Chemosphere 242 (2020) 125181

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

Assessment of radioactivity contents in bedrock groundwater samples from the northern region of Saudi Arabia

霐

Chemosphere

Fahad I. Almasoud ^{a, b, *}, Zaid Q. Ababneh ^{c, d}, Yousef J. Alanazi ^a, Mayeen Uddin Khandaker ^e, M.I. Sayyed ^f

^a Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O.Box 6086, Riyadh, 11441, Saudi Arabia

^b Department of Soil Sciences, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia

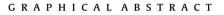
^c Physics Dept., Faculty of Science, Yarmouk University, Irbid, 211-63, Jordan

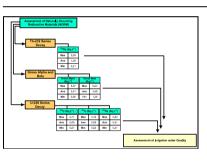
^d College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al-Ahsa, Saudi Arabia

e Center for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, 47500, Bandar Sunway, Selangor, Malaysia

^f Department of Physics, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia

HIGHLIGHTS


- Gross α and β radioactivity in groundwater samples has been investigated in northern part in KSA.
- The contributions of U and Ra alpha emitters to gross α radioactivity were discussed.
- The ratios of the measured β emitters to gross β radioactivity were discussed.
- The ratios of ²²⁸Ra/²²⁶Ra, ²²⁶Ra/²³⁸U, and ²³⁴U/²³⁸U in groundwater were investigated.


ARTICLE INFO

Article history: Received 10 June 2019 Received in revised form 7 October 2019 Accepted 20 October 2019 Available online xxx

Handling Editor: Martine Leermakers

Keywords: Bedrock groundwater Gross α/β radioactivity NORM Liquid scintillation counting Alpha spectrometry Radioactive disequilibrium

ABSTRACT

Recognizing the vast uses of water in human life, the presence of α and β particles emitting radionuclides in groundwater of northern Saudi Arabia has been evaluated as a means of water quality assessment of the region. A liquid scintillation counting technique was used to determine the gross α/β , and ²²⁸Ra radioactivities in water samples, while the radioactivity concentrations of ^{234,238}U and ²²⁶Ra were determined using alpha spectrometry after the separation process.

Present results show that all water samples contain a higher level of gross α and β radioactivity than the WHO recommended limits; the average gross α activity is about 7 times greater than the limit value of 0.5 Bq L⁻¹, while the average gross β activity value is about 3.5 times greater than the limit value of 1 Bq L⁻¹. Correlations of TDS and pH with gross α and β radioactivity in the studied samples were investigated. The activity ratio of the measured U and Ra alpha emitters to the gross α radioactivity and the ratio of the measured β emitters to gross β radioactivity were also discussed. Furthermore, interesting information on thorium abundance and radioactive disequilibrium in U series were observed by studying the activity ratio of ²²⁸Ra/²²⁶Ra, ²²⁶Ra/²³⁸U, and ²³⁴U/²³⁸U. Although these samples are not directly used for human being drinking, and mainly used in irrigation, the higher gross α/β radioactivity may cause

^{*} Corresponding author. Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, 11441, Saudi Arabia.

E-mail address: fmasaud@kacst.edu.sa (F.I. Almasoud).

https://doi.org/10.1016/j.chemosphere.2019.125181 0045-6535/© 2019 Elsevier Ltd. All rights reserved.