzik et al., 2018.,
Niyyati et al., 2018). In a recent study, gold conjugated nanoparticle
enhanced the effect of chlorhexidine gluconate against anti-
acanthamoebic drugs. Amoebicidal assays performed revealed that al-
though gold conjugated chlorhexidine and chlorhexidine alone ex-
hibited amoebicidal properties but gold conjugated chlorhexidine

Fig. 2. Effects of nanoparticle on drug delivery.
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showed higher toxicity against A. castellani than chlorhexidine alone
(Aqeel et al., 2016). The increased cytotoxicity of gold nanoparticles is
due to the high reactivity of nanoparticles with living cells as well as
easy translocation of drugs into the living cells enhancing drug efficacy
(Dykman and Khlebtsov, 2011). In recent studies by our research team,
it was reported that the enhanced effects of antifungal drugs nystatin,
fluconazole, amphotericin B conjugated with gold nanoparticles on A.
castellanii. Since these drugs target ergosterol pathway which is an es-
sential component of A. castellanii membrane, their conjugation with
nanoparticles resulted in the increased bioactivity (Anwar et al., 2019f).

In another research by our team reported that the cinnamic acid
(CA) conjugated with gold showed the enhanced effect of anti-acanth-
moebic activity (Anwar et al., 2018c). As CA is a natural organic
compound that is found in variety of plants and chemical constituent of
cinnamon and has antimicrobial and antibacterial properties.

Cobalt is another metal which has shown potential as for several
biological studies (Czarnek et al., 2015). In one of the studies done by
our team, we have shown antiacanthamoebic effects of different cobalt
nanoparticles against trophozoites and cysts. Three different composi-
tions of CoNPs (Co3O4, Co(OH)2, Co3(PO4)2) were tested against A.
castellanii. The smallest sized granular cobalt oxide NPs showed
minimum anti-amoebic effects as compared to Co3(PO4)2, and Co(OH)2
which showed better overall effects (Anwar et al., 2019d).

The plasma membrane of Acanthamoeba is made up of 25% phos-
pholipids (Siddiqui and Khan, 2012) and oleic acid was found to be
amongst the most abundant fatty acid in every phospholipid class
(Palusinska-Szysz et al., 2014). Thus, fatty acids have also been known
to possess antimicrobial and antibacterial properties (Desbois and
Smith, 2010). A research done on oleic acid against Acanthamoeba have
shown significant antiacanthamoebic effects, but oleic acid conjugated
with silver nanoparticles have exhibited better effects than oleic acid
alone. Moreover, oleic acid has shown only 18% toxicity to HeLa cells
and this makes OA and OA-AgNPs safer alternatives against Acantha-
moeba infections (Anwar et al., 2019a).

In another report, antidiabetic drugs like Glimepiride, Vildagliptin
and Repaglinide were tested against A. castellanii and they were con-
jugated with AgNPs to enhance their antiacanthamoebic activity. All
three drugs showed significant anti-amoebic effects and blocked en-
cystation. Vildagliptin-AgNPs have exhibited antiacanthamoebic effects
on both trophozoites and cysts form at much-reduced concentrations.
Hence these antidiabetic drugs may serve as a potential drug target in
the treatment and management of A. castellanii infections (Anwar et al.,
2019e).

Acanthamoeba keratitis incidents are mostly happening among the
contact lens wearers and as the number of cases is increasing and often
applied therapy is unsuccessful, proper hygiene and effective contact
lenses disinfection are crucial for the prevention of the disease. There is
a need to enhance the disinfecting activity of contact lens solutions to
prevent amoebic infections. Studies done by (Padzik et al., 2019) and
his team have observed in their research that anti-amoebic activity was
enhanced when the contact lens solutions were conjugated with gold
and silver nanoparticles with low cytotoxicity.

Some plant metabolites such as flavonoids, alkaloids or terpenes
present anti-parasitic activity and among them, tannins are poly-
phenolic plant metabolites with confirmed anti-obesity, anti-diabetes,
antioxidant and anti-microbial activities (El-Sayed et al., 2012;
Hajaji et al., 2017). In one of the studies tannic acid-modified silver
nanoparticles (AgTANPs), pure silver nanoparticles (AgNPs) and pure
gold nanoparticles (AuNPs) was investigated against strains of Acan-
thamoeba spp. AgTANPs were well absorbed by the trophozoites and did
not induce encystation. The most significant anti-amoebic effect in re-
lation to cytotoxicity was observed in AgTANPs against Neff and P13
clinical strain for which IC50 was the most significant in relation to
cytotoxicity. Hence AgTANPs were more significant than pure AgNPs
and AuNPs (Padzik et al., 2018). In recent reports, titanium oxide na-
noparticles have shown in vitro antiacanthamoebic effects triggered by

ultraviolet radiations (Gomart et al., 2018), while doping with zinc
oxide nanoparticles have shown improved photochemotherapy
(Imran et al., 2016).

Effects of AgNPs conjugated with amphotericin B, nystatin, and
fluconazole against A. castellanii has also been studied by our team.
Amoebicidal results in this research revealed that drug-coated AgNPs
are more effective as compared to drug alone. Nys-AgNPs showed re-
markable anti-amoebic effects at both 10 and 5 μM concentrations.
Drug coated with AgNPs pre-treated with amoeba resulted in significant
decrease in host cell cytotoxicity (Anwar et al., 2018b). The effects of
different nanoparticles which have so far been found effective against
Acanthamoeba and other free-living amoebae are summarized in
Table 2. Nanoparticles conjugates have shown promising results against
free-living amoebae, however, none of the studies so far have identified
their in vivo potential or exact mode of action. These gaps in the re-
search are currently the limiting factors in the development of nano-
medicine against infections caused by free-living amoebae.

1.14. Perspective

Although recent studies have progressed the understanding of the
biology of FLA protists and their detection in human hosts, but our
knowledge of virulence factor and mechanisms of pathogenesis remains
unclear. For the past several decades, there has been little improvement
in the morbidity and mortality associated with Acanthamoeba diseases.
The high mortality is due to the lack of familiarity with these amoebic
diseases, delay in diagnosis and lack of optimal antimicrobial therapy.
Correct diagnosis and treatment of these diseases has been a compli-
cated issue for the researchers all over the world. Hence, there is an
urgent need for an improved understanding of the possibilities for
therapeutic actions towards the pathophysiology and pathogenesis of
Acanthamoeba. Novel targeted drug therapy remains the only viable
option to tackle these diseases. On the other hand, nanoparticles play
an important role in drug delivery platforms where they enhance the
efficacy of the drugs. However, at present there are only few reports for
the use of nanoparticles against free living amoeba. This review sum-
marizes the importance and current progress of the azoles and nano-
particles, as a major potential combination for the advancement in the
antimicrobial chemotherapy against the diseases caused by
Acanthamoeba.

One of the pivotal drugs target against Acanthamoeba is sterol bio-
synthesis pathway, where azoles are known to inhibit the action of
cytochrome P450 dependent 14α lanosterol which leads to cell lysis/
cell necrosis. Hence, azole compounds play an important role in bio-
synthesis pathways and thus they can bind easily with the enzymes and
receptors in organisms through weak interactions thereby exhibiting
anti-amoebic properties. Heterocyclic scaffolds present in natural as
well as synthetic compounds possess a diverse range of biological ac-
tivities. They play an important role in biochemical processes because
the side groups of the most typical and essential constituents of living
cells, DNA and RNA, are based on aromatic heterocycles (Dua et al.,
2011). Azoles are subdivided into several classes including pyrazoles,
imidazoles, triazoles, tetrazoles, oxazole, thiazole etc., however, most
of the azole groups operate via a common mode of action, they prevent
the synthesis of ergosterol, which is the major component of plasma
membranes in fungi and FLA. Several azole compounds like vor-
iconazole, fluconazole, ketoconazole, itraconazole etc., have been
tested against trophic stages of Acanthamoeba isolates which were
found to have potent inhibitory effects on amoebae growth and in some
cases their viability. Amongst different azoles, some case studies have
suggested that the voriconazole can be considered as a strong agent for
the treatment of the AK, as it inhibits the proliferation of trophozoites
and benefits from being easily administered either orally as tablets or
topically in eye drops (Tu et al., 2010). However, besides some com-
monly known azole antifungal drugs, no work has been done to opti-
mize the lead compounds on synthetic libraries of azoles by utilizing
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medicinal chemistry approach. Screening of libraries of synthetic azoles
may prove to be an effective targeted therapeutic approach against
Acantheamoeba infections, as described above by the reported evidence.

Hence, based upon the discussed information in this review, we
suggest that azole scaffolds can be modified to create a new range of
azole therapeutics which may lead to increased effectiveness of the
drug potency against Acanthamoeba. With the above suggested in-
vestigations, the azoles derivatives may act as a new leading drug
against Acanthamoebic infections. In our continued studies, we have
been trying to optimise the diverse range of azole scaffolds with and
without the conjugation with nanoparticles for the drug development
and delivery. We expect that this combinatorial approach of using di-
versified azoles scaffolds with the conjugated nanoparticles may lead to
the development of novel therapeutic agents against this pathogenic
parasite Acanthamoeba castellanii.
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