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Abstract: A search of the Cambridge Structural Database was conducted for pyridyl-substituted dithio-
carbamate ligands. This entailed molecules containing both an NCS2

− residue and pyridyl group(s), in
order to study their complexation behavior in their transition metal and main group element crystals, i.e.,
d- and p-block elements. In all, 73 different structures were identified with 30 distinct dithiocarbamate
ligands. As a general observation, the structures of the transition metal dithiocarbamates resembled
those of their non-pyridyl derivatives, there being no role for the pyridyl-nitrogen atom in coordina-
tion. While the same is true for many main group element dithiocarbamates, a far greater role for
coordination of the pyridyl-nitrogen atoms was evident, in particular, for the heavier elements. The
participation of pyridyl-nitrogen in coordination often leads to the formation of dimeric aggregates
but also one-dimensional chains and two-dimensional arrays. Capricious behaviour in closely related
species that adopted very different architectures is noted. Sometimes different molecules comprising
the asymmetric-unit of a crystal behave differently. The foregoing suggests this to be an area in early
development and is a fertile avenue for systematic research for probing further crystallization outcomes
and for the rational generation of supramolecular architectures.

Keywords: thiolate ligands; dithiocarbamate ligands; pyridyl; coordination chemistry; coordination
polymers; metal clusters; crystal structures

1. Introduction

In their most common form, dithiocarbamate ligands are mono-anionic ligands of the
general formula −S2CNR2, for R = alkyl, aryl. These are readily prepared from the reaction
of a secondary amine and carbon disulfide in the presence of a base, for example, an alkali
hydroxide. The dithiocarbamates are clearly the most important member of the 1,1-dithiolate
class of ligands, and have been known for 150 years or thereabouts [1,2]. The motivations
for studying metal complexes of dithiocarbamates (and their diseleno-analogues), including
their main group element and lanthanide compounds, are many and varied, as summarized
in a number of reviews published over the last 50 years [3–8]. Notwithstanding the utility
of dithiocarbamates in materials chemistry, medicine, lubricating oils, etc., here, the focus is
upon the structural chemistry of a specific class of multi-functional dithiocarbamate ligands,
namely pyridyl-substituted dithiocarbamate ligands.

Generally, the reaction to form −S2CNR2 is facile and the range of ligands that can
be generated is only limited by the availability of the amine, both secondary (Scheme 1,
Equation (1)) and primary (Scheme 1, Equation (2)), where the latter generates −S2CN(H)R;
the coordination chemistry of −S2CNH2 is relatively limited [6,7]. While dissymmetric
secondary amines can lead to −S2CNRR’, further broadening of the range of the available
dithiocarbamate ligands for investigation can be achieved by functionalizing the amine
substituents to give rise to multi-functional dithiocarbamate ligands. A relevant example
of this idea is the reaction of piperazine with two equivalents of carbon disulfide to form
the piperazine bis(dithiocarbamate) ligand, i.e., −S2CN(CH2CH2)2NCS2

−. Complexation
of this with metal salts can be anticipated to result in di-nuclear molecules, and experience
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suggests that the methods and handling of reactants, reactions, and products for this syn-
thesis presents no special difficulties [9]. Indeed, very recently, a review of the coordination
chemistry of such poly-functional dithiocarbamate ligands was published [10].
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Scheme 1. Preparation of dithiocarbamate ligands from secondary (Equation (1)) and primary
(Equation (2)) amines. R, R′ = alkyl, aryl, and A = alkali metal or ammonium salt.

This aforementioned survey [10] reported 40 poly-functional dithiocarbamate ligands
that were characterized by the crystal structures of their metal complexes. While the
overwhelming majority of poly-functional dithiocarbamates carried two NCS2

− residues,
there were examples of ligands with three, four, and up to six NCS2

− residues. In terms of
coordination chemistry, while many of the resultant coordination complexes were relatively
simple di-nuclear species, higher nuclearity aggregates, up to an impressive 36 (gold)
atoms [11], were noted. Less common were one- and two-dimensional architectures with
a sole example of a three-dimensional architecture adopted by a series of isostructural
lanthanide-based materials [12]. Naturally, the functionalization of amines could proceed
beyond additional amine functionality, such as in multi-functional dithiocarbamate ligands
bearing carboxylic groups. However, despite being known since the 1980’s, with the
preparation of barium salts of various dithiocarbamates derived from amino acids [13], the
chemistry of this potentially interesting class of ligands remains relatively unexplored [14].
In contrast, considerably more attention was directed towards the study of dithiocarbamate
ligands, bearing at least one neutral pyridyl residue, and this chemistry formed the focus
of the present survey.

Herein, a bibliographic survey of the reported crystal structures of transition metal
(d-block elements) and main group element (p-block elements that form the majority
of examples) dithiocarbamates that also present pyridyl group(s) available for further
coordination is presented. Brief comments on the context behind their syntheses is also
given when pertinent, as well as a comparison with their non-functionalized analogues.

2. Methods

The present bibliographic review of the crystallographic literature is based on a system-
atic search of the Cambridge Structural Database (CSD, version 5.41 + three updates) [15]
employing ConQuest (version 2.0.4) [16]. The search involved an evaluation of all struc-
tures containing an NCS2 residue, plus a pyridyl group. No other restrictions were applied.
Each of the 493 retrieved structures was manually screened, leading to 73 independent
crystal structures of coordinated pyridyl-substituted dithiocarbamate ligands. A total of
30 different ligands were noted, many were isomers or differ only in a minor way, such as in
the nature of the remote substituents; their chemical diagrams with abbreviations are given
in Figure 1. The composition details for each crystal are given in Table 1, as well as the
CSD REFCODE and literature citation. All crystallographic diagrams are original and were
generated by employing DIAMOND [17], using the data included in the Crystallographic
Information File obtained from the CSD for each structure.
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Table 1. Summary of structures 1–73 discussed in this bibliographic review.

Crystal Formulation Motif CSD REFCODE Ref.

1 Ni(L1)2 monomer DEXFIX [18]
2 Ni(L2)2 monomer DIFHIL [18]
3 Ni(L3)2 monomer HUTNOB [19]
4 Ni(L4)2 monomer LUKTIW [20]

5 a (NN1)Ni(L5) monomer VOTDEP [21]
6 Pd(L1)2 monomer HOMXEO [22]
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Table 1. Cont.

Crystal Formulation Motif CSD REFCODE Ref.

7 [(4-tol)3P]Pd(L6)Cl monomer ROHKAD [23]
8 Pt(L1)2 monomer LASPIH [24]
9 Pt(L7)2 monomer UHOGIJ [25]

10 [(4-tol)3P]Pt(L6)Cl monomer RIZNEW [26]
11 Cu(L1)2 monomer MISLUX [27]
12 Cu(L7)2 monomer ZUWLUY [28]
13 (Ph3P)2Cu(L8).2H2O monomer LEBDIH [29]
14 (Ph3P)2Cu(L9) monomer NOJVIT [30]
15 (Ph3P)2Cu(L10).0.5(CH2Cl2).0.5(H2O) monomer MORNIT [31]
16 [(Ph3P)2Ag(L1)]2 dimer GONMED [32]
17 [(Ph3P)2Ag(L11)]2 dimer GONMIH [32]
18 [Ag(L1)]n 1-D GONLUS [32]
19 [Ag(L11)]n 1-D GONMAZ [32]
20 [Au(L7)]2 monomer XIRYII [33]
21 [Au(L12)]2.isophthalic acid monomer EYURAS [34]
22 [Zn(L1)2]2.EtOH dimer FODSIC [35]
23 [Zn(L13)2]2 dimer UTEJOU [36]
24 [Zn(L14)2]n.0.5(4-methylpyridine) 1-D FECRIR [37]
25 [Zn(L5)2]2.2(DMF) 2-D UTEJUA [36]
26 Cd(L13)2(2,2′-bipyridyl) monomer GIVGUQ [38]
27 Cd(L13)2(1,10-phenanthroline) monomer GIVGOK [38]
28 Cd(L14)2(1,10-phenanthroline) monomer UTEKIP [36]
29 [Cd(L15)]2.2(DMF) dimer ZODSUI [39]
30 [Cd(L14)]n.3-methylpyridine 2-D GAMVAU [40]
31 [Cd(L1)]n 2-D ZODSAO [39]
32 [Cd(L11)]n 2-D ZODSES [39]
33 [Cd(L16)]n 2-D ZODSOC [39]
34 [Cd(L13)]n.acetonitrile 2-D UTEKAH [36]
35 [Cd(L2)]n 2-D ZODSIW [39]
36 Hg(L1)2 monomer FODSAU [35]
37 Hg(L8)2 monomer EBUTAY [41]
38 Hg(L17)2 monomer XOBCEY [42]
39 Hg(L18)2 monomer YOMYOQ [43]
40 [Hg(L13)2]2 dimer UTEKEL [36]
41 [Hg(L19)2]2·MeOH dimer XOBCAU [42]
42 PhHg(L5) dimer EKIYON [44]
43 PhHg(L17) dimer XOBBOH [42]
44 PhHg(L20)·2(MeOH) dimer FODRUN [35]
45 [PhHg(L18)]2 dimer YOMYAC [43]
46 [PhHg(L21)]2 dimer EBUSOL [41]
47 [Hg(L10)2]n 1-D YOMYIK [43]
48 [Hg(L22)2]n 1-D FODROH [35]
49 [Hg(L21)2]n 1-D FODREX [35]
50 [Hg(L23)2]n 1-D FODRAT [35]
51 [Hg(L9)2]n 2-D FODRIB [35]
52 [PhHg(L8)]n 2-D EBUSIF [41]
53 [Tl(L24)]n 1-D FEGHEH [45]
54 [Tl(L1)]n 2-D GOQHUR [46]
55 [Tl(L11)]n 2-D GOQJED [46]
56 [Tl(L13)]n 2-D GOQKAA [46]
57 [Tl(L23)]n 2-D GOGJON [46]
58 [Tl(L16)]n 2-D FEGHOR [45]
59 [Tl(L25)]n 2-D FEGHUX [45]
60 [Tl(L26)]n 2-D FEGJAF [45]
61 (nBu)2Sn(L8)2 monomer UGEFAP [47]
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Table 1. Cont.

Crystal Formulation Motif CSD REFCODE Ref.

62 (nBu)2Sn(L14)2 monomer CEHKUX [48]
63 Ph2Sn(L1)2 monomer UGEFET [47]
64 Ph2Sn(L14)2 monomer CEHLAE [48]
65 Ph3Sn(L27) monomer TOHBOJ [49]
66 [Ph3Sn]2(L28) dimer TOHGEE [49]
67 [(PhCH2)2Sn)(L28)]2·CH2Cl2 dimer TOHBUP [49]
68 [Me2Sn(L14)2]2 dimer CEHKOR [48]
69 [Ph3Sn(L11)]n 1-D UGEFIX [47]
70 [Bi(L6)3]2 dimer JURXAX [50]
71 [Bi(L25)3]2 dimer NOTTIC [51]
72 [Bi(L29)3]2 dimer NOTTOI [51]
73 [Bi(L30)3]n·0.5(HCl) 1-D NOTTUO [51]

a (NN1)H is N,N-dimethyl-4-[1H-pyrrol-2-yl(pyrrol-2-ylidene)methyl]aniline

3. Results

The full chemical composition for each crystal discussed herein, i.e., 1–73 [18–51], is
included in Table 1: for the purposes of the following description of structures, counter-ions,
co-crystal co-formers and solvents are ignored, unless they were pertinent to the coordina-
tion modes adopted by the dithiocarbamate ligands or supramolecular aggregation. The
ensuing discussion is arranged in terms of the Group of the Periodic Table and in order
of lightest to heaviest element. Generally, within each category, homoleptic structures are
discussed before organometallic species and other formulations, and the description of
structures are in the order of increasing nuclearity of the aggregate, i.e., monomeric species
before dimeric species, etc.

3.1. Structures of the Nickel-Triad Elements

There were four homoleptic nickel(II) complexes and each essentially adopted the same
structural motif, namely a square–planar geometry defined by an S4 donor set. The complexes
were formulated as Ni(Lx)2, where x = 1 (1) [18], x = 2 (2) [18], x = 3 (3) [19], and x = 4
(4) [20] with that of 3, which was representative of these (illustrated in Figure 2a); the nickel
atom was located on a crystallographic site of inversion in each of 1–4. The dithiocarbamate
ligand coordinated in a symmetrically chelating mode [Ni–S: 2.20 & 2.21 Å] with no role
for the pyridyl-nitrogen atoms in coordination being apparent. This observation, at least for
some of the transition metal complexes to be described herein, related to the very nature of
the dithiocarbamate ligand itself, in that the contribution of the dithiolate canonical form,
i.e., R2N(+)=CS2

(2−), to the overall electronic structure was significant, approaching 40%.
This confirmed the very strong bidentate coordination mode of the dithiocarbamate ligand
towards metals that reduced the Lewis acidity of the metal center and, in turn, reduced the
propensity of the metal to increase its coordination number via interaction with donors such
as pyridyl-nitrogen [52].

The interest in several of these structures related to their propensity to form unusual
C–H· · ·Ni anagostic interactions that were shown to be dependent on the nature of the
substituents [18,20,53]. The other non-standard, non-covalent interaction observed in
over 35% of the crystals of square–planar nickel(II) dithiocarbamate complexes was the
formation of stabilizing intermolecular C–H· · ·π(NiS2C) interactions [54]. This was also
accounted for in terms of the prevalence of the aforementioned canonical structure that
ensured considerable delocalization of π-electron density over the four-membered (NiS2C)
chelate ring, making this a good acceptor for such interactions, as for any π-system.

The remaining nickel(II) complex was (NN1)Ni(L5) (5) [21], where (NN1)H was N,N-
dimethyl-4-[1H-pyrrol-2-yl(pyrrol-2-ylidene)methyl]aniline, and is represented in Figure 2b;
the dithiocarbamate ligand was chelating in nature [2.19 & 2.21 Å]. This complex was designed
specifically to form C–H· · ·π(NiS2C) interactions in the crystal, which were noted [21].
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Figure 2. Molecular structures for (a) Ni(L3)2 (3), (b) (NN1)Ni(L5) (5), and (c) [(4-tol)3P]Pd(L6)Cl (7). Color code in this
and subsequent diagrams—the central metal atom is shown in orange; other heavy element, brown; chloride, cyan; sulfur,
yellow; phosphorus, purple; nitrogen, blue; and carbon, grey. Generally, hydrogen atoms are omitted for clarity.

Only two palladium(II) structures are known, namely Pd(L1)2 (6) [22], which is
isostructural with 1, and [(4-tol)3P]Pd(L6)Cl (7) [23], a new structural motif to be de-
scribed. In 7, Figure 2c, one dithiocarbamate ligand was substituted with chloride and
phosphane atoms so a ClPS2 square–planar geometry resulted; the dithiocarbamate ligand
chelated the palladium atom, forming dissymmetric Pd–S bond lengths [2.35 & 2.39 Å]. No
evidence for Pd· · ·N interactions was noted.

There were two homoleptic platinum(II) complexes, i.e., Pt(L1)2 (8) [24], isostructural
with 1 and 6, and Pt(L7)2 (9) [25]. Complex 9 was of particular note as it was the first
example having two pyridyl donors per dithiocarbamate ligand. The coordination geom-
etry for [(4-tol)3P]Pt(L6)Cl (10) [26] was as for 7, Figure 2c. Interest in 7 and 10 relate to
investigations of anti-cancer potential, as both species were more active than cisplatin, at
least based on in vitro screening, and preliminary SAR pointed to an advantage of L6.

3.2. Structures of the Copper-Triad Elements

The two homoleptic copper(II) complexes in this section were Cu(L1)2 (11) [27] and
Cu(L7)2 (12) [28]; 11 featured two independent molecules in the asymmetric-unit and was
investigated as a part of a wider series for electrochemical, conducting, and dielectric prop-
erties [27]. Each copper(II) center existed in the expected square–planar geometry within
an S4 donor set [Cu-S: 2.30 to 2.31 Å]. Of interest, and as highlighted in Figure 3a for 12,
the molecules approached each other over a center of inversion, to enable the formation of
close Cu· · · S contacts. The Cu· · · S contact of 3.23 Å was just beyond the sum of the van der
Waals radii for copper and sulfur, at 3.20 Å [55]. For 11, one molecule approached the other
in a side-on manner and only one Cu· · · S was formed at a rather long separation of 3.58 Å.
The formation of intermolecular interactions proved a potential for related interactions with
nitrogen but, more decisively, pointed to a competition between sulfur and nitrogen, as borne
out in several instances later in the survey.
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The three remaining copper complexes conformed to the general formula (Ph3P)2Cu(Lx)
for x = 8 (13) [29], x = 9 (14) [30] and x = 10 (15) [31]. The dithiocarbamate ligand in
15 was particularly notable not only for having two pyridyl substituents but for them
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being dissymmetric, i.e., containing 3- and 4-pyridyl residues. All three complexes were
strongly luminescent [29–31] with 13, in particular, exhibiting a blue–green emission at
480 nm. Further, 15 proved to be an efficient catalyst for the generation of “glycoconjugate
triazoles under Click protocol” [31]. The complexes conformed to the same structural motif
as exemplified in Figure 3b for 15. The copper(I) atom was coordinated in a distorted
tetrahedral geometry, by a symmetrically chelating dithiocarbamate ligand [2.40 & 2.41 Å]
and two phosphorus donors. This was the uniformly adopted structural motif for these
molecules according to a recent survey [56]. With such a congested environment about
the central atom, it was not surprising that additional contacts involving copper and
pyridyl-nitrogen atoms were not apparent.

Attention was now directed towards silver, for which the first examples of coordina-
tion polymers appeared. The first two complexes were related to monomeric 13–15 but
were formulated as di-nuclear [(Ph3P)Ag(Lx)]2 with x = 1 (16) and x = 11 (17) [32]. Their
study indicated some semi-conductor behavior and striking luminescent characteristics
in the solid-state. The di-nuclear molecules, represented by 17 in Figure 4a, arose as the
dithiocarbamate ligand simultaneously chelated one silver(I) atom [2.63 & 2.72 Å] and
bridged to the second [2.68 Å], centrosymmetrically related silver(I) atom. The distorted
PS3 donor set was completed by the phosphorus atom. Again, no evidence for Ag· · ·N
interactions was found. Indeed, the structures closely resembled those found for non-
functionalized dithiocarbamate ligands [57], of interest owing to anti-bacterial activity. In
the absence of phosphane ligands, one-dimensional coordination polymers were formed
for the isostructural x = 1 (18) and x = 11 (19) species formulated as [Ag(Lx)]n. Two images
for the exemplar complex 18 are given in Figure 4b. The dithiocarbamate ligand was
tridentate, bridging two silver atoms via one sulfur atom [2.59 & 2.64 Å], while linking
a third silver atom via the second sulfur atom [2.65 Å]. The interactions perpetuated to
form a helical supramolecular chain being propagated by 41-screw symmetry. This arrange-
ment allowed for the formation of intra-chain Ag· · ·Ag contacts, which in the case of 18
amounted to 2.89 Å; for 19, the Ag· · ·Ag separation was 2.85 Å. A simplified view of the
chain along the axis of propagation in 18 is shown in the right-hand image of Figure 4b.
Metal· · ·metal interactions, this time involving gold, were also noted in the two examples
of gold(I) structures to be discussed next.
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Figure 4. (a) Molecular structure for [(Ph3P)Ag(L11)]2 (17) and (b) two views of the 1-D supramolecu-
lar chain in [Ag(L1)]n (18); in the right-hand image, all but the α-carbon atoms of the dithiocarbamate
residues were removed. The dashed lines indicate M· · ·M interactions, in this case M = Ag with the
separation being 2.89 Å.

Two independent molecules comprised the asymmetric-unit of [Au(L7)]2 20 [33] and
each was disposed about a center of inversion to generate the di-nuclear molecule shown
in Figure 5a; the second molecule was essentially identical. Here, two gold(I) atoms
were bridged by two dithiocarbamate ligands [2 × 2.29 Å; 2.28 & 2.29 Å for the second
independent molecule] to form a close to planar, eight-membered {–AuSCS}2 ring. Within
the ring, an Au· · ·Au (aurophilic) interaction of 2.79 Å was noted; for the second molecule,
Au· · ·Au was 2.82 Å. In the crystal, weak Au· · · S interactions at separations just beyond
the van der Waals radii were noted; these served to link the molecules into a twisted
supramolecular chain (not shown). A similar di-nuclear molecule was noted in the crystal
of 21 [34], which along with [Au(L12)]2 contained one equivalent of isophthalic acid. Both
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studies [33,34] were motivated by investigations of the solid-state luminescence attributes
of the gold dimers, a well-documented phenomenon for gold thiolates [58]. There were two
independent formula units of [Au(L12)]2 in 21, neither with symmetry [Au–S: 2.28 to 2.30 Å].
The transannular Au· · ·Au separations were 2.75 and 2.78 Å. In the crystal, by virtue of
hydroxyl-O–H· · ·N(pyridyl) hydrogen-bonding, known to be a persuasive supramolecular
synthon [59], the di-nuclear molecules were connected into a twisted supramolecular chain,
as shown in Figure 5b; see [60] for a review on the competition between conventional
hydrogen bonding and aurophilic interactions in supramolecular chemistry.
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3.3. Structures of the Zinc-Triad Elements

The zinc-triad elements were the most populous in this survey, providing in excess of
40% of all structures covered herein. Of these, the least represented was zinc, having four
examples only. Nevertheless, three distinct structural motifs were apparent. Crystals of
homoleptic [Zn(L1)2]2 (22) [35] and [Zn(L13)2]2 (23) [36] present di-nuclear molecules with
that of 22, shown in Figure 6a; an evaluation of solid-state luminescence was a motivation for
the original studies. There were two quite distinct coordination modes for the dithiocarbamate
ligand. One ligand was chelating [2.42 & 2.52 Å] while the other chelated one zinc atom
[2.40 & 2.50 Å] and simultaneously linked a centrosymmetrically-related zinc atom via the
pyridyl-nitrogen atom to form the di-nuclear aggregate of Figure 6a and a five-coordinate
NS4-donor set. This motif was readily related to the aggregate normally seen in the majority
of homoleptic zinc bis(dithiocarbamate) structures [61], where one ligand was exclusively
chelating with the other and at the same bridging, via one of the sulfur atoms, akin to that
noted above for the bridging dithiocarbamate ligand in 17 (Figure 4a); in these circumstances
a S5 donor set was apparent. In this sense, the bridging pyridyl-nitrogen atom was simply
substituted for the bridging-sulfur atom. However, this simple idea did not pertain to the
remaining zinc dithiocarbamate structures to be described.

As illustrated in Figure 6b, a one-dimensional coordination polymer was noted in
the crystal containing [Zn(L14)2]n. (24) [37]. It was noted that 4-methylpyridine was also
present in the crystal of 24 (Table 1) but this did not coordinate zinc. The coordination
modes of the dithiocarbamate ligands [chelating ligand: 2.40 & 2.50 Å and bridging: 2.35
& 2.67 Å] were as for each of 22 and 23, but in this case, rather than dimer formation,
an extended chain with a zig-zag topology was formed, owing to the formation of a Zn–
N(pyridyl) bond. The common feature of 22–24 was the presence of a pyridyl-substituent
on each dithiocarbamate ligand and the participation of only one of these in coordination
with zinc. In the crystal of [Zn(L5)]2 (25) [36], the same situation applies and yet, a
two-dimensional array ensued as each available pyridyl-nitrogen atom participated in
coordination to symmetry-related zinc atoms.
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Figure 6. (a) The centrosymmetric, dimeric aggregate formed by [Zn(L1)2]2 in (22) and (b) supramolec-
ular chain formed by [Zn(L14)2]n. in the crystal of 24.

As shown in the lower view of Figure 7, each dithiocarbamate ligand of [Zn(L5)]2 adopted
a µ2-bridging mode, employing the sulfur atoms to chelate one zinc atom [2.48 & 2.49 Å] and
the pyridyl-nitrogen atom to link another; the zinc atom was located on a center of inversion.
This resulted in an increase in the coordination number, as the zinc atom now existed within a
trans-N2S4 donor set. The analogous structure to 25 but with the 3-pyridyl substituent, i.e.,
23, was a dimer. This being the case, it might be that steric congestion precluded further
supramolecular aggregation. Clearly, systematic studies are highly desirable to resolve
issues such as these but, of course, that depends on the availability of suitable crystalline
materials, preferably solvent-free crystals grown under similar conditions of concentration,
time, temperature, etc.
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The first four cadmium(II) structures were zero-dimensional and the remaining were
two-dimensional arrays of varying topologies. Three structures conformed to the general
formula Cd(Lx)2(NN), namely x = 13, NN = 2,2′-bipyridyl (26) [38], and x = 13 (27) [38]
and x = 14 (28) [36] for NN = 1,10-phenanthroline; 26 and 27 were noted for their ability
to co-sensitize TiO2 photoanodes, by virtue of the presence of ferrocenyl substituents [38].
The prototype for these structures (illustrated in Figure 8a) was 27, which showed the
cadmium atom to be chelated by two dithiocarbamate ligands [2.63 & 2.77 Å and 2.65 &
2.69 Å], as well as by the 1,10-phenanthroline molecule, to give a cis-N2S4 donor set. A
di-nuclear molecule, akin to that found in each of 22 and 23, was formed by [Cd(L15)2]2 in
the crystal of 29 [39], as shown in Figure 8b. Here, an NS4 donor set was manifested [Cd–S:
2.57 & 2.69 Å (chelating ligand) and 2.59 & 2.64 Å (bridging ligand)].
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Figure 8. Molecular structures of (a) mononuclear Cd(L13)2(1,10-phenanthroline) (27) and (b) di-
nuclear and centrosymmetric [Cd(L15)2]2 in (29). Additional color code—hydrogen, green.

Of the six two-dimensional arrays formed by homoleptic cadmium dithiocarbamates,
three distinct morphologies might be discerned. The first of these was found in the crystal
of [Cd(L14)2]n (30), which also contained non-coordinating 3-methylpyridine molecules [40].
Here, both pyridyl-nitrogen atoms of the dithiocarbamate ligand were involved in coordina-
tion, leading to cis-N2S4 donor sets, as the thiolate ends of the ligand were chelating [2.64 &
2.66 Å and 2.66 & 2.69 Å]. A plan view of the resulting two-dimensional array is shown in
Figure 9, as well as a side-on view which highlighted the distinctive square-wave topology of
the array; one plan view highlighted the formation of the coordination polyhedra.
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Figure 9. Plan and side-on views of the two-dimensional array in the crystals of [Cd(L14)2]n (30); one of the plan views
highlights the relative disposition of the cadmium atom coordination polyhedra.

Four structures, i.e., [Cd(Lx)2]n for x = 1 (31), 11 (32) and 16 (33) [39], and x = 13
(34) [36] adopted a very similar structure in their crystals but, were not isostructural.
As might be seen from Figure 10, showing images for 33, the mode of coordination of
the ligands was as for 30 [2 × 2.61 & 2.69 Å] but crucially resulted in trans-N2S4 donor
sets; the cadmium atom in each of 33 and 34 lay on a center of inversion. The ensuing
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arrangement was decidedly symmetric in appearance and from the side-on view, the array
was undulating. When considered in terms of polyhedra alone, the packing resembled a
hexagonal array.
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Figure 10. Plan and side-on views of the two-dimensional array in the crystals of [Cd(L16)2]n (33); one plan view highlights
the hexagonal pattern of the coordination polyhedra.

The sixth structure in this category was that of [Cd(L2)2]n (35) [39]. Again, the same
features, i.e., coordination mode and trans-N2S4 donor sets, as noted above for 31–34, were
observed, but the relative disposition of the cadmium coordination geometries differed and
the topology of the array was more jagged in appearance, Figure 11. The different arrange-
ments of the coordination polyhedra in the three structural motifs noted for [Cd(Lx)2]n is
highlighted in Figures 9–11.
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Of all elements covered in the survey, mercury was the most prevalent, with 17 ex-
amples; organomercury structures were also present. Many studies were motivated by
an evaluation of the influence of molecular packing upon luminescence characteristics.
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Despite very similar formulae, quite distinct structural motifs were noted in many crystals.
This was no better exemplified than by the six homoleptic mercury dithiocarbamates to be
described. The common feature of Hg(L1)2 (36) [35] and Hg(L8)2 (37) [41] was a square–
planar geometry for mercury, defined by two asymmetrically coordinating dithiocarbamate
ligands, as shown for 36 in Figure 12a [2 × 2.40 & 2.95 Å]. Molecules assembled into a
linear supramolecular chain via Hg· · · S interactions, therefore the mercury atom had a 4 +
2 coordination geometry. In each case, the mercury atom lay on a center of inversion and
the Hg· · · S separations in the crystals leading to the linear chains were 3.22 and 3.21 Å,
respectively. A distinct coordination geometry was found in each of Hg(L17)2 (38) [42] and
Hg(L18)2 (39) [43], as shown for the former in Figure 12b. The tetrahedral S4-donor set
[2.45 to 2.64 Å] did not allow for further coordination by sulfur (or nitrogen) and so both
molecules were monomeric in their crystals. The mercury atom in 39 lay on a 2-fold axis of
symmetry. In [Hg(L13)2]2 (40), Figure 12c, molecules assembled about a center of inversion
in the crystals to form a di-nuclear aggregate. The bidentate mode of coordination of one
of the dithiocarbamate ligands in 40 was similar to that seen in several examples above,
such as in the silver structure 17, namely, asymmetrically chelating one mercury atom
[2.44 & 3.12 Å] while simultaneously linking a centrosymmetric mate via one of the sulfur
atoms [2.64 Å]. The other independent dithiocarbamate ligand was chelating only [2.44 &
2.83 Å]. A longer Hg· · · S bond of 3.12 Å was noted within the eight-membered {–HgSCS}2
ring, which had a chair conformation. This Hg· · · S interaction might be considered a
transannular contact and was shown as dashed bonds in Figure 12c. In the final homoleptic
structure to be covered, i.e., [Hg(L19)2]2 (41) [42], a role for the pyridyl-nitrogen atom
was apparent. As illustrated in Figure 12d, compared to 40, the bridging dithiocarbamate
ligand [2.50 & 2.72 Å] also employed the pyridyl-nitrogen atom, rather than a sulfur atom
to connect the centrosymmetrically-related mercury center. The second dithiocarbamate
ligand was asymmetrically chelating [2.42 & 3.00 Å] so the mercury atom existed within an
NS4-donor set. The result was a considerably larger, compared to 40, central 16-membered
{–HgSCNC3N}2 ring that was disposed about a center of inversion.
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di-nuclear molecule in [Hg(L19)2]2 (41).
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There were five phenylmercury(II) dithiocarbamates and these adopted two distinct
motifs depending on the mode of coordination of the dithiocarbamate ligand. The first motif
was found in [PhHg(Lx)]2 for x = 5 (42) [44], x = 17 (43) [42] and x = 20 (44) [35]. This motif is
illustrated for 43 in Figure 13a. Here, the mercury atom was asymmetrically coordinated by
the dithiocarbamate ligand [2.39 & 2.89 Å] and the centrosymmetrically-related molecules
were linked via the Hg· · · S interactions of 3.14 Å; the equivalent separations in 42 and
44 were 3.18 and 3.19 Å, respectively. The {–HgSCS}2 ring had a chair conformation with
the dithiocarbamate ligands lying either side of the central {· · ·HgS}2 core. The second
motif, adopted by [PhHg(L18)]2 (45) [43] and PhHg(L21)]2 (46) [41], illustrated for 45 in
Figure 13b, also featured asymmetrically chelating dithiocarbamate ligands [2.38 & 3.02 Å] but
the connections between centrosymmetrically-related mates were via the Hg–N bonds. Thus,
there was a transformation from one motif to another, as the position of the pyridyl-nitrogen
atom migrated from the 3-position in 43 to the 4-position in 45. This might indicate a steric
influence in directing the mode of coordination coming into play but it was noted that 44 also
carried a 4-pyridyl substituent. Then again, in the crystal of 44, there was occluded methanol
and this formed a methanol-O–H· · ·N(pyridyl) hydrogen bond, already noted as a reliable
supramolecular synthon [59].
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Figure 13. (a) The supramolecular dimer in [PhHg(L17)]2 (43) mediated by the Hg· · · S interactions
and (b) the di-nuclear molecule in [PhHg(L18)]2 (45).

The next four molecules assembled into supramolecular chains in their crystals. All
four resultant topologies were distinct. In [Hg(L10)2]n (47) [43], both dithiocarbamate ligands
were bidentate, bridging two mercury centers to form eight-membered {–HgSCS}2 rings
with a chair conformation; the bridges were non-symmetric [2× 2.39 & 2.95 Å]. Within each
ring, there were two transannular Hg· · · S interactions [2 × 3.05 Å] such that one of the
dithiocarbamate ligands might be considered tri-connective. The rings were concatenated into
a chain, sharing mercury atoms at the corners. The one-dimensional chain was propagated by
glide-symmetry with the mercury atoms lying on 2-fold axes of symmetry, perpendicular to
the axis of the chain. Side- and end-on views of the chain are shown in Figure 14a. A variation
was noted in the crystal of [Hg(L22)2]n (48) [35]; two independent molecules comprised the
asymmetric-unit. The mercury atom in each independent molecule was chelated by two
asymmetrically coordinating dithiocarbamate ligands [2.41 & 3.01 Å and 2.42 & 3.01 Å for
molecule 1 and 2.43 & 2.83 and 2.42 & 3.00 Å for molecule 2], with the sulfur atom forming the
longer of the Hg–S bonds bridging to a second mercury atom [2.92 and 2.90 Å, respectively].
The chain was propagated by translational symmetry but owing to the relative disposition of
the two molecules in the asymmetric-unit, the chain had a zig-zag topology, as seen in the
two views of Figure 14b. While the bridges leading to the chains in 47 and 48 involved sulfur
atoms, in the next two crystals, it was the participation of the pyridyl-nitrogen atom that led
to the formation of the chains.
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(47) and (b) [Hg(L22)2]n (48).

Two distinct structural motifs were observed in the crystals of [Hg(L21)2]n (49) and
[Hg(L23)2]n (50) [35]. In the former, the mercury atom was chelated by two dithiocarbamate
ligands, one forming close to symmetric Hg–S bonds [2.60 & 2.66 Å], with the other
coordinating less symmetrically [2.51 & 2.84 Å]. The fifth site about the mercury atom was
occupied by a pyridyl-nitrogen atom from a translationally-related molecule, giving rise
to a NS4-donor-set and a one-dimensional chain with a linear topology, Figure 15a. In
50, Figure 15b, a similar mode of coordination of the dithiocarbamate ligands was noted,
whereby the mercury atom was coordinated by two dithiocarbamate ligands, one forming
almost symmetric Hg–S bonds [2.51 & 2.66 Å] and the other forming quite asymmetric
Hg–S bonds [2.39 & 3.11 Å]. The coordination was completed by a pyridyl-nitrogen atom
derived from a symmetry related molecule to define a NS4-donor set, and a supramolecular
chain with a zig-zag (glide-symmetry) topology.

One of the homoleptic mercury dithiocarbamates assembled into a two-dimensional
array in the crystal, i.e., [Hg(L9)2]n (51) [35]. Different views of the assembly are shown
in Figure 16. The mercury atom lay on a center of inversion and was coordinated by the
dithiocarbamate ligand in an asymmetric mode [2.48 & 2.82 Å]. The distorted N2S4-donor
set was completed by two pyridyl-nitrogen atoms derived from two symmetry-related
dithiocarbamate ligands, as a result, an array was formed with a flat topology. The
alignment of successive rows of the polyhedra was off-set.

The final structure to be described among the zinc-triad elements is a phenylmercury
derivative, [PhHg(L8)]n (52) [41]. As usual for the phenylmercury dithiocarbamates, the
dithiocarbamate ligands formed short and long Hg–S interactions [2.41 & 2.99 Å]. The
weakly bound sulfur atom formed a bridge [3.20 Å] to a symmetry-related mercury atom to
form a helical chain. The chains were connected into a layer via pyridyl-nitrogen bridges to
translationally-related molecules, resulting in the undulating assembly shown in Figure 17.
This arrangement highlighted the cooperativity between bridging dithiocarbamate-sulfur
and pyridyl-nitrogen atoms.
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Figure 17. Views of the two-dimensional array in the crystal of [PhHg(L8)]n (52).

3.4. Structures of Thallium(I)

The eight structures of thallium(I) were homoleptic and conformed to the general formula
[Tl(Lx)]n, with all crystals being solvent-free. Two basic structural motifs were observed. The
first of these was adopted by a single example only, namely [Tl(L24)]n (53) [45]. As illustrated
from the views in Figure 18, the thallium(I) center was chelated by a dithiocarbamate ligand
in a symmetric mode [2.97 & 3.04 Å for the first independent molecule and 2.96 & 3.08 Å for
the second]. Each independent molecule self-associated about a center of inversion via two
additional Tl· · · S interactions [3.06 & 3.30 Å for the first dimer and 3.10 & 3.11 Å for the second
dimer]. The sulfur atom forming the longer of the specified Tl· · · S interactions provided a
bridge to the second independent dimer [3.41 Å] and in this sense the first dithiocarbamate
ligand was penta-connective, whereas the second ligand was tetra-connective. The pairs of
dimeric units were connected into a chain via translational symmetry so the resulting topology
was somewhat flattened. By contrast to 53, the seven remaining structures adopted a very
similar, two-dimensional structural motif.
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The second structural motif adopted for [Tl(Lx)]n was found for x = 1 (54), x = 11 (55),
x = 13 (56), x = 23 (57) [46], x = 16 (58), x =25 (59) and x = 26 (60) [45]. Indeed, structures
54, 55, 56, and 58 were isostructural, as were the trio of structures 57, 59, and 60. The
differentiation between the supramolecular assembly of 53, as compared with 54–60, was
the participation of pyridyl-nitrogen atoms, in coordination, in the latter series. This had a
crucial result that two-dimensional arrays eventuated. The exemplar structure was that of
54. Here, the thallium(I) center was chelated in a symmetric mode by a dithiocarbamate
ligand [2.96 & 3.05 Å], which linked to a centrosymmetrically-related thallium via two
additional Tl· · · S contacts [3.22 & 3.33 Å] to form a dimeric aggregate, akin to that seen
in 53. Each thallium(I) atom formed an additional Tl· · · S contact that extended laterally
[3.50 Å]. Importantly, the pyridyl-nitrogen atom also connected to thallium, ensuring the
stability of the two-dimensional array that had an undulating topology. Alternatively, the
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structure might be described more simply in terms of the chelating dithiocarbamate ligand
linked to neighbors via the pyridyl-nitrogen atom, as shown in the top right-hand view of
Figure 19. This chain had a distinctive, square-wave topology, and was connected to the
array via the aforementioned, second tier Tl· · · S interactions.
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3.5. Structures of Organotin(IV)

The nine organotin structures might be conveniently divided into two groups, with
the majority not having tin interacting with a pyridyl-nitrogen atom. Three distinct struc-
tural motifs were noted among the first five organotin structures and these conformed
with literature expectation [62], with the first three examples featuring skew-trapezoidal
bipyramidal geometries for tin, i.e., in (nBu)2Sn(L8)2 (61) [47], (nBu)2Sn(L14)2 (62) [48],
and Ph2Sn(L14)2 (64) [48]. This is illustrated for 62 in Figure 20a. The tin atom, lying on
a 2-fold axis of symmetry, was asymmetrically chelated by two dithiocarbamate ligands
[2.52 & 3.01 Å], which define a trapezoidal plane. The organic substituents lay over the
weaker Sn· · · S bonds to complete the C2S4-donor set; each of 61 and 64 also manifested a
2-fold symmetry. A recent survey [63] reported that diphenyltin dithiocarbamates adopted
such geometries in about one-third of their structures, with the majority being based on
cis-C2S4 donor sets with a more symmetric mode of coordination for the dithiocarbamate
ligand. This is exemplified in Figure 20b for Ph2Sn(L1)2 (63) [47], which is 2-fold symmet-
ric and has intermediate Sn–S bond lengths [2.59 & 2.68 Å]. The triphenyltin derivative,
Ph3Sn(L27) (65) [49], Figure 20c, also conformed to expectation with the dithiocarbamate
ligand coordinating in an asymmetric mode [2.46 & 3.06 Å].

A rather unusual multi-functional ligand was evident in L28. Here, there were two
dithiocarbamate residues connected in the 2,5-positions of a pyridyl ring that gave rise to a
di-anion with multiple coordination sites. In (Ph3Sn)2(L28) (66) [49], each dithiocarbamate
ligand asymmetrically chelated a tin atom [2.45 & 3.11 Å and 2.46 & 3.11 Å; the molecule
lacked symmetry] resembling the coordination mode in the mono-nuclear species 65. This
mode of coordination gave rise to a di-nuclear molecule with an open configuration, as
shown in Figure 20d. When the diorganotin centers were introduced in place of the
triorganotin species, a cyclic dimer was noted in the crystal of [(PhCH2)2Sn)(L28)]2 (67) [49],
as illustrated in Figure 20e. The coordination geometries for the tin atoms (the molecule
lacks symmetry) is as described for 61, 62, and 64 above. The Sn–S bonds [2.50 & 2.96 Å and
2.54 & 3.03 Å] for one molecule closely followed that indicated for 62 but, a difference was
noted for the second independent tin atom where one ligand coordinated in the expected
mode [2.51 & 2.83 Å] but the other was decidedly more asymmetric [2.54 & 3.29 Å]. As
for the previous organotin dithiocarbamates, no role in coordination was noted for the
pyridyl-nitrogen atom. The two remaining structures were rather exceptional.
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Figure 20. Molecular structures of (a) (nBu)2Sn(L14)2 (62), (b) Ph2Sn(L1)2 (63) and (c) Ph3Sn(L27) (65), (d) the open dimer in
(Ph3Sn)2(L28) (66), (e) the cyclic dimer in the crystal of [(PhCH2)2Sn)(L28)]2 (67), (f) the dimer in the crystal of [Me2Sn(L14)2]2

(68), and (g) the one-dimensional chain in [Ph3Sn(L11)]n (69).

The crystallographic asymmetric-unit of [Me2Sn(L14)2]2 (68) [48] comprised two in-
dependent molecules. As illustrated in Figure 20f, one molecule adopted the expected
skew-trapezoidal pyramidal geometry and this donated one of the pyridyl-nitrogen atoms
to the second molecule to form a dimer. The expanded coordination geometry for the
second molecule was based on a pentagonal bipyramidal geometry, as the incoming ni-
trogen atom occupied a position between the less strongly bound sulfur atoms. It is of
interest to comment on the systematic changes in geometric parameters. Thus, there was
an expansion of the Sn–S bond lengths from the low-coordinate species [2.54 & 2.94 Å and
2.55 & 2.91 Å] to the high-coordinate species [2.58 & 2.94 Å and 2.61 & 3.00 Å], and an
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expansion of the C–Sn–C angle [143◦ cf. 153◦]. Two independent molecules also comprised
the asymmetric-unit of [Ph3Sn(L11)]n (69) [47]. These also behaved differently, emphasizing
the enigmatic behavior in these systems. While one molecule adopted the anticipated
geometry, as noted for 67, the other formed additional Sn–N interactions to generate the
linear chain shown in Figure 20g. The Sn–S bond lengths in the first independent molecule
[2.47 & 3.04 Å] were shorter than those for the tin atom in the chain [2.52 & 3.22 Å], re-
flecting the increased coordination number within the C3NS2-donor set, which defined
a skew-trapezoidal bipyramidal geometry with the phenyl groups lying over the longer
Sn–S and Sn–N bonds.

3.6. Structures of Bismuth(III)

The final group of structures could also be divided, depending on the mode of supramolec-
ular association. Well known for their anti-cancer potential [64], interest in these compounds
largely related to their biological activity. Additionally, the propensity of the homoleptic bis-
muth dithiocarbamates to aggregate into supramolecular spheres via Bi· · · S interactions [65]
is well-documented, reflecting the thiophilic nature of bismuth. This was the case for the
first three examples, namely, [Bi(L6)3]2 (70) [50], [Bi(L25)3]2 (71), and [Bi(L28)3]2 (72) [51]. In
70, Figure 21a, the bismuth center was coordinated by three dithiocarbamate ligand [2.70 to
3.22 Å], and centrosymmetrically-related molecules assembled to form a dimer via a pair
of Bi· · · S contacts [3.17 Å]. A similar situation pertained for 71 [2.67 to 3.12 Å], Figure 21b,
but, there were four intra-dimer Bi· · · S contacts [2 × 3.09 to 3.14 Å] to stabilize the dimer.
Simply changing the remote substituent from a chloride in 71 to a bromide, giving [Bi(L29)3]n
(73) [51], resulted in a profound change in supramolecular aggregation.
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Figure 21. Supramolecular aggregation in the crystals of (a) [Bi(L6)3]2 (70) and (b) [Bi(L25)3]2 (71), via
Bi· · · S interactions, and (c) [Bi(L29)3]n (73) via Bi–N interactions. Additional color code—bromide,
dark-green.

As seen from Figure 21c, there were three chelating dithiocarbamate ligands [2.67 to
3.04 Å] and one of the dithiocarbamate ligands also connected to a translationally-related
molecule via the pyridyl-nitrogen atom to generate a linear, one-dimensional arrangement.
The resultant NS6-donor was a based on a pentagonal-bipyramidal geometry, with the
nitrogen and one sulfur atom occupying the axial positions.
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4. Discussion

Among the ubiquitous dithiocarbamate ligands, those carrying pyridyl functionality
only formed a small subset. There were 30 different pyridyl-functionalized dithiocarbamate
ligands that were characterized in 73 crystal structures. Indeed, crystal structures were
only reported for the nickel-, copper-, and zinc-triad elements, along with examples of
thallium(I), organotin(IV), and bismuth(III) structures. Approaching half the structures
were derived from the zinc-triad elements with a high representation of mercury, including
organomercury, structures. The involvement of the pyridyl-nitrogen atom(s) often led to
the formation of dimeric aggregates but also one-dimensional chains and two-dimensional
arrays. The limited study of these ligands, thus far, clearly indicates there is enormous
scope to expand this chemistry, especially that of the main group elements.

Generally, the transition metal structures did not see a role for nitrogen in coordinating
the metal center, with the individual structures resembling their non-pyridyl-functionalized
congeners. The situation was rather different for the reported main group element struc-
tures where participation of the pyridyl-nitrogen atom was often observed to give rise
to quite distinct and previously unknown structural motifs and disparate coordination
geometries. The coordination of pyridyl-nitrogen notwithstanding, many molecules as-
sembled via M· · · S secondary bonding interactions [66] rather than M–N dative bonding.
More perplexing was the problematic formation of the M· · · S secondary bonding versus
the M–N dative bonding. These interactions also worked in concert, i.e., cooperated, to
form higher dimensional architectures. Additionally, it was noted that a seemingly small
change in a non-participating substituent could result in a very different structural motif.
The most perplexing observation was the different behavior exhibited by the independent
molecules comprising the asymmetric-unit within a crystal, for example, for [Me2Sn(L14)2]2
(68) [48] and [Ph3Sn(L11)]n (69) [47]. This being stated, it is well-established that dithiocar-
bamate structural chemistry, as revealed by X-ray crystallographic studies, can be quite
unpredictable [52,61,62,65,67–69]. This present analysis of the structural chemistry of
pyridyl-functionalized dithiocarbamate ligands vindicated this conclusion and clearly
added to the rich tapestry of structures found for dithiocarbamate ligands.

5. Conclusions

The structural chemistry of pyridyl-functionalized dithiocarbamate ligands is rela-
tively unexplored and given the unpredictable behavior exhibited thus far, competition
between the formation of M–N dative bonds and M· · · S secondary bonding interactions,
and the appearance of unprecedented structural motifs, further examination of these lig-
ands is clearly warranted. Especially, systematic studies under controlled crystallization
conditions are needed.
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