ELSEVIER Contents lists available at ScienceDirect # Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene # Investigation on the effect of ²³⁸U replacement with ²³²Th in small modular reactor (SMR) fuel matrix Edwin Humphrey Uguru^{a,b,*}, S.F. Abdul Sani^{a,*}, Mayeen Uddin Khandaker^{a,c}, Mohamad Hairie Rabir^d - ^a Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia - ^b Department of Industrial Physics, Ebonyi State University, P.M.B. 053, Abakaliki, Nigeria - ^c Center for Biomedical Physics, School of Healthcare and Medical Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan. Malaysia - d Nuclear and Reactor Physics Section, Nuclear Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor, Malaysia #### ARTICLE INFO #### Keywords: Uranium and thorium MCNP Plutonium production Actinides Small modular reactor ### ABSTRACT Effect of 238 U replacement with 232 Th in small modular reactor fuel matrix was studied. Four different 235 U enrichment levels (10, 13.8, 16.5 and 19.8 wt%) were used in a pairwise manner for UO₂ and (ThO₂ + 235 U) fuels. The calculation was performed using Monte Carlo N-particle code integrated with CINDER90 for burn-up calculations in a homogeneous fuel assembly. The results show that enrichment level < 17 wt% for thorium fuel produced virtually no plutonium isotopes but became visible only at 19.8 wt% enrichment. The number of neutrons produced per fission (ν) for ThO₂ + 235 U was less than that of UO₂ because its averaged contribution from 235 U and 233 U was smaller compared to the similar contribution from 239 Pu, 241 Pu and 235 U. Large amount of 239 Pu and actinides were produced from UO₂ fuel due to the impact of 238 U. The reactivity of thorium at the beginning of cycle (BOC) was smaller compared to uranium but higher at end of cycle (EOC) resulting to higher excess reactivity in all thorium fuel. Production of little plutonium isotopes by thorium fuel suggests that it would make a good proliferation resistance fuel and could be used in any W-SMR to incinerate stockpiled plutonium. ## 1. Introduction Nuclear technology from early 1940s to the Manhattan project (1940–1960) (Lung and Gremm, 1998) has advanced greatly in power generation and production of medical and industrial isotopes. Notwithstanding the successes recorded in the technology, there are still some challenges and issues surrounding nuclear energy: starting from reactor safety, proliferation risk of spent fuel, waste management and radiation hazards in the event of possible accident or terrorist attack compared to coal, wind, solar, hydropower, oil and gas energy sources (Kessides, 2012; Slovic et al., 1991). Currently, $\rm UO_2$ is a dominant nuclear fuel (Anantharaman et al., 2008) used both in civilian and naval reactors which produces the required energy and the accompanying wastes whose management has been a challenge to the industry. Although, several technological developments have provided solution to reactor safety issues, waste management of spent fuel and its associated proliferation risk which depend on the type of fuel used remained challenging. These challenges are based on the nature of actinides and non-actinides produced by the fuel (Humphrey and Khandaker, 2018). Most of these issues, especially the proliferation risk and waste management surrounding uranium-based fuel are attributed largely to the production of plutonium isotopes by its precursor ²³⁸U and its subsequent decay products during and after reactor operation. Under irradiation, ²³⁵U undergoes fission by thermal neutron absorption while ²³⁸U undergoes nuclear transmutation by neutron capture as shown in Eq. (1) to produce fissile ²³⁹Pu. Only a negligible fraction of ²³⁸U undergoes fission by fast neutron absorption. Subsequently, ²³⁹Pu in about 65% of the time fissions by thermal neutron absorption and in 35% of the time produces ²⁴⁰Pu by radiative capture. ²³⁸U (fertile) $$\xrightarrow{\sigma_{\gamma}=2.86b}_{I_{resonance}=277b}$$ ²³⁹U $\xrightarrow{\beta^{-}}_{T_{1/2}=23.47 \, \text{min}}$ ²³⁹N p $\xrightarrow{\beta^{-}}_{T_{1/2}=2.356d}$ $\xrightarrow{\sigma_{f}}$ = 750b $\sigma_{\gamma}=27b$ (1) Similarly, 232 Th undergoes nuclear transmutation by thermal neutron capture and subsequent beta minus decay to produce fissile 233 U as ^{*} Corresponding authors. Department of Physics, University of Malaya, 50603 Kuala Lumpur, Malaysia. E-mail addresses: ugurueddy2008@yahoo.com (E.H. Uguru), s.fairus@um.edu.my (S.F.A. Sani).