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Abstract—Due to the increasing proliferation of multimedia
signals, specifically, image, video and their applications in our
daily life, it is indispensable to have methods that can efficiently
predict the visual quality of images with high measures of accu-
racy. Image processing procedures often introduce undesirable
distortion in images that require fixing; preferably consistent
with a human visual system (HVS). Therefore, an image quality
assessment(IQA) framework should be highly accurate as well
as computationally efficient; making it viable to be used with
different image processing applications, especially, with real-time
applications. Motivated by the need of appropriate objective
models, we propose a novel objective IQA algorithm, namely,
Permutation Entropy Deviation Index (PEDI), based on the
working principle of permutation entropy (PE). Permutation en-
tropy helps in detecting and visualizing changes related to struc-
tures with the correlation between successive samples instead
of considering magnitudes of the signal, and since, perception
of an image to the HVS changes more because of structural
changes in an image rather than that of visible errors i.e. MSE.
Therefore, in this work, we have exploited this property to predict
image quality efficiently. Moreover, entropy itself is sensitive to
variations, whereas the permutation entropy captures pattern
variations in an image.

Furthermore, each local patch in the distorted image under-
goes a different level of distortion due to structural differences.
This motivates us to use permutation entropy to exploit the global
variations in the local quality map for image quality assessment.
With standard deviation as the pooling strategy, we observed
that permutation entropy between reference and distorted images
could predict image quality with high measures of accuracy.
Experimental results on a subjective database, CSIQ, have shown
that the proposed model outperforms most of the existing STOA
image quality assessment models and highly correlates with
subjective judgements. 1.

Index Terms—Image quality assessment, permutation entropy,
visual perception, full reference, standard deviation pooling.

I. INTRODUCTION

Usage of multimedia signals and their applications have
increased tremendously in our daily life. These visual signals
get contaminated with different types of distortions during
the acquisition, transmission and reception process. Most
importantly, human vision is the ultimate receiver of these
signals. Therefore, it is an essential task of a modern day image
processing system to produce high-quality visuals compatible
with human perception.

1The MATLAB code of the proposed model will be made available online
after thorough performance evaluation.

Several calibrated databases have been developed to explore
areas related to image quality assessment (IQA) and its appli-
cations. The most popular full-reference IQA metric is mean
square error (MSE), calculated by averaging the square root
difference of intensities of two images. It is rather simple to
calculate and have well defined physical meanings, however,
its results are not consistent with human visual perception [1]–
[9]). For years now, many efforts have been put into place
to develop image quality assessment methods consistent with
the human visual system (HVS). Generally, quality assessment
models are categorized as full-reference, reduced reference
and no reference IQAs. In FR-IQA, the reference image is
available. In RR-IQA, partial information or features of the
reference image are made available whereas, in NR-IQA, there
is no reference image available [10]. Many FR-IQA models
have been developed using a two-step common framework;
calculation of local quality map followed by pooling strategy
to predict the final quality score of an image. [11]–[15]. For
our proposed model, we have used this two-step framework
with permutation entropy (PE) being used as the similarity
function for local quality map formation, followed by standard
deviation as the pooling mechanism.

In this work, we have utilized the property of entropy in
capturing structural changes, we have used it as a similarity
measure in our proposed model to build the local quality map.
Rest of the paper is organized as follows. In Sect.II, a more
detailed description for PE is provided including an illustrative
example. Also, complete algorithmic details of the proposed
model are also presented in this section. The experimental
results with details of database and performance evaluation
measures are presented in Sect.III. The paper is concluded in
Sect.IV.

II. METHODOLOGY

In this section, the algorithmic details of the proposed
criterion, PEDI, for IQA are presented. Moreover, the section
starts with brief details of permutation entropy, followed by
the explanation of the local quality map, pooling strategy and
lastly, complete details of the proposed model are discussed.

A. Permutation Entropy

Permutation entropy [16] is a robust complexity measure
works on the principle of correlation between neighbouring el-
ements in a sequence. In recent years, entropy and its variants,



i.e. sample entropy, approximate entropy, maximum relevance
and permutation entropy, have been used for feature extraction,
noise removal and anomaly detection etc., in various areas of
biological signal processing, computer science and electrical
engineering [17]–[19]. PE, in particular, has been used a lot
with EEG signals to capture and detect changes in epileptic
seizures, in analyses and classification of heart rate variability
data, in discriminating sleeping stages, and in distinguishing
brain states etc. [20]–[22]. It takes into consideration the
structural variations emanating from successive elements in
a sequence. Initially, a permutation order is set and based on
that the input sequence is encoded and arranged into symbols
[23]. Then, the normalized permutation entropy is computed
for the coded sequences as defined in equation 1 [16],

PEnor = − 1

(n− 1)

d!∑
c=1

pclog2(pc) (1)

where, d and pc reflects the order of permutation and rela-
tive frequencies for all permutation possibilities, respectively.
Another important parameter used in calculating pc is τ , which
indicates the delay between two successive samples in the
sequence.

Moreover, complete details of PE, including, algorithmic
explanation and recommendations for selection of input pa-
rameters can be found in [16]. The examples in fig. 1 and 2
illustrate how PE works on real-world problems. An utterance
of an underwater acoustic sonar sequence [24] of a ship is
considered. The signal is of 9-second duration, sampled at
44.1 kHz. It is analyzed at τ = 1, means one sample shift per
window with each window having 512 samples.

Moreover, an approximate of 397K windows during 9
seconds were processed in less than a second, which implies
that permutation entropy can be useful in time-constrained
applications. Since each window contained samples less than
6!, therefore, the permutation order was set to be d = 5.
Furthermore, additive white Gaussian noise (AWGN) was
added to the signal at an SNR of 15 dB to keep the difference
between the original sequence and noisy sequence to a bare
minimum. The noise was added to the signal after a time lapse
of 5 seconds, it can also be seen in the two plots of fig.
1. Normalized permutation entropy was calculated for both
the original and noisy sequences. Though the magnitude of
noise added to the sequence is very low, but even then the
drastic change in entropy values of both the sequences can be
observed clearly from fig. 2.

In our proposed method, permutation entropy is calculated
for both the reference and distorted images in horizontal and
vertical directions. The computed directional entropy of both
the images are combined respectively to form quality maps
for the two respective images i.e. mref and mdis. Further
mathematical details are presented in Algorithm 1.
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Fig. 2Algorithm 1 Permutation Entropy Deviation Index (PEDI)

1: Inputs: Ref. Img.︸ ︷︷ ︸
GS,R(.)∈[0,1]

R(x, y), Dis. Img.︸ ︷︷ ︸
GS,D(.)∈[0,1]

D(x, y),

Order d = 3, Delay τ = 1, Window Size
wn = 4

2: Output: Quality Score Qs ∈ [0, 1]
3: function PEDI(I(x, y), d, τ), wn

4: Initialize: T ← sizerow or col(R(x, y)), η = 0.05, Total
Perm. Patterns.,πj ,← for d; (j = 1, . . . , d!)

5: for t = 1 to T do
6: SeqRr

← R(t, :), SeqRc
← R(:, t), SeqDr

← D(t, :)
and SeqDc

← D(:, t)
7: for i = 1 to T ⇒ Step→ wn do
8: Calculate Rank:(of all Seq(s) in 6), which leads to,{ri,

. . . , ri+n−1 ← xi, . . . , xi+n−1}.Where ranks, ri,
are indices of values, xi sorted in ascending order.

9: if Compare(πk, ri)︸ ︷︷ ︸
{k=1,...,d!},{i=1,...,i+n−1}

then

Zk = Zk + 1
10: end if
11: Compute: Prob.︸ ︷︷ ︸

∀πj

, p′j ← zj/
∑
zk

12: Select p′j > 0, ∀Seq(Rr,Rc,Dr,Dc)

13: Compute: (Ixref , Iyref , Ixdis , Iydis)

= −1
(d−1)

d!∑
j=1

p′j log2(p
′
j)

14: end for
15: end for
16: Compute: mref ←

√
I2xref + I2 ′yref

mdis ←
√
I2xdis + I2 ′ydis

17: Compute: LQM ← 2mref×mdis+η

mref .
2+mdis.

2+η
(See Eq:2)

18: Compute: Qs ← STD(LQM) (See Eq:3)

B. Local Quality Map and Pooling Strategy
Local quality map (LQM) reflects deformity levels of small

regions/ patches in a distorted image. After calculation of PE



(a) Pristine Image (b) DMOS=0.043 (c) DMOS=0.142 (d) DMOS=0.341 (e) DMOS=0.471 (f) DMOS=0.750

(g) Map of (a) (h) Map of (b) (i) Map of (c) (j) Map of (d) (k) Map of (e) (l) Map of (f)

(m) QM of (g) & (h) (n) QM of (g) & (i) (o) QM of (g) & (j) (p) QM of (g) & (k) (q) QM of (g) & (l)

Fig. 3: (a)-(f) Example of reference (r) and Gaussian Blur (GB) distorted (d) images taken from the Computational and
Subjective Image Quality (CISQ) [25] database with respective DMOS scores indicating different levels of distortion. (g)-(l)
Permutation entropy magnitude images (mref and mdis) of reference and distorted images illustrated in first row. (m)-(q)
Illustrates the associated quality maps between permutation entropy map of reference and distorted images, where brighter
grey-level means higher similarity. For each presented distorted image from left to right, the calculated objective quality scores
with PEDI are 0.1877, 0.3218, 0.3698, 0.3818 and 0.3878, respectively. Further, the values for the three performance evaluation
criterion; SRC, PCC and RMSE, for these set of images were calculated to be 1, 1, and 1.2428× 10−16, respectively

map for both reference mref and distorted mdis images, LQM
can be calculated as in equation 2,

LQM(i, j) =
∑
∀i

∑
∀j

2mref (i, j)mdis(i, j) + η

m2
ref (i, j) +m2

dis(i, j) + η
(2)

Pooling strategy is applied to LQM to quantify overall image
quality score. Most algorithms use mean or weighted mean as
the pooling technique. However, as we know that each local
patch in an image undergoes different levels of distortion be-
cause of structural differences. So, averaging would neutralize
the actual deformity level in an image. Therefore, we have
used standard deviation as the pooling mechanism, as it will
be able to capture the global variation of distortion levels in
local patches of the distorted. The pooling operation on LQM
can be mathematically defined as in equation 3,

Qs = (
1∑

∀i
1
∑
∀j

1
)
∑
∀i

∑
∀j

LQM(i, j) (3)

III. EXPERIMENTAL RESULTS

Quality assessment (QA) research depends upon calibrated
data as well as good testing mechanisms to make predictions
consistent with human observers. Subjective experiments are

conducted in controlled environment to develop databases for
QA research. In this section, thorough experimental results
for the proposed algorithm on a publicly available subjective
database i.e. Computational and Subjective Image Quality
(CSIQ) Image Quality Database [25], have been presented.

A. Database

In this study, experiments have been conducted using the
CSIQ database. It is the second largest subjective database
available till date. It has 30 pristine reference and 866 distorted
images. The distorted set of images were generated by apply-
ing six type of impairments to the reference images at different
intensity levels. Namely, the distortion types are; additive
white noise (AWN), JPEG2000 compression, global contrast
decrements (CTD), additive pink Gaussian noise (APDN),
JPEG compression and Gaussian blur (GB). Furthermore,
every IQA database is evaluated by human subjects under
controlled settings and based on their assessments, a quality
score is assigned to each image i.e. difference mean-opinion
score (DMOS). These assigned scores act as a reference in
evaluation and validation of quality assessment models.



B. Performance Evaluation Criteria

Performance evaluation of the proposed model, PEDI, has
been made based on three criterion; Pearson linear correlation
coefficient (PCC), Spearman rank-order correlation (SRC) co-
efficient and root mean square error (RMSE). Moreover, SRC
measures the prediction monotonicity, while PCC evaluates
the prediction accuracy. Index values for both the criterion are
in the range of [0, 1], with higher correlation value indicating
greater coherence with subjective assessments. At first, non-
linear regression is performed using a five parameter logistic
function as in equation 4, to map predicted objective scores
to subjective human scores.

Q(S) = q1(
1

2
− 1

1 + e(q2s−q3)
) + q4s+ q5 (4)

where s and Q(s) are the subjective and mapped-
objective scores, respectively. Whereas, the coefficients,
qi(i = 1, 2, 3, 4, 5) are calculated during curve fitting.

After regression, the three aforementioned performance
evaluation measures are computed; Pearson linear correlation
coefficient (PCC) is used to evaluate the prediction accuracy
between Qp and S and is defined as in equation 5,

PCC(Qp, S) =
Q

T

p S√
Q

T

pQpS
T
S

(5)

where Q, Qp, S, Qp and S are the objective scores, objective
scores after regression, subjective scores, zero-mean objective
scores and zero-mean objective scores after regression, respec-
tively.

The second index, Spearman rank-order correlation (SRC)
coefficient is used to evaluate the prediction accuracy between
Q and S and is defined as in equation 6,

PCC(Q,S) = 1−
6

n∑
i=1

d2i

n(n2 − 1)
(6)

where n indicates the total number of samples and d is the
calculated difference between the ranks of each pair of samples
in Q and S.

The third coefficient, root mean square error (RMSE) is used
to evaluate the prediction consistency of an IQA model. It is
calculated between Qp and S, and is defined as in equation 7,

RMSE(Qp, S) =
√
(Qp − S)T (Qp − S)/n (7)

To demonstrate performance of the proposed model, PEDI, a
comparison with 12 STOA IQA algorithms have been made.
Including, PSNR, SSIM [15], MS-SSIM [26], FSIM [14], IFC
[27], VIF [28], MAD [25], IW-SSIM [29], G-SSIM [13], GSD
[12], GS [30] and GMSD [31].

C. Implementation and Performance Comparison

Simulations presented in this paper have been conducted
in MATLAB. In our proposed algorithm, we have used a
constant, η, to ensure numerical stability. We set η = 0.05,

after thorough simulation trials. In table I, performance of the
STOA IQA models are compared with the proposed model
in terms of SRC, PCC and RMSE scores. For each criterion,
top three performing IQA models are shown in boldface. From
table, it can be seen that the top three IQA models are GMSD,
MAD and PEDI (proposed model). It can also be observed
that the proposed model PEDI outperforms most of the STOA
FQ-IQA models based on all three criteria (SRC, PCC and
RMSE) including the models dealing with information content
of an image.

TABLE I: Comparison of the Proposed PEDI model with
other STOA FR-IQA models. The FR-IQA models were
compared based on SRC, PCC and RMSE scores. Further,
simulations were conducted on CISQ Database. Moroever, top
three models in each category are highlighted with boldface.

IQA Methods
CSIQ Database - 866 Images

SRC PCC RMSE

PSNR 0.806 0.751 0.173

IFC 0.767 0.837 0.144

GSD 0.854 0.854 0.137

G-SSIM 0.872 0.874 0.127

SSIM 0.876 0.861 0.133

VIF 0.919 0.928 0.098

GS 0.911 0.896 0.116

MS-SSIM 0.913 0.899 0.115

MAD 0.947 0.950 0.082

GMSM 0.929 0.913 0.107

IW-SSIM 0.921 0.914 0.106

FSIM 0.924 0.912 0.108

GMSD 0.957 0.954 0.079

PEDI 0.916 0.930 0.096

IV. CONCLUSION

In this study, a novel permutation entropy based FR-IQA
model has been proposed, named, Permutation Entropy Devi-
ation Index (PEDI). We have demonstrated the usefulness and
effectiveness of permutation entropy-based model in capturing
local structural variations between corresponding images. As
each local patch in an image has diverse structural features,
this attribute causes each patch to suffers a different level
of degradations. Therefore, keeping the aforementioned in
consideration, the standard deviation was used as the pooling



mechanism to quantity global variations in the PE map to pre-
dict an image quality score. Simulation results based on SRC,
PCC and RMSE coefficients have shown that the algorithm
is both efficient & accurate. Moreover, in terms of the three
criteria as mentioned above, PEDI is in top three models for
PCC and RMSE index values, whereas the SCC index value
was also found to be competitive to almost all the STOA
IQA models. These outcomes reiterate the fact that PEDI has
the potential to be used in a wide range of image processing
applications. The future work for this research will move into
performance evaluation on more subjective databases.
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