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Abstract. For patients with disabilities, particularly those with mo-
tor disabilities and difficulties to interact with computer and devices,
Human-Machine Interaction (HMI) research may provide them new ways
to solve this problem. In this paper, we propose the Brain-Computer In-
terface (BCI) approach as a potential technique. The patients may use
a portable electroencephalography (EEG) device to give instruction to
a computing device via eye movements. Classification algorithms have
been investigated in past research to allow detection of eye movement.
We would like to investigate another technique, namely the Symbolic
Aggregate Approximation (SAX) algorithm, to find out its suitability
and performance against known classification algorithms such as Sup-
port Vector Machine (SVM), k-Nearest Neighbour (KNN) and Decision
Tree (DT).
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1 Introduction

In many everyday activities today, interactions with technology are made easier
with modern human-machine interaction (HMI) approaches. For example, one
can use facial recognition to authenticate his identity or give instruction using
gestures to interact with a large display dashboard. When it comes to assistive
technology for users with disabilities, HMI will play an crucial role to provide
accessibility to these users.

Users who belong to this category includes patients who suffer from amy-
otrophic lateral sclerosis (ALS), cerebral palsy or spinal cord injury. This group
of users have very restricted movements and often will not be able to interact
with a computer through conventional input approaches. One possibility is to
use eye tracking as a computer input and interaction method [17][5]. However,
eye gaze-based approach may face problem in determining a gaze from mere
watch or gaze as an instruction [5]. Another option with potential is to utilize
the brain-computer interface (BCI) to enable HMI. BCI is the approach that
enables communication between a brain and a device. Suitable sensors are used
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to capture brain signals. These signals can be used with techniques, such as
machine learning, to provide cues that may be interpreted as instructions.

Classification of eye movements using Electroencephalography (EEG) signal
may become an attractive approach if the signals produced can generate dis-
tinguishable signal patterns between different movement classes. However, one
needs to investigate the usage of portable EEG devices to enable usage of this
type of HMI in more situations and environments. This also means there will be
limited number of channels available, and signal sample may be considered as
lower quality as compared to the laboratory grade EEG capturing devices. On
top of this trade-off, one may also expect worst classification performance with
fewer channels and reduced signal quality. We intend to apply suitable classifica-
tion or pattern matching techniques on commercial-off-the-shelf (COTS) EEG
devices and the algorithms should be producing good detection accuracy even
though there may be limitation to the amount and quality of the data.

In this paper, we wish to investigate the suitability of the Symbolic Aggre-
gate approximation (SAX) algorithm [12] in detecting simple eye movements
from EEG signals. We argue that SAX may be a more efficient approach as
compared to classification algorithms. The paper will present evaluation of the
SAX algorithm used in detecting selected eye movement contexts.

The structure of the paper is as follow: Section 2 presents related work in
the selected area of study. Section 3 introduces the proposed approach and the
SAX algorithm. Section 4 discusses the obtained results and observations and
the final section concludes the paper.

2 Related Work

Brain-computer interface (BCI) is a combination of hardware and software sys-
tems allow people with severe or partially disabled to communicate with their
environment. BCI goal is to improve quality of life, and its full potential has
yet explored. Much research has so far focused on people with severe motor
disabilities. Example HMI is being investigated as techniques that use eye move-
ments (EOG [3] or video-based eye gaze tracking [15]); body movement (limited
limb movement, gestures head, facial expressions and so on.) [8] and brain sig-
nals (Electroencephalography - EEG) [7]. In this paper, the focus of the BCI
technology will be based on EEG.

The first recorded electroencephalography effort is usually referred to the
work of Hans Berger (1873-1941) in discovering and measuring electrical activity
from the surface of the human head [4]. This marked the beginning of EEG
technology. EEG has been used in laboratories settings for various purposes,
including neuroscience, medical, cognitive science etc. The setup used in such
settings are commonly complex and non-portable. It is only in the last decade,
consumer grade EEG devices have been developed and made available in the
market [10].

The usage of EEG as an BCI input device can be an attractive option for
patients with movement disabilities, such as ALS or spinal cord injury. They
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can interact with computers and devices by using BCI approach. For exam-
ple, Carrino et al. proposed to use an Emotiv EPOC device to enable control
of an electric wheel-chair in a self-paced manner [6]. The investigation tested
the EPOC using motor-imagery technique to perform wheel-chair control. The
best results obtain was not higher than 60%. Another example is the work of
Vourvopoulos and Liarokapis. They have investigated both Emotiv EPOC and
Neurosky devices (Mindset and Mindwave) to evaluate their suitability in nav-
igation [18]. The Emotiv EPOC gave better performance, though the authors
mentioned that latency is an issue. Navuluri et al. carried out an investigation
to predict drivers’ intentions while driving using the Emotiv EEG device [16].
EEG signal has also been applied to control a 6-degree-of-freedom robotic arm
[1], where an Emotiv EPOC was used for this purpose. The preliminary tests
have verified that simple pick and place tasks can be performed by an operator
after a relatively short learning period.

When it comes to algorithms for context detection using EEG signal, classifi-
cation algorithms have been utilised in different previous work. Liu and Sourina
applied Support Vector Machine (SVM) to enable detection of emotions using
EEG signal obtained from an Emotiv EEG device [14]. In pattern recognition,
the k-nearest neighbours algorithm (KNN) is a non-parametric methods used
for classification. In the work of Li et al., they used KNN to detect three levels
of attention [11]. There are also other techniques used such as Principle Com-
ponent Analysis (PCA) [13], Independent Component Analysis (ICA) [2] and
Multi-layer Perceptron [9].

3 Using SAX for Eye Movement Detection

In this paper, an investigation has been carried out to evaluate the feasibility of
the SAX algorithm for eye movement context detection based on EEG signals.
Apart from SAX, three classification algorithms have been selected for compar-
ison purposes - Support Vector Machines (SVM), K-nearest Neighbour (KNN)
and Decision Tree (DT). The SAX algorithm converts the EEG signals (each
channel records signals that form time series) into symbolic sequences. It can be
seen as an extension from the Piecewise Aggregate Approximation (PAA) tech-
nique. The latter divides a time series into equal parts. The arithmetic means of
the signal points from each of these parts are then calculated. With the newly
computed mean values, it forms new time series that may be better suited for
pattern recognition. This is depicted in Figure 1, where the coloured level lines
are the PAA representations.

The SAX algorithm extends PAA by converting the mean values into sym-
bols, such as ”a”, ”b” and ”c” as shown in Figure 1. One can decide the number
of symbols to be distributed, so that the relevant ranges will be defined to sep-
arate the PAA representation levels into repective ”zones”. As depicted as light
grey lines around 0.5 and -0.5 in Figure 1, it divides the y-axis into three zones.
Any mean levels belongs to the higher zone will be converted to the symbol ”c”.
Similarly, the mean levels between -0.5 and 0.5 and below -0.5 will be converted
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Fig. 1. Example representation of PAA and SAX from a time series

to ”b” and ”a” respectively. With this conversion, a symbolic string series is the
new representation of the time series. For the time series in Figure 1, we then
can say it is represented as ”ccccbaaa” after applying the SAX algorithm.

The advantage the SAX algorithm brings is the possibility to apply string
pattern matching techniques to detect patterns in time series. It also help to
reduce the dimensionality of the original time series data. More importantly,
there exist different string pattern techniques that are efficient and accurate. By
enabling these existing techniques for time series pattern matching, it may help
to improve the accuracy for the latter.

3.1 Data Collection and Experiment Setup

For the data collection, EEG data were recorded from 15 subjects (11 males,
4 females; age range 19 - 31). The subjects had normal or corrected-to-normal
vision and had no history of neurological disorders. Each subject is requested
to perform three types of movements - eye blink (M1 ), eyeball rotation (M2 )
as well as turning of eyeball to the left and right (M3 ). These movements have
been selected as they are common movements used to instruct or interact with
a computer. Each recording involved 10 repetitions of each movement respec-
tively. These three movements data are the first three sets of measurement data.
Besides these three sets of measurements, a forth set (M4 ) was collected from
the subjects. This set contains all three movements.

The subjects were seated in a comfortable chair at a distance of approxi-
mately 70cm from a 13 inches (LCD) panel in the lab. The recording environment
was kept from any external disturbance so that no one gets distracted during
the recording. The screen is at eye level position. The subjects were instructed
to relax and stay as placid as much as possible. This is to avoid any possible ef-
fect on EEG signals with muscle artefact. The overall preparation process takes
less than 5 minutes. The experiments carried out during evening time where
the participants able to concentrate without any lack of sleep. The timing for
the movements in each recording was pre-defined. Hence, it is possible to label
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Fig. 2. Example EEG signal captured using Emotiv Testbench. Red boxes indicate eye
blink movements.

Fig. 3. Example EEG signal captured using Emotiv Testbench. Red boxes indicate
eyeball rotation movements.

the recorded signal based on these timing. The labelled data will be used for
classification training and evaluation.

As shown in Figure 2 and 3, there are regions of signals captured that dis-
played a spike or change in amplitude when an eye movement is carried out. If
the signal patterns between non-movement and a movement are visually different
or distinguishable, we would expect this pattern change behaviour can be made
detectable using suitable machine learning techniques. Also, techniques such as
SAX should also be able to distinguish signal patterns between non-movement
and eye movements. The next sub-section will describe the steps carried out to
process and analyse classification of EEG signal for eye movement detection.

3.2 Data Pre-processing and Classification

The raw EEG data was recorded using the tools provided by Emotiv EEG.
The sampling rate of the raw data was 128Hz for all channels. First step of
pre-processing was to perform basic filtering of the signal to reduce noise in
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Fig. 4. Example mean feature extracted from EEG signal for the movement eye blink.
Red boxes indicate eye blink movements.

Fig. 5. Example standard deviation feature extracted from EEG signal for the move-
ment eye blink. Red boxes indicate eye blink movements.

the EEG signals. EEGLAB toolbox was used to perform the feature extraction.
For the classification of the movements, simple statistical features, namely mean
and standard deviations, have been selected. The raw EEG signals was down-
sampled to 128Hz for all channels. For the feature extraction, the signals from
each channel was segmented into windows of 0.25 seconds. No overlapping of
window was used.

The features generated will be more useful for the intended classification and
pattern recognition, because not only the process reduces the dimensionality of
the original data, but it may also highlight particular signal characteristics of the
signal, so that the patterns are more distinguishable among the different classes.
For example, as shown in Figure 4 and 5, the computed features for selected
channels are more distinguishable than the rest, and will be useful to produce
models that can detect the expected movements.

The outcome of the feature extraction is used together with the labels at
the corresponding timing of the windows as data for both training and testing.
For the three classification algorithms, the classifier learner in MATLAB is se-
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Table 1. Evaluation of Accuracy for all three classification techniques

Average accuracy (%)
Movement SVM KNN DT

Eye blink 86.87 81.37 84.17

Eyeball rotation 91.29 87.39 88.70

Eyeball turn left & right 83.65 79.33 81.67

All three movements 71.17 68.35 69.33

lected to produce the desired models and perform the evaluation. As for SAX,
the resulted time series of the features extracted will be converted into string
sequences. For this paper, evaluation results for the string sequence length of
four will be presented. Other lengths have been also used for comparison and
a sequence of four string characters gave overall best outcome. From the train-
ing set, the string sequences that represent movements in each dataset were
extracted. Evaluation for the classification is done by verifying the number of
correctly matched movement string sequences with the test dataset.

4 Results and Discussions

Table 1 presents the summary of the classification accuracy for the SVM, KNN
and DT algorithms. Generally, SVM performed the best among three algorithms
for all four sets of data (M1-M4 ) (highlighted in bold). Second highest accuracy
was produced by DT consistently across all four sets of movements data. Among
the four set of data, the movement eyeball rotation achieved the highest accuracy
(91.29%) with SVM. The forth dataset that contains all three movements in one
measurement obtained the lowest accuracy as compared to the single movement
measurements. The highest among the classification algorithms was SVM with
71.17%, following by DT (69.33%) and KNN (68.35%).

SVM performed better overall because its ability to detect best separation
between classes and is not to sensitive to outliers. Nevertheless, the other two
algorithms were not too much lower in the respective achieved accuracy for all
four sets of measurements. The single movement measurements performed way
better than the measurements that include all three movements (M4 ). This is
mainly due to the more simplistic model for measurements (M1-M3 ). Each of
these sets only contains patterns that different between a selected movement
and no movement. The movements recorded in the forth data set (M4 ) are
three different eye movements, but there could be similarity between them. This
situation may caused the classification algorithms some trouble to successfully
tell two or more movements apart.

The accuracy obtained from the evaluation of the SAX algorithm is found
in Table 2. The evaluation was carried out under two different settings: SAX 1
used data from 10 subjects to extract top five the SAX movement string patterns
then tested on the data from the exact same 10 subjects. SAX 2 used the same
exact five patterns but tested them on measurement data from 5 subjects whose
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Table 2. Evaluation of Accuracy for SAX

Average accuracy (%)
Movement feature SAX 1 SAX 2

Eye blink mean 89.60 91.60

Eye blink standard deviation 92.60 93.60

Eyeball rotation mean 88.40 86.8

Eyeball rotation standard deviation 83.20 92.0

Eyeball turn left & right mean 91.2 94.8

Eyeball turn left & right standard deviation 87.40 85.6

Table 3. Evaluation of Accuracy using SAX algorithm for all movements

Average accuracy (%)
Movement Mean Standard Deviation

All three movements 71.37 90.29

data was not part of the training data. The highest accuracy for each movement
is highlighted in bold.

From Table 2, it is observed that generally eye movement detection using SAX
algorithm performed better than the three classification algorithms. The only
exception will be eye ball rotation movement, where the improvement may not
be significant (SAX using standard deviation, 92% compared to SVM 91.29%).
Also, the evaluation for SAX-based detection utilised only one single feature at
a time. Comparing the settings SAX 1 to SAX 2 and which feature should be
considered, we would want to discuss performance of SAX 2 as it was testing the
model from SAX 1 on a new set of data from additional subjects. The evaluation
results for SAX 2 may be closer to real world performance. For eye blink and
eye rotation, the results from SAX applied on standard deviation feature only
were higher than mean. For eye ball turn, the mean feature achieved the highest
accuracy. From these results, the SAX technique does produce relatively better
accuracy with only one feature used. It can be seen as more efficient in terms on
computation.

As for the evaluation for all movements (M4 ) using SAX, the results are
summarised in Table 3. The result using mean features and SAX performed
similar to the result from SVM. But the accuracy achieved by SAX using only
standard deviation is the highest among other two results. This also means that
by using standard deviation to create string patterns using SAX, the movements
patterns for all three movements can still be detected and distinguished from
each other.

To investigate whether one can also use only one single EEG channel for
eye movement detection, we analysed the detection accuracy based on single
channel. The results is summarised in Table 4. It is observed that by selecting
a particular channel only, one can achieved higher detection accuracy. Among
all channels, the detection obtained by using only the channel T8 has almost
100% accuracy. While this may be too ideal, but the evaluation using individual
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Table 4. Evaluation of Accuracy using SAX algorithm for all movements

Average accuracy (%)
Channel Mean Standard Deviation

F7 69.63 78.14

F8 50.37 86.30

FC5 94.81 89.63

FC6 73.70 97.78

T8 68.33 99.63

channel showed that one can use only one or two channels, such as T8 and FC6,
for the movement detection to achieve good accuracy.

Overall, the movement detection using SAX algorithm showed positive results
that indicated its potential to be a suitable technique for movement detection
using EEG signal. As compared to typical classification algorithms such as SVM,
KNN and DT, SAX algorithm allows accurate movement detection with only
one feature extracted from one or two channels of EEG signal obtained from a
COTS EEG device, such as the Emotiv EEG. This will allow better recognition
efficiency since less data needs to be processed. It is also seen as attractive to be
applied on resource limited situations such as wearable and portable EEG for
everyday activity scenario.

5 Conclusion

In this paper, we have presented an investigation of EEG-based eye movement
detection using three classification algorithms, namely SVM, KNN and DT, and
SAX. It is observed that SAX-based approach achieved higher accuracy with
fewer features and channels. This indicates a potential in using SAX for accurate
eye movement detection in a resource-limited scenario, such as real-time eye
movement detection using portable EEG device.

As future work, we wish to look into possibility to implement the identified
best settings as a prototype wearable system that allows accurate eye movement
detection using the Emotiv EEG device. This will allow us to verify and validate
the results obtained in this investigation in a real-life scenario.
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