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Non-covalent interactions involving remote substituents influence the 

topologies of supramolecular chains featuring hydroxyl-O–H···O(hydroxyl) 

hydrogen bonding in crystals of (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y = 

H, Me, Cl and NO2
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Abstract

Crystallography shows the universal adoption of supramolecular chains featuring by hydroxyl-O–

H···O(hydroxyl) hydrogen bonding in crystals of (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y = 

H, Me, Cl and NO2.  However, distinct topologies, i.e. linear (Y = H), helical (Y = Me and Cl) and 

zig-zag (Y = NO2) are noted with major differences in the pitch of the polymer.  Geometry-

optimisation, MEP and NPA analyses shows a distinct electronic structure for the Y = NO2 

derivative, in particular relating to the activation of the aryl rings.  An exhaustive analysis of the 

molecular packing (point-to-point interactions, crystal structure similarity, Hirshfeld surface 

analysis, NCI and QTAIM, interaction energies and energy frameworks) point to the importance 
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of C–H···π(aryl) interactions in stabilising the chains but these have a considerably reduced 

influence in the crystal with Y = NO2, where π(aryl)···π(aryl) interactions are important.  The more 

open arrangement for the linear chain in 1 facilitates the formation of C–H···π(aryl) interactions 

and the more compact arrangements enable the formation of stabilising, intra-chain methylene-C–

H···S(thione) interactions.  This study highlights the role of second-tier non-covalent interactions 

exert upon the arrangement of conventional hydrogen bonding interactions.

Footnote

† Electronic supplementary information (ESI) available: Crystallographic data, electrostatic 

potential charge deviations, NPA charges, HOMO-LUMO plots, PXRD patterns, molecular 

packing diagram, NCI and QTAIM plots.  CCDC 2047050-2047053 contain the supplementary 

crystallographic data for this paper.  For ESI and crystallographic data in CIF or other electronic 

format see DOI: 10.1039/d0cexxxxxx
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Introduction

In the organic solid-state, conventional hydrogen bonding plays a privileged role in arranging 

molecules into supramolecular assemblies,1-4 often by design employing the supramolecular 

synthon approach.5  This prominent role notwithstanding, other intermolecular contacts come to 

the fore when conventional hydrogen bonding does not occur in three dimensions or is not present 

at all.  Here, a myriad of alternative interactions come to the fore, such as π···π, C–H···π, lone-

pair···π, chalcogen bonding, halogen bonding, etc.6  Along with hydrogen bonding, many of these 

interactions provide similar energies of stabilisation in their crystals and being inherently weak are 

therefore, flexible, being subject to moderation by chemical substitution, steric effects, etc.  The 

delineation of the role of these different modes of association is highly desirable in order to 

rationalise more fully the assembly of molecules in crystals as even small changes in molecular 

packing can influence macroscopic properties relating to, e.g. optoelectronic properties,7 drug 

discovery8 and the conformation of molecules.9  Further, the control of flexible, cooperative 

supporting intermolecular interactions will lead to the strategic design of higher dimensional 

aggregation patterns in crystals featuring persistent, structure-directing hydrogen bonding patterns 

operating in zero-, one- or two-dimensions.

These aforementioned considerations increasingly motivate systematic studies of crystals 

featuring (i) a common hydrogen bonding aggregation pattern despite the presence of different 

substituents,10-14 (ii) multiple hydrogen bonding options and their adoption related to small 

chemical changes15-23 and (iii) no conventional hydrogen bonding present with studies conducted 

in order to ascertain the influence of other non-covalent interactions upon molecular 

aggregation.24-27  Herein, an investigation related to scenario (i) is presented.  As anticipated from 

the formula of the molecules investigated herein, i.e. (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y 
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= H (1), Me (2), Cl (3) and NO2 (4), Fig. 1, hydrogen bonding is prominent and a consistent 

adoption of supramolecular chains in the respective crystals is apparent, in each case mediated by 

hydroxyl-O–H···O(hydroxyl) interactions.  However, the chains display distinct topologies, i.e. 

linear (1), helical (2 and 3) and zig-zag (4), and of the series, only 2 and 3 are isostructural.

Fig. 1  Chemical diagrams for the (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) molecules investigated 

herein.

Compounds 1-4 are examples of tri-substituted derivatives of thiourea, a well-known class 

of compound.28  While crystal structures are known for derivatives conforming to the general 

formula (HOCH2CH2)N(R)C(=S)N(H)R,29-31 for R = alkyl, aryl, none are known for the di-

hydroxyethyl analogues, i.e. (HOCH2CH2)2NC(=S)N(H)R.  Indeed, with the exception of 1,32 

which was investigated recently for anti-leishmanial activity, compounds 2-4 do not appear to have 

been reported previously.  Herein, the synthesis, spectroscopic and crystallographic 

characterisation of 1-4 are described along with a detailed analysis of the molecular packing in 

their crystals with the aim of ascertaining the role of the Y = H, Me, Cl and NO2 substituents upon 

the supramolecular association.
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The objectives of the computational studies are three-fold, i.e. firstly, to validate whether 

the experimental structures represent the global minima through a conformational analysis, an 

analysis which has significant implications for their molecular packing.  Secondly, to gain insight 

into the electronic nature of the molecules through molecular electrostatic potential (MEP) and 

natural population analysis (NPA) studies in order to ascertain any particular features in the 

electronic structures of the molecular that may impact upon the molecular packing.  Finally, to 

qualitatively and quantitatively assess the molecular interactions present in each crystal through 

Hirshfeld surface analysis, interaction energy calculations, energy framework simulations, lattice 

energy calculation, non-covalent interaction plots as well as quantum theory of atoms in molecules 

(QTAIM).  The aim of these studies is to correlate molecular conformation and electronic structure 

to determine and explain the main factors that influence the manner in which the thiourea 

derivatives pack in their crystals.

Experimental

Instrumentation

All chemicals and solvents were used as purchased without purification.  The melting points 

(uncorrected) were measured using a Stuart SMP30 melting point apparatus.  The IR spectra were 

measured on a Bruker Vertex 70v FT-IR spectrophotometer from 4000 to 80 cm-1.  1H and 13C{1H} 

NMR spectra were recorded in DMSO-d6 solutions on a Bruker Ascend 400 MHz NMR 

spectrometer with chemical shifts relative to tetramethylsilane (TMS).  The absorption spectra 

were measured on 100 μM acetonitrile solutions in the range 180-700 nm on a double-beam 

Shimadzu UV 3600 Plus UV-Vis spectrophotometer.  The CHN elemental analyses were 

performed on a LECO TruSpec Micro analyser under a helium atmosphere with glycine being the 
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standard.  The room temperature powder X-ray diffraction (PXRD) patterns were measured on a 

Rigaku MiniFlex 600 X-ray diffractometer with Cu Kα1 radiation (λ = 1.5418 Å) within a 2θ range 

of 5-70° and a step size of 0.02°.  The comparisons between the experimental and calculated (from 

the respective CIF) PXRD patterns were performed with Rigaku’s PDXL2 software 

(https://www.rigaku.com/en/products/software/pdxl/overview).

Synthesis

A common mode of synthesis was adopted for the preparation of 1,1-bis(2-hydroxyethyl)-3-

phenylthiourea (1), 1,1-bis(2-hydroxyethyl)-3-(4-tolyl)thiourea (2) and 1,1-bis(2-hydroxyethyl)-

3-(4-chlorophenyl)thiourea (3).  Thus, 1 mmol of the corresponding aryl isothiocyanate (phenyl 

isothiocyanate (0.135 g); 4-tolyl isothiocyanate (0.149 g); 4-chlorophenyl isothiocyanate (0.169 

g) all from Sigma) was reacted with an equimolar amount of diethanolamine (Sigma, 0.105 g) in 

ethanol (30 ml) followed by stirring for 3 h at room temperature.  White precipitates were formed 

upon the addition of dichloromethane (3 ml).  The products were filtered and subsequently washed 

with cold ethanol (2 ml).  Recrystallisation in hot ethanol resulted in the formation of colourless 

blocks after slow evaporation.  For 1,1-bis(2-hydroxyethyl)-3-(4-nitrophenyl)thiourea (4), the 

product was obtained by mixing diethanolamine (1 mmol, 0.105 g) in acetone (5 ml) with an 

equimolar amount of 4-nitrophenyl isothiocyanate (Acros, 0.180 g) which was pre-dissolved in 

acetone (30 ml).  The mixture was then concentrated to half of the initial volume through slow 

evaporation with stirring at room temperature.  Upon the formation of a yellow precipitate, the 

product was filtered and washed with a mixture of ethanol and ethyl acetate (4 ml, v/v).  Yellow 

blocks were obtained through recrystallisation of the crude product in absolute ethanol under slow 

evaporation.
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Characterisation

1: Colourless crystals, yield: 0.188 g (78%). M.pt.: 362.2-363.8 K. Calcd. for C11H16N2O2S: C 

54.98, H 6.71, 11.66%. Found: C 55.01, H 6.79, N 11.38%. IR (ATR, cm-1): 3247 (m) ν(O–H), 

3145 (m) ν(N–H), 3093 (m) ν(C–Haro), 3066-2845 (w) ν(C–H), 1312 (s) ν(C–N), 1033 (s) ν(C=S). 

1H NMR (DMSO-d6, ppm): δ 9.72 (s, 1H, NH), 7.29 (m, 4H, ortho- and meta-phenyl-H), 7.08 (m, 

1H, para-phenyl-H), 5.31 (br, 2H, OH), 3.84 (t, 4H, 3JHH = 5.3 Hz, CH2–N), 3.73 (dt, 4H, 3JHH = 

5.3 Hz, 3JH-OH = 4.6 Hz, CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 182.23 (C=S), 141.34 (ipso-

C), 128.52 (ortho-C), 124.71 (meta-C), 124.39 (para-C), 59.85 (C–O), 54.78 (C–N). UV/Vis 

(acetonitrile, 100 μM, nm, L mol-1 cm-1): λmax: 277 (sh), ε = 10964; 254, ε = 19953; 222 (sh), ε = 

14791.

2: Colourless crystals, yield: 0.207 g (82%). M.pt.: 391.8-392.5 K. Calcd. For C12H18N2O2S: C 

56.67, H 7.13, N 11.01%. Found: C 56.65, H 7.21, N 10.86%. IR (ATR, cm-1): 3258 (m) ν(O–H), 

3192 (m) ν(N–H), 3131 (m) ν(C–Haro), 3057-2885 (w) ν(C–H), 1291 (s) ν(C–N), 1025 (s) ν(C=S). 

1H NMR (DMSO-d6, ppm): δ 9.60 (s, 1H, NH), 7.18 (d, 2H, 3JHH = 8.36 Hz, ortho-aryl-H), 7.09 

(d, 2H, 3JHH = 8.2 Hz, meta-aryl-H), 5.29 (br, 2H, OH), 3.83 (t, 4H, 3JHH = 5.36 Hz, CH2–N), 3.72 

(dt, 4H, 3JHH = 5.12 Hz, 3JH-OH = 4.8 Hz, CH2–O), 3.06 (s, 3H, CH3). 13C{1H} NMR (DMSO-d6, 

ppm): δ 187.04 (C=S), 143.52 (ipso-C), 138.33 (para-C), 133.72 (ortho-C3), 129.70 (meta-C), 

64.61 (C–O), 59.50 (C–N), 25.72 (methyl-C). UV/Vis (acetonitrile, 100 μM, nm, L mol-1 cm-1): 

λmax: 278 (sh), ε = 8318; 253, ε = 16218; 222 (sh), ε = 12589.

3: Colourless crystals, yield: 0.215 g (78%). M.pt.: 395.5-396.8 K. Calcd. For C11H15ClN2O2S: C 

48.09, H 5.50, N 10.20%. Found: C 48.01, H 5.58, N 10.02%. IR (ATR, cm-1): 3242 (w) ν(O–H), 
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3187 (w) ν(N–H), 3127 (w) ν(C–Haro), 3042-2935 (w) ν(C–H), 1301 (s) ν(C–N), 1062 (s) ν(C=S), 

691 (m) ν(C–Cl). 1H NMR (DMSO-d6, ppm): δ 9.76 (s, 1H, NH), 7.34 (s, 4H, ortho- and meta-

aryl-H), 5.32 (br, 2H, OH), 3.85 (t, 4H, 3JHH = 5.2 Hz, CH2–N), 3.73 (dt, 4H, 3JHH = 5.04 Hz, 3JH-

OH = 4.84 Hz, CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 186.84 (C=S), 145.06 (ipso-C), 133.14 

(ortho-C), 133.01 (para-C), 131.07 (meta-C), 64.51 (C–O), 59.57 (C–N). UV/Vis (acetonitrile, 

100 μM, nm, L mol-1 cm-1): λmax: 282 (sh), ε = 12023; 255, ε = 22909; 226 (sh), 13490.

4: Yellow crystals, yield: 0.224 g (79%). M.pt.: 449.4-450.8 K. Calcd. For C11H15N3O4S: C 46.31, 

H 5.30, N 14.73%. Found: C 46.34, H 5.36, N 14.44%. IR (ATR, cm-1): 3259 (w) ν(O–H), 3224 

(w) ν(N–H), 3075 (w) ν(C–Haro), 3015-2832 (w) ν(C–H), 1505 (s) ν(N=Oasym), 1474 (s) ν(N=Osym), 

1291 (s) ν(C–N), 1027 (s) ν(C=S). 1H NMR (DMSO-d6, ppm): δ 10.37 (s, 1H, NH), 8.18 (d, 2H, 

3JHH = 9.16 Hz, meta-aryl-H), 7.64 (d, 2H, 3JHH = 9.04 Hz, ortho-aryl-H), 5.82 (br, 1H, OH), 5.18 

(br, 1H, OH), 3.88 (4H, t, 3JHH = 4.92 Hz, CH2–N), 3.76 (4H, dt, 3JHH = 5.04 Hz, 3JH-OH = 5.16 Hz, 

CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 181.50 (C=S), 147.87 (para-C), 142.38 (ipso-C), 

124.59 (meta-C), 122.37 (ortho-C), 59.61 (C–O), 55.00 (C–N). UV/Vis (acetonitrile, 100 μM, nm, 

L mol-1 cm-1): λmax: 349, ε = 15488; 299 (sh), ε = 10715; 240, ε = 16982; 224 (sh), ε = 14454.

X-ray crystallography

The crystallographic and refinement data for 1-4 are given in Table 1.  Intensity data were 

measured at 100 K on an Agilent Technologies SuperNova Dual diffractometer fitted with an Atlas 

detector.  Data processing and Gaussian absorption corrections were accomplished with CrysAlis 

Pro.33  Each structure was solved by direct methods34 and the refinement was by full-matrix least 

squares on F2 with anisotropic displacement parameters for all non-hydrogen atoms.35  The C-
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bound hydrogen atoms were placed on stereochemical grounds and refined with fixed geometries.  

The O-and N-bound hydrogen atoms were refined with O–H = 0.84±0.01 Å and N–H = 0.88±0.01 

Å, respectively.  A weighting scheme of the form w = 1/[σ2(Fo
2) + (0.037P)2 + 1.248P], where P 

= (Fo
2 + 2Fc

2)/3, was introduced in each refinement.  Owing to poor agreement, reflections, i.e. (1 

3 0) for 1 and (-1 0 7) for 2, were omitted from the final cycles of refinement.  Finally, 4 was 

refined as two-component twin with the fraction due to the minor component = 0.142(3).  The 

programs WinGX,36 ORTEP-3 for Windows,36 PLATON37 and DIAMOND38 were also used in 

the study.
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Table 1  Crystallographic data and refinement details for 1–4

Compound 1 2 3 4

Formula C11H16N2O2S C12H18N2O2S C11H15ClN2O2S C11H15N3O4S

Molecular weight 240.32 254.34 274.76 285.32

Crystal size/mm3 0.30 × 0.30 × 0.30 0.05 × 0.05 × 0.15 0.05 × 0.05 × 0.15 0.30 × 0.35 × 0.40

Colour colourless colourless colourless yellow

Crystal system monoclinic monoclinic monoclinic triclinic

Space group P21/n P21/n P21/n P1̄

a/Å 13.4885(1) 7.0472(2) 7.1366(2) 10.8235(5)

b/Å 11.1767(1) 10.7489(2) 10.7767(3) 11.2124(5)

c/Å 16.4909(2) 16.9533(4) 16.6259(4) 12.3443(5)

α/° 90 90 90 90.050(3)

β/° 98.544(1) 99.109(2) 100.221(2) 108.737(4)

γ,/° 90 90 90 114.559(4)

V/Å3 2458.53(4) 1268.01(5) 1258.39(6) 1274.53(11)
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Z 8 4 4 4

Dc/g cm-3 1.299 1.332 1.450 1.487

μ/mm-1 2.253 2.213 4.184 0.269

Measured data 9855 5049 4685 5859

Radiation Cu Kα Cu Kα Cu Kα Mo Kα

θ range/° 4.0 – 75.0 4.9 – 75.0 4.9 – 75.0 2.3 – 27.5

Unique data 4995 2586 2554 5859

Observed data (I  2.0σ(I)) 4702 2346 2243 4753

No. parameters 307 164 163 362

R, obs. data; all data 0.030; 0.032 0.029; 0.033 0.031; 0.037 0.041; 0.054

a; b in weighting scheme 0.039; 0.851 0.033; 0.456 0.040; 0.220 0.056; 0.615

Rw, obs. data; all data 0.077; 0.078 0.071; 0.074 0.075; 0.080 0.104; 0.114

Range of residual electron

density peaks/eÅ-3 -0.30 – 0.29 -0.22 – 0.21 -0.31 – 0.24 -0.30 – 0.82
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Computational studies

A conformational search was performed through a Monte Carlo algorithm using the Merck 

Molecular Force Field (MMFF),39 as available in Spartan’16,40,41 with the energy cut-off being set 

to 9.6 kcal mol-1.  To increase the accuracy on the Boltzmann distribution, the generated 

conformers were subjected to geometry optimisation using the ab initio HF/3-21G model42,43 

followed by energy calculations through the long-range corrected wB97XD density functional 

with Grimme’s D2 dispersion model44 coupled with Pople’s 6-31G(d) basis set.45  The long-range 

corrected hybrid model has been shown to greatly reduce self-interaction errors and give better 

accuracy in the interaction energies.46  Upon elimination of redundant structures with minor 

conformational changes as well as those exceeding the 9.6 kcal mol-1 energy window, the 

remaining conformers were then submitted for further optimisation at the wB97XD/6-311+G(d,p) 

level.47,48  At this stage, a frequency analysis was performed using the same level of theory and 

basis set to ensure the validity of the ground state structures.  Finally, all identified conformers 

were submitted into Gaussian1649 for optimisation using wB97XD with Ahlrichs’s valence triple-

zeta polarization basis sets (wB97XD/def2-TZVP)50,51 and with the employment of the Polarisable 

Continuum Model by placing the solute in a cavity within an ethanol solvent reaction field through 

the integral equation formalism variant of polarisable continuum model (IEFPCM).52  The Gibbs 

free energies were obtained through frequency calculations of the optimised structures at the same 

level of theory and basis set.  

The relative population of each conformer was determined through a Boltzmann weighting 

factor using equation (1),53 with ΔGi being the Gibbs free energy of species i relative to the most 

stable conformer, j is the specific conformer (j = 1, 2, 3…), R is the gas constant and T is absolute 

temperature set to 298 K.
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(1)Boltzmann weighting factor, 𝑃𝑖 =
𝑒

―∆𝐺𝑖/𝑅𝑇

∑
𝑗 = 1𝑒

―∆𝐺𝑗/𝑅𝑇 × 100%

Several molecular properties were computed in an attempt to correlate the molecular packing 

in 1-4.  Briefly, the atomic charges for the corresponding optimised structures were obtained by 

natural population analysis (NPA)54,55 using wB97XD/def2-TZVP.  The electrostatic potential 

(ESP) was mapped onto the electron density iso-surfaces with constant electronic charge of 0.002 

electrons/bohr3 through the cubegen utility as available in GaussView6.56  Further, a molecular 

packing analysis was performed using Mercury,57 with the analysis criteria being set that only 

molecules within the 20% tolerance for both distances and angles were included in the calculation 

while molecules with a variation > 20% were discarded.  Differences in the molecular structures 

(i.e. the substituents in the 4-position) and molecular inversions were allowed during the 

calculation.

For the qualitative evaluation on the strength of interactions, a non-covalent interaction 

(NCI) visualisation index was generated for the respective interacting dimers using NCIPLOT58 

through the plotting of the reduced density gradient as a function of the density across the 

molecules.  The computed density derivatives were mapped as iso-surfaces which correspond to 

any favourable or unfavourable interactions as determined by the sign of the second density 

Hessian eigenvalue times the density and visualised using VMD Molecular Graphics Viewer.59

Hirshfeld surface mapping, the corresponding two-dimensional fingerprint plots as well as 

pairwise interaction calculation were generated using Crystal Explorer 17 (ref. 60) through an 

established method as reported previously,61 with the experimental structures being used as the 

input with X–H bond lengths adjusted to their neutron-derived values.62  The interaction energy 

calculations were performed using the dispersion corrected CE-B3LYP/6-31G(d,p) model as 
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available in the program, with the total intermolecular energy being the sum of energies of four 

main components, comprising electrostatic, polarisation, dispersion and exchange-repulsion with 

scale factors of 1.057, 0.740, 0.871 and 0.618, respectively.63  The model was validated against 

the B3LYP-D2/6-31G(d,p) counterpoise corrected energy model as well as the benchmark 

CCSD(T)/ CBS model with considerable accuracy.64  The energy frameworks for 1-4 were 

computed for a cluster of 2 × 2 × 2 unit cells with the energy cut-off being set to 1.9 kcal mol-1.  

Finally, the total energy was obtained for a cluster of molecules within a 25 Å radius from a 

selected reference molecule through the same level of theory and basis set model.  The lattice 

energy for the corresponding crystals were calculated using equation (2),65 where the second term 

is the cell dipole energy correction, with ρcell being the vector sum of the molecular dipole 

moments, Vcell being the volume and Z being the number of formula units in the unit cell, 

respectively.  Typically, the cell dipole energy correction is negligible (< 0.24 kcal/mol) for a unit 

cell with small dipole moment.66

(2)𝐸lattice =  
1
2∑

𝑅AB < 𝑅𝐸AB
total ―

2𝜋𝜌2
cell

3𝑍𝑉cell

For 1 and 4, each with Z' = 2, the lattice energy was calculated as the average of lattice sums for 

each molecule in the asymmetric unit.

Results and Discussion

Synthesis and characterisation

The (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4), Y = H (1), Me (2), Cl (3) and NO2 (4), compounds 

have been prepared in good yield (78-82%) yield as colourless (1-3) and yellow (4) crystals.  In 
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the IR spectra, characteristic bands in the regions 1291-1312 cm-1 and 1025-1062 cm-1 are assigned 

to υ(C–N) and υ(C=S), respectively.  In the 1H NMR spectra, measured in DMSO-d6 solution, the 

expected resonances and integration, including for the N–H and O–H protons, were noted.  In the 

13C{1H} NMR spectra, resonances due to the quaternary-C1 atom were seen downfield, in the 

range 181.50 (4) to 187.04 ppm (2).  In order to assign the transitions in the UV spectra, an analysis 

on the HOMO-LUMO profile was performed for the lowest energy conformer at the ground state 

(vide infra) for each of 1-4; see ESI† Fig. S1.  This revealed the HOMO is located at the C1=S1 

chromophore for 1-3, while the LUMO, LUMO(+1) and LUMO(+2) are located at the delocalised 

C1=N1/C1=N2, C2=C3 and C4=C5/C6=C7 chromophores, respectively, which indicates that the 

experimental UV absorption bands at approximately 280, 250 and 220 nm can be attributed to n 

→ π*, π → π* and π → π* transitions, respectively.  As for 4, the delocalised chromophore 

associated with the nitro group contributes to LUMO(+1) and hence, the additional absorption 

band at approximately 350 nm can be assigned to π → π*.  The PXRD pattern measured for each 

of 1-4 closely match the simulated pattern calculated from their single crystal data, confirming the 

phase similarity between the respective bulk materials (293 K) and experimental structures (100 

K); see ESI† Fig. S2.

Experimental molecular structures

Crystal structures were established for 1-4; for each of 1 and 4, two independent molecules 

comprise the asymmetric unit, henceforth 1a & 1b and 4a & 4b, respectively.  The molecular 

structures are shown in Fig. 2 and selected geometric data are collated in Table 2.  The first 

independent molecule of 1, Fig. 2(a), features a planar C1,N1,N2,S1 chromophore which exhibits 

a r.m.s. deviation of 0.0038 Å for the fitted atoms.  The mono-substituted amine-N1 atom carries 
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a phenyl ring and the di-substituted amine-N2 atom carries two hydroxyethyl groups.  A significant 

twist in the molecule is apparent with the dihedral angle between the central plane and appended 

phenyl ring being 59.39(4)°.  This observation plus that the two methylene-C atoms bound to the 

N2 atom suggests there is not extensive delocalisation of π-electron density over the molecule; the 

C1–N bond lengths are experimentally equivalent.  Consistent with the presence of the C1=S1 

double bond at the C1 atom, the angles subtended at the N2 atom involving the C1 atom are the 

widest.  However, the widest angle at a nitrogen atom is the C1–N1–C2 angle which reflects the 

presence of the amine-H atom.  A similar distortion in angles is seen about the C1 atom.  Rather 

than being “dangling”, the hydroxyl groups are orientated towards the rest of the molecule enabling 

the formation of intramolecular hydroxyl-O–H···S(thione) and amine-N–H···O(hydroxyl) 

hydrogen bonds and S(7) loops, as detailed in Table 3.  As seen from Table 2, the key bond lengths 

and angle defining the independent molecules of 1, Fig. 2(b), are generally close with the most 

significant difference being a wider angle by about 3° for C1–N1–C2 in the second molecule.  

Greater differences are noted in torsion angles, Table 2.  The maximum difference of 

approximately 20° is noted in the C1–N1–C2–C3 torsion angles followed by approximately 10° 

for the N2–C8–C9–O1 torsion angles.  A difference of approximately 20° is also seen in the 

CN2S/aryl torsion angles with reduced splaying between the planes noted in the second molecule 

of 1.

Very similar molecular conformations are noted for 2-4, Figs 2(c)-(f) and Table 2, including 

the formation of the intramolecular hydrogen bonds, Table 3.  The most notable differences 

between 1 and each of 2-4 relate to the more planar S1–C1–N1–C2 torsion angles and to the 

reduced N2–C10–C11–O2 torsion angles, by up to 18°, in 2-4.  Two independent molecules 

comprise the asymmetric unit of 4 but each presents very similar geometric parameters, Table 2.  
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However, a distinguishing feature of the two molecules comprising 4 and each of 1-3 relates to an 

apparent disparity in the C1–N1 and C1–N2 bond lengths in 4 not seen in the latter; this 

observation is discussed further below.  An overlay diagram of the experimental molecular 

structures is shown in Fig. 2(g) from which it is plain that significant conformational differences 

with respect to the relative orientations of both the hydroxyethyl and aryl groups are evident across 

the series.

Fig. 2.  Molecular structures of (a) 1 (first independent molecule), (b) 1 (second molecule), (c) 2, 

(d) 3, (e) 4 (first independent molecule) and (f) 4 (second independent molecule), all showing atom 

labelling schemes and displacement ellipsoids at the 50% probability level.  Overlap diagrams of 

the (g) experimental and (h) geometry optimised structures – the molecules have been overlapped 

so that the central N2S residues are coincident.  Colour code: 1 (first independent molecule), red; 

1 (second independent molecule), green; 2 (inverted), blue; 3, cyan; 4 (first independent molecule), 

pink; 4 (inverted second independent molecule), yellow.
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Table 2  Selected experimental and calculated (in italics) geometric data (Å, º) characterising 1-4

Parameter 1a 1b 2 3 4a 4b

C1‒S1 1.7028(12) 1.6985(12) 1.6986(13) 1.6968(16) 1.6900(18) 1.6893(18)

1.695 1.696 1.694 1.690

C1‒N1 1.3518(16) 1.3511(15) 1.3573(16) 1.360(2) 1.375(2) 1.374(2)

1.370 1.368 1.372 1.380

C1‒N2 1.3499(15) 1.3544(15) 1.3539(16) 1.354(2) 1.344(2) 1.345(2)

1.376 1.376 1.375 1.372

C1‒N1‒C2 127.40(11) 130.19(10) 127.08(11) 126.00(14) 128.13(15) 128.95(15)

128.4 128.1 128.3 129.8

C1‒N2‒C8 122.75(10) 122.65(10) 123.22(10) 123.07(13) 123.67(15) 123.44(15)

122.9 122.8 122.9 123.1

C1‒N2‒C10 122.86(10) 122.59(10) 121.49(11) 121.54(13) 121.06(15) 121.47(15)

Page 18 of 120CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://doi.org/10.1039/d0ce01810d


19

120.9 120.9 120.8 120.8

C8‒N2‒C10 114.35(9) 114.70(9) 115.29(10) 115.39(12) 115.27(14) 115.08(14)

115.8 115.8 115.8 115.7

S1‒C1‒N1 122.32(9) 123.78(9) 122.78(10) 122.52(12) 122.81(14) 123.14(14)

123.3 123.2 123.2 123.3

S1‒C1‒N2 122.68(9) 121.91(9) 122.69(9) 122.83(12) 123.09(14) 123.10(13)

122.9 122.9 123.0 123.3

N1‒C1‒N2 114.99(10) 114.29(10) 114.52(11) 114.64(14) 114.09(15) 113.74(15)

113.8 113.9 113.8 113.4

S1‒C1‒N1‒C2 14.67(18) 13.32(18) 4.79(19) -5.3(2) 3.9(3) -5.8(3)

13.9 13.2 -13.8 -19.0

C1‒N1‒C2‒C3 51.55(19) 31.80(19) 53.74(19) -55.6(2) 42.1(3) -39.5(3)

44.0 46.3 -43.5 -30.8

S1‒C1‒N2‒C8 -165.08(9) -160.46(9) -166.78(9) 166.73(12) -166.45(13) 165.12(13)
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-158.3 -158.1 158.6 159.8

S1‒C1‒N2‒C10 17.34(16) 16.56(16) 13.32(16) -13.6(2) 13.9(2) -16.0(2)

13.1 13.3 -12.8 -12.0

N2‒C8‒C9‒O1 73.33(12) 82.80(13) 71.13(14) -71.15(17) 61.7(2) -63.9(2)

72.1 72.3 -72.0 -71.2

N2‒C10‒C11‒O2 74.54(13) 73.76(13) 59.47(14) -58.80(18) 52.5(2) -55.1(2)

49.8 50.0 -49.4 -48.7

r.m.s. deviation CN2S 0.0038 0.0065 0.0027 0.0036 0.0048 0.0043

CN2S/aryl 59.39(4) 39.07(4) 54.3(5) 56.98(6) 42.70(7) 41.33(8)

51.6 53.2 51.0 43.4
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Table 3  Summary of intra- and inter-molecular interactions (A–H…B; Å, º) operating in the crystals of 1-4

A H B A–H H…B A…B A–H…B Symmetry

operation

1

N1 H1n O1 0.873(14) 1.914(14) 2.7514(15) 160.1(15) x, y, z

O2 H2o S1 0.841(14) 2.269(15) 3.1009(9) 170.1(13) x, y, z

N21 H21n O21 0.872(13) 1.900(14) 2.7624(14) 169.4(13) x, y, z

O22 H22o S21 0.838(14) 2.323(15) 3.1470(9) 167.6(14) x, y, z

O1 H1o O22 0.839(11) 1.841(11) 2.6753(13) 173.0(17) x, y, z

O21 H21o O2 0.842(16) 1.842(16) 2.6825(14) 176.1(15) x, y, 1+z

C9 H9a Cg(C22-C27) 0.99 2.68 3.6030(13) 155 1-x, 1-y, 1-z

C9 H9b Cg(C22-C27) 0.99 2.78 3.6822(13) 151 -½+x, ½-y, - ½+z

C29 H29b Cg(C2-C7) 0.99 2.95 3.8131(14) 147 1-x, 1-y, 1-z

2

N1 H1n O1 0.875(14) 1.906(13) 2.7449(16) 160.1(14) x, y, z

O2 H2o S1 0.839(12) 2.367(15) 3.1500(10) 155.4(16) x, y, z

O1 H1o O2 0.837(15) 1.882(16) 2.7137(14) 172.0(19) -½-x, -½+y, 1½-z
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C8 H8a Cg(C2-C7) 0.99 2.89 3.4957(13) 120 -1+x, y, z

C10 H10b C6 0.99 2.73 3.6263(19) 150 -½+x, ½-y, -½+z

3

N1 H1n O1 0.881(18) 1.907(18) 2.7453(19) 158.3(17) x, y, z

O2 H2o S1 0.828(13) 2.388(16) 3.1591(13) 155.2(18) x, y, z

O1 H1o O2 0.837(17) 1.879(17) 2.7156(18) 178(2) -½-x, ½+y, ½-z

C8 H8a Cg(C2-C7) 0.99 2.95 3.5488(17) 120 -1+x, y, z

C10 H10b C1l 0.99 2.85 3.6738(14) 141 -1½+x, 1½-y, -½+z

C5 Cl1 Cl1 1.7448(17) 3.4432(6) – 154.00(6) 2-x, 1-y, 1-z

4

N1 H1n O1 0.88(2) 2.03(2) 2.842(2) 153(2) x, y, z

O2 H2o S1 0.84(3) 2.40(2) 3.1671(16) 152(3) x, y, z

N21 H21n O21 0.88(2) 2.02(2) 2.839(2) 154(2) x, y, z

O22 H22o S21 0.839(14) 2.41(2) 3.1767(16) 152(3) x, y, z

O1 H1o O22 0.838(19) 1.890(19) 2.723(2) 173(2) x, 1+y, z

O21 H21o O2 0.83(2) 1.90(2) 2.732(2) 172.7(19) x, y, z

C29 H29b O1 0.99 2.39 3.375(3) 175 -x, 1-y, 1-z
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C11 H11b O3 0.99 2.39 3.360(3) 165 x, y, 1+z

C10 H10b Cg(C22-C27) 0.99 2.72 3.475(2) 133 1-x, 1-y, 2-z

C9 H9b Cg(C2-C7) 0.99 2.71 3.483(2) 135 1-x, 1-y, 1-z

Cg(C22-C27) Cg(C22-C27) – – 3.6105(12) 0 -x, -y, 2-z
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Molecular packing

The geometric parameters characterising the specific intermolecular contacts operating in the 

crystals of 1-4 are collated in Table 3.  The common feature of the supramolecular aggregation 

is the formation of supramolecular chains mediated by hydroxyl-O–H···O(hydroxyl) hydrogen 

bonding.  However, the topologies of the resultant chains are distinct.  In 1, the two similarly 

orientated molecules comprising the asymmetric unit are connected by a single hydroxyl-O–

H···O(hydroxyl) hydrogen bond and the resultant two-molecule aggregates are connected into 

a linear supramolecular chain parallel to the c-axis in the crystal with monoclinic space group 

P21/n.  In isostructural 2 and 3, helical chains are formed, being propagated by 21-screw 

symmetry along the b-axis in monoclinic space group P21/n, in their crystals.  In 4, the 

independent molecules are connected into a V-shaped aggregate which are connected to 

translationally related aggregates to form a zig-zag chain along the b-axis in the triclinic (P1̄) 

crystal.  The side- and end-on views of the supramolecular chains are illustrated for 1, 2 and 4 

in Fig. 3, and for 3 in ESI† Fig. S3.  The differences in the topologies is reflected in the 

distances between translationally related pairs of molecules, i.e. 16.49, 10.75, 10.77 and 11.21 

Å, respectively, indicating more open arrangements in the sequence 1 > 4 > 3 and 2.
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Fig. 3.  Side- and end-on views of the supramolecular chains featuring by hydroxyl-O–

H···O(hydroxyl) hydrogen bonding, shown as orange dashed lines, in the crystals of (a) 1, (b) 

2 and (c) 4.

In 1, the only other identifiable points of contact between the supramolecular chains are 

methylene-C–H···π(aryl) interactions, with the C22-C27 ring accepting two interactions to 

either side, and these serve to assemble the chains into a three-dimensional architecture, Fig. 

4(a).  
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Fig. 4.  Unit-cell contents for (a) 1, viewed down the c-axis, (b) 2, viewed down the b-axis, (c) 

3, viewed down the a-axis and (d) 4, viewed down the b-axis; the views in (a), (b) and (d) are 

in projection down the axes of propagation of the chains.  The hydroxyl-O–H···O(hydroxyl), 

methylene-C–H···π(aryl), methylene-C–H···C(aryl), methylene-C–H···Cl, Cl···Cl, 

methylene-C–H···O(hydroxyl, nitro) and π(aryl)···π(aryl) interactions are shown as orange, 

purple, pink, dark-red, cyan, blue and dark-green dashed lines, respectively.

In the crystal of 2, the chains are connected into a two-dimensional array in the ab-plane 

by methylene-C–H···π(C2-C7) interactions.  The layers stack along the c-axis with the closest 

interaction between them being a methylene-C–H···C(aryl) contact, Table 3.  A view of the 

unit-cell contents for isostructural 3 is shown in Fig. 4(c).  Here, there is evidence for weak 

inter-layer methylene-C–H···Cl and Cl···Cl contacts, Table 3.  A distinct molecular packing is 
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noted in the crystal of 4 primarily owing to the participation of hydroxyl- and nitro-O atoms 

along with face-to-face π···π contacts, Table 3.  Thus, the methylene-C–H···π(aryl) contacts, 

present in all crystals connect chains into a centrosymmetric double-layer in the bc-plane, 

within which are supporting methylene-C–H···O(nitro) contacts.  The double-layers stack 

along the a-axis with methylene-C–H···O(hydroxyl) and π(aryl)···π(aryl) contacts assembling 

the layers into a three-dimensional architecture, Fig. 4(d).  The π(aryl)···π(aryl) contacts occur 

between centrosymmetrically related residues and the rings are off-set to optimise the 

attraction: the inter-plane separation is 3.4128(8) Å and the slippage is 1.18 Å.

Molecular packing similarity analysis

A packing similarity analysis was performed between 1-4 to identify any similarities in the 

molecular arrangements in their crystals.57  The results show that the packing in 1 is quite 

distinct to that of 2, 3 and 4, with only one molecule out of 15 falling within the 20% tolerance 

in both distance and angle deviations.  The r.m.s. deviation between 1 & 2, 1 & 3 and 1 & 4 

amounts to 0.946, 0.931 and 0.934 Å, respectively.  The major deviation arises as in the crystal 

of 1, the molecules are mainly connected through hydroxyl-O–H···O(hydroxyl) interactions in 

a linear arrangement, while in each of 2-4, the molecules are connected by the same interaction 

but arranged in a helix (2 and 3) and a zig-zag chain (4), as highlighted in the overlay diagrams 

for 1 & 2 and 1 & 4 of Figs 5(a) and (b), respectively. For comparison, Fig. 5(c) shows the 

equivalent image for isostructural 2 and 3 where the r.m.s. deviation is 0.173 Å.  An 

intermediate situation when 2 (and 3) is compared with 4, Fig. 5(d), where the r.m.s. deviation 

is 0.388 Å; the r.m.s. deviation between 3 and 4 is 0.461 Å.  A closer inspection of the 

supramolecular chains of 2 and 4, Fig. 5(e), shows every second molecule of 2 has an alternate 
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orientation, reflecting the 21-screw symmetry, compared with the molecules having the same 

relative orientation reflecting the pseudo-mirror symmetry of the zig-zag chain of 4.

Fig. 5  Comparisons of the molecular packing leading to the supramolecular chains (only four 

molecules of each are shown) between (a) 1 (blue) and 2 (green), (b) 1 and 4 (red), (c) 2 and 3 

(magenta), (d) 2 and 4 and (e) end-on view of 2 and 4 with the differently-orientated hydroxyl-

O–H···O(hydroxyl) interactions.  In (a)-(e), best-fitting molecules are highlighted in ball and 

stick representation.

Conformational analysis
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Owing to the presence of the hydroxyethyl moieties in 1-4, which may participate in various 

intra- and inter-molecular interactions depending on the conformations they adopt, a detailed 

conformational analysis of a representative molecule, namely 4, was conducted to assess 

whether the observed experimental structure represents a conformation at or close to the global 

minimum on the potential energy surface.  A striking feature of the molecular structures of 1-

4 was the universal formation of intramolecular hydroxyl-O–H···S(thione) and amine-N–

H···O(hydroxyl) hydrogen bonds, Fig. 2 and Table 3.  The (any 

atom)N(H)C(=S)N(CH2CH2OH)2 fragment is relatively rare in the crystallographic literature,67 

being restricted to a small number of ArC(=O)N(H)C(=S)N(CH2CH2OH)2 molecules68-71 and 

a bi-functional analogue.72  A common feature of the literature precedents is the formation of 

the intramolecular amine-N–H···O(hydroxyl) hydrogen bonds but no analogous intramolecular 

hydroxyl-O–H···S(thione) interactions as in 1-4.  Given this observation, it was thought of 

interest to ascertain whether the orientations of the flexible hydroxyethyl residues in 1-4 

corresponded to the global potential energy minima.  Accordingly, a conformational analysis 

through a series of optimisation steps (see Experimental) was performed on a representative 

molecule, namely, 4.  In all, nine conformers with lowest energy were identified upon 

consecutive elimination of the redundant conformers and those with the relative energy 

exceeding 9.6 kcal mol-1 throughout the series of optimisation steps.  As validated through the 

vibrational analysis with zero imaginary frequency, final optimisation showed that all nine 

conformers were either true local minima or the global minimum structure on the potential 

energy surface.  The chemical diagrams for the identified conformers together with the energy 

details are presented in Fig. 6.  Clearly, among all possible conformations identified for 4, 

conformer 4-1 is the global minimum structure with the lowest Gibbs free energy and is also 

the most dominant conformer with the highest relative population of about 82%.  Two other 

conformers lie within 2 kcal mol-1, namely 4-2 and 4-3, with Boltzmann populations of 10.45 
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and 3.52%, respectively.  Clearly, the intramolecular hydrogen bonds play a crucial role in 

stabilising the observed molecular conformation, by about 1-5 kcal mol-1 compared to the 

conformation without intramolecular hydrogen bonding, i.e. 4-9.

Fig. 6  Chemical diagrams for the nine most stable conformers calculated for 4, i.e. 4-1 to 4-9, 

their relative energies and Boltzmann distribution.

Additional structural information was revealed through this analysis.  Crucially, the six 

most stable conformations, 4-1 to 4-6, have an anti-disposition of the thione-S and amine-H 

atoms, with S1–C1–N1–H1n torsion angles in the range 140.1 to 156.9°, compared syn-

dispositions in 4-7 to 4-9 (S1–C1–N1–H1n: 19.7 to 20.8°) with the difference in energy 

between 4-6 and 4-7 being 0.2-0.3 kcal mol-1.  The analysis also highlights the importance of 

the intramolecular amine-N–H···O(hydroxyl) hydrogen bonds compared with the hydroxyl-

O–H···S(thione) and putative hydroxyl-O–H···O(hydroxyl) hydrogen bonds, with conformers 

4-1 to 4-4 being lower in energy compared with conformers without amine-N–H···O(hydroxyl) 

hydrogen bonds.
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Geometry optimisation calculations for 1-4 were conducted and an overlay diagram for 

these are shown in Fig. 2(h) from which it can be seen that the disparities in the conformations 

of the experimentally-determined structures no longer persist, with only minor differences 

noted in the relative orientations conformations of the aryl groups.  Selected geometric 

parameters for the optimised structures are collated in Table 2.  First and foremost, any 

differences apparent between the independent molecules of 1 and of 4 are no longer apparent.  

For example, the difference in the C1–N1–C2 angles of approximately 3° in 1 disappears.  

Concerning the relative dispositions of the aryl groups, Fig. 2(h), it was noted above the S1–

C1–N1–C2 angles in experimental 2-4 were closer to planarity compared with 1 but in the 

optimised molecules, all approximate the conformation seen in experimental and theoretical 1, 

yet a range of angles, i.e. 13.2° (2) to -19.0° (4) is still apparent.  This along with a range of 

about 12° for the C1–N1–C2–C3 torsion angles are the exceptional differences with all of the 

other angles equal within a degree of each other.  With respect to bond lengths, in the crystals 

of 1-3 the C1–N1, N2 bond lengths are equal within experimental error but are distinct for each 

independent molecule in 4, Table 2.  In the optimised structures, C1–N2 is marginally longer 

than C1–N1 in 1-3 but, for 4, there are more significant differences apparent with the C1–N1 

bond length being longer than C1–N2.  This change is related to the influence of the 

electronegative nitro substituent in 4.  The above systematic variations in geometric parameters 

notwithstanding, it is emphasised the differences are small and are unlikely to have a significant 

influence upon the molecular packing.

Molecular electrostatic potential (MEP) and natural population analysis (NPA)

Compounds 1-4 were subjected to molecular electrostatic potential (MEP) mapping and a 

natural population analysis (NPA) in order to better comprehend the distribution of electron 

density over the molecules (the relative polarity) with the view to correlate any systematic 
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trends with the non-covalent interactions operating in the respective crystals.  It is noted that 

the NPA approach was chosen for the charge calculations for its reliability and for being less 

sensitive to the choice of basis set functions.73

As shown in Fig. 7, the MEP maps were plotted onto the iso-density surfaces (0.0004 

a.u., the low value being chosen for the generation of high-quality mapping) for 1-4; a listing 

of the electrostatic charges is given in ESI† Table S1.  The most noteworthy features of the 

MEP plots are the intense positive (blue) regions centred on the H1o atoms as well as the 

negative (orange to red) regions around the S1 and O2 atoms with the electrostatic potential 

charge (VESP) on the surfaces being in the range of +55.73 to +59.49 kcal mol-1 for H1o, -30.37 

to -36.09 kcal mol-1 for S1, and -39.30 to -42.45 kcal mol-1 for the O2 atom.  The electrostatic 

potential charges correspond well with the experimental findings in that electropositive-H1o 

interacts with electronegative-O2 through charge-complementary, electrostatic attractions that 

results in systematic hydroxy-O–H···O(hydroxy) hydrogen bond formation in 1-4.  While there 

are some inequivalent distributions of electrostatic potential charge on the H1o and O1 atoms 

in 1-4, the net charge (ΔVESP) is approximately the same across the series with the values being 

97.74, 98.44, 98.72 and 98.79 kcal mol-1, respectively, indicating similar strengths for these 

interactions.  These net charge values are relatively greater than the electrostatic attraction for 

putative methylene-C–H···S(thione) interactions in the molecular packing for 1 and 4, with 

energies of 65.12 and 66.61 kcal mol-1, respectively and aryl-C–H···S(thione) for 1 with an 

energy = 41.05 kcal mol-1.  However, in 1, these occur at distances beyond the van der Waals 

radii so are not indicated in the analysis conducted using PLATON37 but are noted in the 

Hirshfeld surface analysis (vide infra).  The identified methylene-C–H···Cl1 and Cl···Cl 

interactions in 3, Table 3, have net charge values of 32.40 and -1.88 kcal mol-1, respectively, 

indicating the latter is diffusive in nature.  As well, methylene-C–H···O(nitro) and aryl-C–
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H···O(nitro) in 4 have energies equal to 49.43 and 44.72 kcal mol-1, respectively; the latter 

occur at separations greater than the van der Waals radii.

Fig. 7  Electrostatic potentials mapped onto the iso-density surfaces (0.0004 a.u.) for 1-4, in 

the range -60.00 to +60.00 kcal mol-1.

The effect on the variation of the 4-Y substituent of the aryl rings is evidenced through 

MEP mapping.  Thus, the electrostatic charge on the centroid of the aryl ring becomes more 

negative from 1 to 2 due to the electron donating nature of the Y = Me substituent in 2, while 

the opposite is true for 3 and 4, as the aryl rings become less negative owing to the electron-

withdrawing effects of the Y = Cl and NO2 substituents.

Similar to the MEP analysis, the NPA study was conducted to seek trends in the charge 

distribution on specific atoms especially those participating in intermolecular interactions for 
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correlation with molecular packing.  A list of selected NPA values is given in Table 4 and a 

full listing is given in ESI† Table S2.  The NPA charge analysis shows that the most basic sites 

are located on the hydroxyl-O1 and O2 atoms with the natural charge values in the ranges -

0.736 to -0.737 and -0.743 to -0.749, respectively, indicating the O2 atom is marginally more 

negative.  The corresponding H1o and H2o atoms are the most acidic sites with charge values 

of about 0.50 and 0.48, respectively, in accord with the trends with the hydroxyl-O atoms.  

Consistent with the MEP study, are the relatively large difference in the natural charges 

between the hydroxyl-oxygen and -hydrogen atoms and this is the main contributing factor for 

the formation of the common hydroxy-O–H···O(hydroxy) hydrogen bonded chain formation 

in 1-4.

Table 4  The natural charges for selected atoms in the optimised molecules of 1-4.

Atom    Natural Charge, |e|

1 2 3 4

S1 -0.393 -0.397 -0.387 -0.361

N1 -0.613 -0.611 -0.613 -0.614

N2 -0.396 -0.397 -0.393 -0.384

O1 -0.737 -0.737 -0.737 -0.736

O2 -0.748 -0.749 -0.747 -0.743

C1 0.345 0.346 0.344 0.338

C2 0.141 0.126 0.141 0.195

C3 -0.215 -0.205 -0.197 -0.222

C4 -0.208 -0.212 -0.224 -0.169

C5 -0.226 -0.024 -0.053 -0.010

C6 -0.205 -0.209 -0.222 -0.164

C7 -0.234 -0.224 -0.216 -0.235

H1o 0.496 0.496 0.496 0.498
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H2o 0.480 0.480 0.480 0.480

H1n 0.444 0.444 0.445 0.448

It is noted that small but consistent trends in the charges residing on the S1 and N2 atoms 

are apparent, with respect to 1, minor increases in 2 and decreases in 3 and 4 correlated with 

the electronegativity of Y.  Variations in the natural charges are also noted in the aryl rings, in 

particular for the C5 atoms with respect to 1, observations again related to the Y-substituents.  

For 2, the inductive effect of the σ-electron donating methyl group disperses charge around the 

π-system through the resonance effect.74  A similar observation is found for the Cl substituent 

in 3 as it able to donate the lone-pair of electrons to the aryl ring leading to a similar inductive 

effect as for the methyl substituent despite the chloride atom being known as a weak electron-

withdrawing group.75  The significant differences for all atoms comprising the aryl ring in 4 

relates specifically to the electronegative nitro substituent.  Overall, the net charge shift76 for 

the 4-substituted phenylthiourea fragments compared to the parent molecule, i.e. 

[Σq(SCNHC6H4Y) - Σq(SCNHC6H5)], computes to 0.004, -0.007 and -0.033 e for 2-4, 

respectively, which correlates to the electron-donating nature of Me and electron-withdrawing 

characteristics of Cl and NO2.

Hirshfeld surface analysis

Compounds 1-4 were subjected to Hirshfeld surface analysis in order to gain further insight on 

the nature of interactions present in each crystal, especially those not identified in the 

conventional analysis of the molecular packing, as well as important surface contacts; the 

analysis includes the contributions made by the individual components comprising the 

asymmetric unit of each of 1 and 4, labelled henceforth 1a & 1b and 4a & 4b, respectively  

The mapping of the normalised contact distances (dnorm) reveals several red spots on the iso-
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density surfaces of the molecules ranging from strong to weak intensity due to the presence of 

several close contacts with separations shorter than the sum of van der Waals radii.62  These 

are categorised into five main types as H···O/O···H (type I), H···C/C···H (type II), H···S/S···H 

(type III), C···O/O···C (type IV) and H···Cl/Cl···H or Cl···Cl (type V), Fig. 8.  A summary of 

the contacts detected on the Hirshfeld surfaces is provided in ESI† Table S3 where all the X–

H bond lengths have been adjusted to their neutron values.

The most intense red spots arise from H···O/O···H interactions due to the hydroxyl-O–

H···O(hydroxyl) hydrogen bonds and these are a common feature of all crystals under 

investigation.  The differences between the molecules are observed mainly in the diminutive 

red spots comprising type II, III, IV and V contacts.  For instance, a type IV contact appears 

only for 1b due to thiourea-C1···O(hydroxyl) interaction, while type III contacts are observed 

in 1 and 4 attributed to methylene-/aryl-C–H···S(thione) interactions but no such contact is 

noted either of  2 and 3.  The inclusion of Cl and NO2 substituents in the 4-positions of 3 and 

4 introduces additional contacts compared with the parent molecule of 1 as evidenced from the 

presence of red spots, albeit of weak intensity.  For 3, these arise from methylene-C–H···Cl 

and Cl···Cl interactions in 3; while the NO2 substituent in 4 gives rise to methylene-/aryl-C–

H···O(nitro) interactions.  Almost all of these interactions identified through the Hirshfeld 

surface analysis can be considered weak contacts which complement those interactions 

detected via PLATON.37
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Fig. 8  Complementary views of the Hirshfeld surface mapped over dnorm within the range of -

0.0788 to 1.0548 arbitrary units, revealing close contacts shorter than the sum of van der Waals 

radii through red spots on the surfaces which are categorised into H···O/O···H (type I), 

H···C/C···H (type II), H···S/ S···H (type III), C···O/O···C (type IV) and H···Cl/Cl···H or 

Cl···Cl (type V) for (a) 1a, (b) 1b, (c) 2, (d) 3, (e) 4a and (f) 4b.

The quantification of the close contacts to the Hirshfeld surface was achieved though the 

analysis of the two-dimensional fingerprint plots for the respective molecules in 1-4.  In 

general, the variation of intermolecular interactions owing to the differences in molecular 

packing is reflected in the fingerprint profiles for the individual molecules, despite these often 

being subtle, particularly in the diffuse regions of the overall profiles as illustrated in ESI† Fig. 

S4.

The most prominent features of the fingerprint plots are the pairs of forceps-like spikes 

tipped at di + de distances within 1.70-1.76 Å which are much shorter than the sum of van der 
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Waals radii (vdW) for O···H [Σ(vdW)O···H = 2.61 Å], cf. the dnorm contact distances listed in 

ESI† Table S3.  These features arise due to the H···O/O···H hydrogen bonding contacts leading 

to the supramolecular chains.  Also prominent are the pincers-like distributions in the 

decomposed fingerprint plots for the H···C/C···H contacts with di + de distances in the range 

2.65-2.76 Å which are slightly shorter than Σ(vdW)C···H of 2.79 Å.  The H···S/ S···H contacts 

are also reflected as pincers-like profile but with di + de distances in range 2.83 to 2.94 Å for 1 

& 4 and 2.90 to 3.03 Å for 2 & 3 compared with the Σ(vdW)S···H = 2.89 Å.  It is for this reason 

that diminutive red spots were observed in the relevant plots for 1 and 4 but not in those for 2 

& 3; as discussed below, the H…S contacts in 2-4 are intra-chain contacts.  Distinctive 

characteristics are noted in 3 arising from H···Cl/Cl···H as well as Cl···Cl contacts with di + 

de of about 2.78  and 3.42 Å which are shorter than Σ(vdW)Cl···H and Σ(vdW)Cl···Cl of 2.84 and 

3.50 Å, respectively, Fig. 9.  Other contacts co-exist on the Hirshfeld surface but are less 

significant owing to long contact separations.

Fig. 9  Decomposed fingerprint plots for 3 delineated into (a) H···Cl/Cl···H and (b) Cl···Cl 

contacts.

In terms of contact distributions, crystals 1 and 2 are dominated by several major contact 

contributions to the Hirshfeld surfaces in the order of H···H (ca 57.3-59.5%), H···C/C···H (ca 
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17.2-18.7%), H···S/S···H (ca 10.6-12.0%) and H···O/O···H (ca 8.4-10.8%) followed by other 

less significant contacts with each contributing less than 1% as shown in Fig. 10.  The 

decomposition of the distribution shows that almost all contacts in 1 and 2 are evenly 

distributed between the internal (i.e. the donor or acceptor atoms internal to the surface) and 

external (i.e. the donor or acceptor atoms external to the surface) interactions except for 

H···C/C···H and H···S/S···H which are slightly inclined toward (internal)-X···H-(external) 

rather than (internal)-H···X-(external) (X = C and S) owing to their relatively large exposure 

surfaces that attract the contact from hydrogen atoms, e.g. for C···H, the contact is mainly 

concentrated within the aryl ring with a large exposure surface.

Fig. 10  Relative distribution of different contacts to the Hirshfeld surfaces for individual 

molecules in 1-4.  Other minor but significant contacts include C···Cl/Cl···C (2.8%), 

H···N/N···H (2.3%) and Cl···Cl (1.1%) for 3.  For 4a and 4b: H···N/N···H (2.5%), 

O···C/C···O (1.0-2.3%), O···S/ S···O (1.4-1.5%) and O···O (0.1-1.3%), and specifically for 

4b C···C (3.0%).
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Distinctive distributions are noted for each of 3 and 4 owing to the influence of the Y = 

Cl an NO2 substituents, respectively.  Thus for 3, the contributions are in the order H···H 

(41.3%), H···C/C···H (15.7%), H···Cl/Cl···H (14.7%), H···S/S···H (10.8%) and H···O/O···H 

(9.8%) and other minor contacts including the Cl···Cl contact which constitutes only 1.1%.  

For 4, the order is H···O/O···H (ca 32.2-35.2%), H···H (ca 32.4-33.6%), H···C/C···H (ca 

12.2-17.1%), H···S/ S···H (ca 8.5%) followed by other long contacts (ca 9.7-10.8%).  Similar 

to 1 and 2, decomposition of the corresponding contacts exhibits uneven distributions between 

the internal and external contacts for H···Cl/Cl···H in 3 as well as H···O/O···H in 4 in addition 

to the H···C/C···H and H···S/S···H contacts in both molecules, for which the interactions are 

inclined toward (internal)-X···H-(external) (X = Cl, O, C and S) indicating the electronegative 

nature of those acceptor atoms.

Interaction energies and energy frameworks

An analysis of the interaction energies associated with identified intermolecular contacts was 

quantitatively assessed in attempt to rank the stabilisation energies provided by specific 

contacts in 1-4.  The strength of each interaction as identified from the Hirshfeld surface 

analysis was assessed following the approach as detailed in the experimental section.  As noted 

from Table 5, among all pairwise-interactions between molecules, the hydroxyl-O–

H···O(hydroxyl) interactions provide the strongest interactions with the energy, Eint, for each 

pair lying in the range -17.81 to -12.09 kcal mol-1.  These strengths are comparable to that of 

ca -18 and -17 kcal mol-1 as calculated for the classical amide-N–H···O(amide)77 and 

carboxylic-O–H···O(carboxylic acid) interactions,78 respectively.  A close inspection of the 

data shows that the Eint(O–H···O) is the greatest in crystal 2, and this is followed by 3, 4 and 1 

respectively.
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Apart from the O–H···O interactions, crystals 1-4 also feature C–H···O and C–H···π 

interactions with the Eint ranging from -2.27 to -10.56 kcal mol-1 and -4.09 to -8.58 kcal mol-1, 

respectively.  Additional C–H···S and C···O interactions found in 1 have relatively strong 

interaction energies with Eint(C–H···S) in the range -2.20 to -7.93 kcal mol-1 and Eint(C···O) in 

the range -4.11 to -11.76 kcal mol-1.  The C–H···Cl interaction in 3 exhibits a relatively weak 

Eint of -2.01 kcal mol-1 and the Cl···Cl interaction is very weak with Eint being close to 0 kcal 

mol-1.  The only π···π interactions among the series is only present in 4 and gives rise to a 

relatively strong Eint of -13.53 kcal mol-1.

From the data in Table 5, it is evident the molecular packing of 1-4 is mainly stabilised 

by electrostatic forces owing to the strong O–H···O interactions which lead to the directional 

topology aligned along the c-axis for 1 and along b-axes for 2-4, Fig. 11.  The crystals also 

feature dispersive forces due to the other complementary contacts.  The overall energy 

framework of 1 has a ladder-like topology in contrast to the zig-zag, sheet-like energy 

framework for 4, while crystals 2 and 3 exhibit a similar, rack-shape topology consistent with 

their isostructural relationship.  It is noteworthy some smaller repulsive forces are observed 

within the rack-shaped topology of 2 and 3 owing to the close proximity of the main 

electrostatic force resulting from the O–H···O interactions, the magnitude of which is inversely 

proportional to the distance of the point charges in accord with Coulomb’s law.79  Equivalent 

repulsive forces are not observed in 1 and 4.
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Table 5 Corrected interaction energies (kcal mol-1) for all intermolecular close contacts present in 1 to 4, with scale factors of 1.057, 0.740, 0.871 

and 0.618 being applied for Eelectrostatic, Epolarization, Edispersion and Erepulsion, respectively, as obtained from the CE-B3LYP/6-31G(d,p) model.63

Contact Eelectrostatic Epolarization Edispersion Erepulsion Etotal Symmetry operation

1

O1–H1o···O22 -16.27 -3.11 -2.04 9.34 -12.09 x, y, z

O21–H21o···O2 -17.36 -3.41 -3.73 9.85 -14.65 x, y, 1+z

C28–H28b···O1/ 

C9–H9a···π(C22–C27)/ 

C29–H29a···π(C2–C7) -4.93 -1.15 -9.76 5.29 -10.56 1-x, 1-y, 1-z

C5–H5···O1 -1.59 -0.35 -3.56 1.40 -4.11 1½-x, ½+y, ½-z

C29–H29b··· π(C2–C7) -4.85 -1.38 -6.08 4.56 -7.74 -½+x, ½-y, ½+z

C4–H4···S21 -1.67 -0.28 -1.73 1.46 -2.20 1½-x, ½+y, ½-z

C8–H8a···S21/ 

C10–H10a··· π(C22–C27) -5.03 -0.94 -4.73 2.76 -7.93 -½+x, ½-y, -½+z
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C21···O22 -5.48 -2.12 -8.97 4.80 -11.76 1-x, 1-y, 1-z

2

O1–H1o···O2 -17.89 -3.71 -6.43 10.22 -17.81 -½-x, -½+y, 1½-z

C6–H6···O2/ 

C4–H4···C10 -2.75 -0.90 -7.85 4.02 -7.48 ½-x, -½+y, 1½-z

C10–H10b···π(C2–C7) -2.73 -0.64 -4.91 3.31 -4.95 -½+x, ½-y, -½+z

C9–H9a···π(C2–C7)/ 

C8–H8b···π(C2–C7) -4.37 -1.49 -7.41 4.70 -8.58 -1+x, y, z

3

O1–H1o···O2 -17.13 -3.91 -6.45 10.43 -17.09 -½-x, ½+y, ½-z
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C6–H6···O2/ 

C4–H4···C10 -4.95 -0.81 -7.97 4.67 -9.08 ½-x, ½+y, ½-z

C10–H10a···π(C2–C7) -1.52 -0.62 -4.98 3.03 -4.09 -½+x, 1½-y, -½+z

C9–H9b···π(C2–C7)/

C8–H8a···π(C2–C7) -2.85 -1.22 -6.85 3.97 -6.69 -1+x, y, z

C10–H10b···Cl1 -1.29 -0.16 -1.85 1.29 -2.01 -1½+x, 1½-y, -½+z

Cl1···Cl1 -0.13 -0.02 -0.73 0.83 -0.05 2-x, 1-y, 1-z

4

O1–H1o···O22 -14.83 -4.00 -7.02 9.70 -16.13 x, 1+y, z

O21–H21o···O2 -14.45 -4.10 -7.22 9.59 -16.18 x, y, z

C29–H29b···O1 -0.43 -0.48 -3.98 2.60 -2.27 -x, 1-y, 1-z

C11–H11b···O3 -4.85 -0.78 -2.41 2.42 -5.62 x, y, 1+z
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C7–H7···O23 -2.58 -0.46 -2.98 1.67 -4.35 x, 1+y, -1+z

C27–H27···O3 -2.78 -0.46 -3.02 1.67 -4.59 x, y, 1+z

C30–H30a··· π(C2–C7)/ 

C30–H30b···S1 -4.14 -0.88 -7.49 5.29 -7.24 1-x, 1-y, 1-z

C10–H10b··· π(C22–C27)/ 

C10–H10a···S21 -3.79 -0.83 -7.20 4.77 -7.07 1-x, 1-y, 2-z

C31–H31a···O23 -3.87 -0.62 -2.17 1.20 -5.47 x, y, -1+z

π(C22–C27)···π(C22–C27) -6.24 -0.87 -10.89 4.46 -13.53 -x, -y, 2-z
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Fig. 11  Perspective views of the energy frameworks of 1-4 showing the (a) electrostatic force, 

(b) dispersion force and (c) total energy diagram.  The cylindrical radius is proportional to the 
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relative strengths of the corresponding energies and were adjusted to the same scale factor of 

100 with a cut-off value of 1.91 kcal mol-1 within 2 × 2 × 2 unit-cells.

Data in Table 6 indicate the calculated lattice energies follow the order of 2 (-25.70 kcal 

mol-1) > 1 > 3 > 4 (-23.78 kcal mol-1) with the range being about 2 kcal mol-1.  The order of the 

lattice energies correlates nicely with the relative greater contributions to the energies of 

stabilisation provided by the C–H···π(aryl) interactions through enhanced contributions which 

follow the same order.  Further, the identified methylene-C–H···Cl(chloride) and aryl-C–

H···O(nitro) interactions in 3 and 4, respectively, exert little influence upon the lattice energies 

due to their weak nature.  By contrast, the energy contribution from the π(aryl)···π(aryl) contact 

is 4 is significant.

Table 6  The lattice energy (Elattice) in kcal mol-1 and the corresponding energy components 

(Eelectrostatic, Epolarization, Edispersion and Erepulsion) calculated for a cluster of molecules within 25 Å 

from a reference molecule through the CE-B3LYP/6-31G(d,p) model.

Crystal Eelectrostatic Epolarization Edispersion Erepulsion Elattice

1 -16.19 -4.23 -16.70 12.29 -24.83

2 -14.72 -4.33 -19.30 12.65 -25.70

3 -14.77 -4.29 -18.62 13.06 -24.62

4 -15.01 -3.98 -16.82 12.03 -23.78
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Non-covalent interaction (NCI) plots

Non-covalent interaction plots58 were calculated for selected interactions identified in the 

crystals of 1-4 to verify the attractive nature of the interactions through visualisation a red-

blue-green colour scheme on the iso-surface; red is indicative of a strong repulsive interaction, 

blue is indicative of a strong attractive interaction while green is indicative of a weak 

interaction.80  The images of Fig. 12 reveal that the intermolecular hydroxyl-O–

H···O(hydroxyl) interaction, common in all crystals, along with the intramolecular amide-N–

H···O(hydroxyl) and hydroxyl-O–H···S(thione) contacts, are strong and attractive in nature 

with the low density, low reduced gradient trough for those interactions lying at the negative 

region at about -0.20 to -0.35 a.u. in the respective two-dimensional NCI plots.

Fig. 12  NCI plots along with the two-dimensional plots of reduced density gradient (RDG) 

versus sign(λ2)ρ(r) for the molecular dimers of 1-4 connected by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds and highlighting the intramolecular amide-N–H···O(hydroxyl) and hydroxyl-

O–H···S(thione) hydrogen bonds.  The gradient cut-off is set at 0.4 and the colour scale is -

0.04 < ρ < 0.04 a.u.  Non-essential atoms are truncated for clarity.
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Interestingly, for pairs of molecules connected by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds in 2-4, there are relatively large, diffuse green domains between the 

hydroxyethyl-H-and thione-S atoms (see ESI† Fig. S5) that serve to complement the hydrogen 

bonds; this confirmed in the corresponding QTAIM analysis80 (see ESI† Fig. S6).  The 

attractive interactions further strengthen the interactions leading to the supramolecular chains 

and are likely contributors to the reduction in their pitch.

In line with the Hirshfeld surface analysis, additional contacts are detected in 3, i.e. 

methylene-C–H···Cl(aryl) and Cl···Cl, and 4, i.e. methylene-C–H···O(nitro) and aryl-C–

H···O(nitro), necessarily absent in 1 and 2.  As indicated from the light-green domains in the 

respective NCI plots of Fig. 13, these correspond to weak interactions.  Other common 

interactions involving the aryl rings and methylene chains are considered weak and are 

evidenced through the high-density localised domains in the NCI plots of ESI† Fig. S5.

Fig. 13  NCI plots for the molecular dimers highlighting weak contacts in 3: (a) methylene-C–

H···Cl(aryl) and (b) Cl···Cl and 4: (c) methylene-C–H···O(nitro) and (d) aryl-C–H···O(nitro).
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Overview

Crystals of 1 comprise two independent molecules which associate to form a linear, 

supramolecular chain sustained, in part, by hydroxyl-O–H···O(hydroxyl) hydrogen bonds.  In 

common with isostructural 2 and 3, the space group of 1 is monoclinic, P21/n.  There is a simple 

relationship between the crystals in that the unit-cell edge a in 2 and 3 is about half that of 1, 

Table 1.  Quite distinct crystal symmetry is noted for 4, i.e. triclinic, P1̄ with Z' = 2.  Despite 

these differences, supramolecular chains featuring by hydroxyl-O–H···O(hydroxyl) hydrogen 

bonds are prominent in the crystals of 1-4.  However, unlike 1, in the isostructural crystals of 

2 and 3, the chains have a helical topology.  In 4, zig-zag chains are apparent.  In short, the 

topology of the supramolecular chains in 1-4 are syntactic with the crystalline environment in 

which they exist.84

Isostructural relationships are not uncommon for molecules differing in a chloro/methyl 

substituent, which have similar volumes, i.e. 19 Å3 for chloride and 24 Å3 for methyl.82  Such 

cases of structural mimicry are commonly known as the chloro/methyl exchange,83 but this 

concept can be expanded to include other substituents.10  A chloro/methyl exchange in 

isostructural crystals implies similar influences upon the molecular packing by these 

substituents.  This suggests the methylene-C–H···Cl(aryl) and Cl···Cl contacts noted in 3, 

which occur in the inter-layer region, are not structure-directing even if weakly attractive.  The 

methyl groups in 2, which are also directed towards the inter-layer region, do not engage in 

directional interactions.

In terms of directional interactions, C–H···π(aryl) contacts feature in each crystal of 1-

4, and in 1, lead to a three-dimensional architecture, in 2 and 3, to a two-dimensional array and 

in 4, to a double-layer.  Further directional interactions are largely absent in 2 and 3.  By 

contrast, methylene-C–H···O(hydroxyl) and π(aryl)···π(aryl) interactions assemble the 
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double-layers in 4 (also stabilised by intra-layer methylene-C–H···O(nitro) contacts) into a 

three-dimensional arrangement.

At this stage it is salient to recall the results of the geometry optimisation calculations 

which indicate no significant influence is exerted by the methyl and chloro substituents in 2 

and 3 but significant activation of the aryl ring owing to the electronegative nitro group in 4.  

This latter observation correlates with the formation of the off-set π(aryl)···π(aryl) 

interactions observed in 4 but not in 1-3.

An evaluation of the relative contributions of the different interaction energies to the 

overall energies of identified interactions reveals interesting trends.  Thus, the energies (relative 

contributions) contributed by the hydroxyl-O–H···O(hydroxyl) hydrogen bonds are 

approximately -14.72 and -14.77 kcal mol-1 (46%) for 2 and 3, -15.01 kcal mol-1 (40%) for 4 

and -16.19 kcal mol-1 (38%) for 1.  This correlates with the repeat distances of the 

supramolecular chains with the greater energy contribution by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds to the overall energy of packing being associated with the chains with shortest 

repeat distances, i.e. 2 and 3 (10.77 Å) < 4 (11.21 Å) < 1 (16.47 Å).

While an exhaustive literature survey of this phenomenon is not feasible, as mentioned 

in the Introduction, a number of systematic studies have been described whereby the influence 

of small chemical changes upon supramolecular aggregation patterns investigated.10-27  Except 

for an isostructural series10 and universal adoption of the carboxylic dimer synthon in another 

series,17 variations in the topology of the aggregate/chain/layer are the norm as small chemical 

changes are made to molecular formulae, even when comparable hydrogen bonds are evident.  

Such an observation confirms that in order to design a crystal let alone an aggregate within a 

crystal,85 all supramolecular associations need to be taken in account.
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Finally, it should be mentioned that during the course of these studies conducted over 

a period of well over five years in two different Institutions, involving repeated synthesis and 

crystallisations, no evidence for polymorphs or solvates was found.  This is not to suggest that 

different crystalline forms are waiting to be discovered, in accord with the McCrone axiom.86  

However, it is stressed the experimental conformations in the crystals isolated in this study 

closely match the gas-phase optimised geometries suggesting the obtained crystals were the 

thermodynamic forms.

Conclusions

The crystal structure analyses along with detailed analyses of the supramolecular association 

in the crystals isolated for 1-4 show the formation of pervasive, hydrogen bonded chains that 

differ in topology: linear (1), helical (2 and 3) and zig-zag (4); no evidence for different 

crystalline forms was found in this study.  In consideration of the (i) persistence of the 

hydroxyl-O–H···O(hydroxyl) hydrogen bonds leading to one-dimensional chains, (ii) the 

closeness of the calculated lattice energies, (iii) the relative importance of C–H···π(aryl) 

contacts operating normal to the chains and (iv) the, on average, more C–H···π(aryl) contacts 

formed per molecule in 1, compared with 2-4, it is concluded the different topologies of the 

supramolecular chains are related primarily to the influence of directional C–H···π(aryl) 

contacts.  In 1, where no other directional interactions are apparent, a more open, linear 

arrangement facilitates the formation of inter-chain C–H···π(aryl) interactions, by definition 

occupying a larger volume of space.  In 2 and 3, where C–H···π(aryl) interactions are less 

dominant, an observation traced to the Y = Me and Y = Cl substituents, helical chains are 

apparent.  In 4, where calculations indicate the aryl rings are activated, π(aryl)···π(aryl) 

interactions come to the fore and zig-zag chains are now apparent.  Even if remote substituents 
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do not alter significantly the overall electronic structure of the molecules, their influence in 

participating in “second-tier” supramolecular association can direct the predominant mode of 

association between molecules leading to specific architectures.

In summary, the situation may be envisaged whereby the molecules precipitate from 

solution and align to form supramolecular chains via the predominant hydroxyl-O–

H···O(hydroxyl) hydrogen bonds and the adopted topology is dictated by the need to optimise 

the supramolecular association between chains which, in turn, is moderated by the specific 

requirements of the remote substituents.
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Non-covalent interactions involving remote substituents influence the 

topologies of supramolecular chains featuring hydroxyl-O–H···O(hydroxyl) 

hydrogen bonding in crystals of (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y = 

H, Me, Cl and NO2

Sang Loon Tan and Edward R. T. Tiekink*

Research Centre for Crystalline Materials, School of Science and Technology, Sunway 

University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
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ORCID iD: 0000-0002-5343-3382 (SLT); 0000-0003-1401-1520 (ERTT)

Abstract

Crystallography shows the universal adoption of supramolecular chains featuring by hydroxyl-O–

H···O(hydroxyl) hydrogen bonding in crystals of (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y = 

H, Me, Cl and NO2.  However, distinct topologies, i.e. linear (Y = H), helical (Y = Me and Cl) and 

zig-zag (Y = NO2) are noted with major differences in the pitch of the polymer.  Geometry-

optimisation, MEP and NPA analyses shows a distinct electronic structure for the Y = NO2 

derivative, in particular relating to the activation of the aryl rings.  An exhaustive analysis of the 

molecular packing (point-to-point interactions, crystal structure similarity, Hirshfeld surface 

analysis, NCI and QTAIM, interaction energies and energy frameworks) point to the importance 
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2

of C–H···π(aryl) interactions in stabilising the chains but these have a considerably reduced 

influence in the crystal with Y = NO2, where π(aryl)···π(aryl) interactions are important.  The more 

open arrangement for the linear chain in 1 facilitates the formation of C–H···π(aryl) interactions 

and the more compact arrangements enable the formation of stabilising, intra-chain methylene-C–

H···S(thione) interactions.  This study highlights the role of second-tier non-covalent interactions 

exert upon the arrangement of conventional hydrogen bonding interactions.

Footnote

† Electronic supplementary information (ESI) available: Crystallographic data, electrostatic 

potential charge deviations, NPA charges, HOMO-LUMO plots, PXRD patterns, molecular 

packing diagram, NCI and QTAIM plots.  CCDC 2047050-2047053 contain the supplementary 

crystallographic data for this paper.  For ESI and crystallographic data in CIF or other electronic 

format see DOI: 10.1039/d0cexxxxxx
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Introduction

In the organic solid-state, conventional hydrogen bonding plays a privileged role in arranging 

molecules into supramolecular assemblies,1-4 often by design employing the supramolecular 

synthon approach.5  This prominent role notwithstanding, other intermolecular contacts come to 

the fore when conventional hydrogen bonding does not occur in three dimensions or is not present 

at all.  Here, a myriad of alternative interactions come to the fore, such as π···π, C–H···π, lone-

pair···π, chalcogen bonding, halogen bonding, etc.6  Along with hydrogen bonding, many of these 

interactions provide similar energies of stabilisation in their crystals and being inherently weak are 

therefore, flexible, being subject to moderation by chemical substitution, steric effects, etc.  The 

delineation of the role of these different modes of association is highly desirable in order to 

rationalise more fully the assembly of molecules in crystals as even small changes in molecular 

packing can influence macroscopic properties relating to, e.g. optoelectronic properties,7 drug 

discovery8 and the conformation of molecules.9  Further, the control of flexible, cooperative 

supporting intermolecular interactions will lead to the strategic design of higher dimensional 

aggregation patterns in crystals featuring persistent, structure-directing hydrogen bonding patterns 

operating in zero-, one- or two-dimensions.

These aforementioned considerations increasingly motivate systematic studies of crystals 

featuring (i) a common hydrogen bonding aggregation pattern despite the presence of different 

substituents,10-14 (ii) multiple hydrogen bonding options and their adoption related to small 

chemical changes15-23 and (iii) no conventional hydrogen bonding present with studies conducted 

in order to ascertain the influence of other non-covalent interactions upon molecular 

aggregation.24-27  Herein, an investigation related to scenario (i) is presented.  As anticipated from 

the formula of the molecules investigated herein, i.e. (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) for Y 
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= H (1), Me (2), Cl (3) and NO2 (4), Fig. 1, hydrogen bonding is prominent and a consistent 

adoption of supramolecular chains in the respective crystals is apparent, in each case mediated by 

hydroxyl-O–H···O(hydroxyl) interactions.  However, the chains display distinct topologies, i.e. 

linear (1), helical (2 and 3) and zig-zag (4), and of the series, only 2 and 3 are isostructural.

Fig. 1  Chemical diagrams for the (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4) molecules investigated 

herein.

Compounds 1-4 are examples of tri-substituted derivatives of thiourea, a well-known class 

of compound.28  While crystal structures are known for derivatives conforming to the general 

formula (HOCH2CH2)N(R)C(=S)N(H)R,29-31 for R = alkyl, aryl, none are known for the di-

hydroxyethyl analogues, i.e. (HOCH2CH2)2NC(=S)N(H)R.  Indeed, with the exception of 1,32 

which was investigated recently for anti-leishmanial activity, compounds 2-4 do not appear to have 

been reported previously.  Herein, the synthesis, spectroscopic and crystallographic 

characterisation of 1-4 are described along with a detailed analysis of the molecular packing in 

their crystals with the aim of ascertaining the role of the Y = H, Me, Cl and NO2 substituents upon 

the supramolecular association.
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The objectives of the computational studies are three-fold, i.e. firstly, to validate whether 

the experimental structures represent the global minima through a conformational analysis, an 

analysis which has significant implications for their molecular packing.  Secondly, to gain insight 

into the electronic nature of the molecules through molecular electrostatic potential (MEP) and 

natural population analysis (NPA) studies in order to ascertain any particular features in the 

electronic structures of the molecular that may impact upon the molecular packing.  Finally, to 

qualitatively and quantitatively assess the molecular interactions present in each crystal through 

Hirshfeld surface analysis, interaction energy calculations, energy framework simulations, lattice 

energy calculation, non-covalent interaction plots as well as quantum theory of atoms in molecules 

(QTAIM).  The aim of these studies is to correlate molecular conformation and electronic structure 

to determine and explain the main factors that influence the manner in which the thiourea 

derivatives pack in their crystals.

Experimental

Instrumentation

All chemicals and solvents were used as purchased without purification.  The melting points 

(uncorrected) were measured using a Stuart SMP30 melting point apparatus.  The IR spectra were 

measured on a Bruker Vertex 70v FT-IR spectrophotometer from 4000 to 80 cm-1.  1H and 13C{1H} 

NMR spectra were recorded in DMSO-d6 solutions on a Bruker Ascend 400 MHz NMR 

spectrometer with chemical shifts relative to tetramethylsilane (TMS).  The absorption spectra 

were measured on 100 μM acetonitrile solutions in the range 180-700 nm on a double-beam 

Shimadzu UV 3600 Plus UV-Vis spectrophotometer.  The CHN elemental analyses were 

performed on a LECO TruSpec Micro analyser under a helium atmosphere with glycine being the 
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standard.  The room temperature powder X-ray diffraction (PXRD) patterns were measured on a 

Rigaku MiniFlex 600 X-ray diffractometer with Cu Kα1 radiation (λ = 1.5418 Å) within a 2θ range 

of 5-70° and a step size of 0.02°.  The comparisons between the experimental and calculated (from 

the respective CIF) PXRD patterns were performed with Rigaku’s PDXL2 software 

(https://www.rigaku.com/en/products/software/pdxl/overview).

Synthesis

A common mode of synthesis was adopted for the preparation of 1,1-bis(2-hydroxyethyl)-3-

phenylthiourea (1), 1,1-bis(2-hydroxyethyl)-3-(4-tolyl)thiourea (2) and 1,1-bis(2-hydroxyethyl)-

3-(4-chlorophenyl)thiourea (3).  Thus, 1 mmol of the corresponding aryl isothiocyanate (phenyl 

isothiocyanate (0.135 g); 4-tolyl isothiocyanate (0.149 g); 4-chlorophenyl isothiocyanate (0.169 

g) all from Sigma) was reacted with an equimolar amount of diethanolamine (Sigma, 0.105 g) in 

ethanol (30 ml) followed by stirring for 3 h at room temperature.  White precipitates were formed 

upon the addition of dichloromethane (3 ml).  The products were filtered and subsequently washed 

with cold ethanol (2 ml).  Recrystallisation in hot ethanol resulted in the formation of colourless 

blocks after slow evaporation.  For 1,1-bis(2-hydroxyethyl)-3-(4-nitrophenyl)thiourea (4), the 

product was obtained by mixing diethanolamine (1 mmol, 0.105 g) in acetone (5 ml) with an 

equimolar amount of 4-nitrophenyl isothiocyanate (Acros, 0.180 g) which was pre-dissolved in 

acetone (30 ml).  The mixture was then concentrated to half of the initial volume through slow 

evaporation with stirring at room temperature.  Upon the formation of a yellow precipitate, the 

product was filtered and washed with a mixture of ethanol and ethyl acetate (4 ml, v/v).  Yellow 

blocks were obtained through recrystallisation of the crude product in absolute ethanol under slow 

evaporation.
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Characterisation

1: Colourless crystals, yield: 0.188 g (78%). M.pt.: 362.2-363.8 K. Calcd. for C11H16N2O2S: C 

54.98, H 6.71, 11.66%. Found: C 55.01, H 6.79, N 11.38%. IR (ATR, cm-1): 3247 (m) ν(O–H), 

3145 (m) ν(N–H), 3093 (m) ν(C–Haro), 3066-2845 (w) ν(C–H), 1312 (s) ν(C–N), 1033 (s) ν(C=S). 

1H NMR (DMSO-d6, ppm): δ 9.72 (s, 1H, NH), 7.29 (m, 4H, ortho- and meta-phenyl-H), 7.08 (m, 

1H, para-phenyl-H), 5.31 (br, 2H, OH), 3.84 (t, 4H, 3JHH = 5.3 Hz, CH2–N), 3.73 (dt, 4H, 3JHH = 

5.3 Hz, 3JH-OH = 4.6 Hz, CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 182.23 (C=S), 141.34 (ipso-

C), 128.52 (ortho-C), 124.71 (meta-C), 124.39 (para-C), 59.85 (C–O), 54.78 (C–N). UV/Vis 

(acetonitrile, 100 μM, nm, L mol-1 cm-1): λmax: 277 (sh), ε = 10964; 254, ε = 19953; 222 (sh), ε = 

14791.

2: Colourless crystals, yield: 0.207 g (82%). M.pt.: 391.8-392.5 K. Calcd. For C12H18N2O2S: C 

56.67, H 7.13, N 11.01%. Found: C 56.65, H 7.21, N 10.86%. IR (ATR, cm-1): 3258 (m) ν(O–H), 

3192 (m) ν(N–H), 3131 (m) ν(C–Haro), 3057-2885 (w) ν(C–H), 1291 (s) ν(C–N), 1025 (s) ν(C=S). 

1H NMR (DMSO-d6, ppm): δ 9.60 (s, 1H, NH), 7.18 (d, 2H, 3JHH = 8.36 Hz, ortho-aryl-H), 7.09 

(d, 2H, 3JHH = 8.2 Hz, meta-aryl-H), 5.29 (br, 2H, OH), 3.83 (t, 4H, 3JHH = 5.36 Hz, CH2–N), 3.72 

(dt, 4H, 3JHH = 5.12 Hz, 3JH-OH = 4.8 Hz, CH2–O), 3.06 (s, 3H, CH3). 13C{1H} NMR (DMSO-d6, 

ppm): δ 187.04 (C=S), 143.52 (ipso-C), 138.33 (para-C), 133.72 (ortho-C3), 129.70 (meta-C), 

64.61 (C–O), 59.50 (C–N), 25.72 (methyl-C). UV/Vis (acetonitrile, 100 μM, nm, L mol-1 cm-1): 

λmax: 278 (sh), ε = 8318; 253, ε = 16218; 222 (sh), ε = 12589.

3: Colourless crystals, yield: 0.215 g (78%). M.pt.: 395.5-396.8 K. Calcd. For C11H15ClN2O2S: C 

48.09, H 5.50, N 10.20%. Found: C 48.01, H 5.58, N 10.02%. IR (ATR, cm-1): 3242 (w) ν(O–H), 
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3187 (w) ν(N–H), 3127 (w) ν(C–Haro), 3042-2935 (w) ν(C–H), 1301 (s) ν(C–N), 1062 (s) ν(C=S), 

691 (m) ν(C–Cl). 1H NMR (DMSO-d6, ppm): δ 9.76 (s, 1H, NH), 7.34 (s, 4H, ortho- and meta-

aryl-H), 5.32 (br, 2H, OH), 3.85 (t, 4H, 3JHH = 5.2 Hz, CH2–N), 3.73 (dt, 4H, 3JHH = 5.04 Hz, 3JH-

OH = 4.84 Hz, CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 186.84 (C=S), 145.06 (ipso-C), 133.14 

(ortho-C), 133.01 (para-C), 131.07 (meta-C), 64.51 (C–O), 59.57 (C–N). UV/Vis (acetonitrile, 

100 μM, nm, L mol-1 cm-1): λmax: 282 (sh), ε = 12023; 255, ε = 22909; 226 (sh), 13490.

4: Yellow crystals, yield: 0.224 g (79%). M.pt.: 449.4-450.8 K. Calcd. For C11H15N3O4S: C 46.31, 

H 5.30, N 14.73%. Found: C 46.34, H 5.36, N 14.44%. IR (ATR, cm-1): 3259 (w) ν(O–H), 3224 

(w) ν(N–H), 3075 (w) ν(C–Haro), 3015-2832 (w) ν(C–H), 1505 (s) ν(N=Oasym), 1474 (s) ν(N=Osym), 

1291 (s) ν(C–N), 1027 (s) ν(C=S). 1H NMR (DMSO-d6, ppm): δ 10.37 (s, 1H, NH), 8.18 (d, 2H, 

3JHH = 9.16 Hz, meta-aryl-H), 7.64 (d, 2H, 3JHH = 9.04 Hz, ortho-aryl-H), 5.82 (br, 1H, OH), 5.18 

(br, 1H, OH), 3.88 (4H, t, 3JHH = 4.92 Hz, CH2–N), 3.76 (4H, dt, 3JHH = 5.04 Hz, 3JH-OH = 5.16 Hz, 

CH2–O). 13C{1H} NMR (DMSO-d6, ppm): δ 181.50 (C=S), 147.87 (para-C), 142.38 (ipso-C), 

124.59 (meta-C), 122.37 (ortho-C), 59.61 (C–O), 55.00 (C–N). UV/Vis (acetonitrile, 100 μM, nm, 

L mol-1 cm-1): λmax: 349, ε = 15488; 299 (sh), ε = 10715; 240, ε = 16982; 224 (sh), ε = 14454.

X-ray crystallography

The crystallographic and refinement data for 1-4 are given in Table 1.  Intensity data were 

measured at 100 K on an Agilent Technologies SuperNova Dual diffractometer fitted with an Atlas 

detector.  Data processing and Gaussian absorption corrections were accomplished with CrysAlis 

Pro.33  Each structure was solved by direct methods34 and the refinement was by full-matrix least 

squares on F2 with anisotropic displacement parameters for all non-hydrogen atoms.35  The C-
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bound hydrogen atoms were placed on stereochemical grounds and refined with fixed geometries.  

The O-and N-bound hydrogen atoms were refined with O–H = 0.84±0.01 Å and N–H = 0.88±0.01 

Å, respectively.  A weighting scheme of the form w = 1/[σ2(Fo
2) + (0.037P)2 + 1.248P], where P 

= (Fo
2 + 2Fc

2)/3, was introduced in each refinement.  Owing to poor agreement, reflections, i.e. (1 

3 0) for 1 and (-1 0 7) for 2, were omitted from the final cycles of refinement.  Finally, 4 was 

refined as two-component twin with the fraction due to the minor component = 0.142(3).  The 

programs WinGX,36 ORTEP-3 for Windows,36 PLATON37 and DIAMOND38 were also used in 

the study.
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Table 1  Crystallographic data and refinement details for 1–4

Compound 1 2 3 4

Formula C11H16N2O2S C12H18N2O2S C11H15ClN2O2S C11H15N3O4S

Molecular weight 240.32 254.34 274.76 285.32

Crystal size/mm3 0.30 × 0.30 × 0.30 0.05 × 0.05 × 0.15 0.05 × 0.05 × 0.15 0.30 × 0.35 × 0.40

Colour colourless colourless colourless yellow

Crystal system monoclinic monoclinic monoclinic triclinic

Space group P21/n P21/n P21/n P1̄

a/Å 13.4885(1) 7.0472(2) 7.1366(2) 10.8235(5)

b/Å 11.1767(1) 10.7489(2) 10.7767(3) 11.2124(5)

c/Å 16.4909(2) 16.9533(4) 16.6259(4) 12.3443(5)

α/° 90 90 90 90.050(3)

β/° 98.544(1) 99.109(2) 100.221(2) 108.737(4)

γ,/° 90 90 90 114.559(4)

V/Å3 2458.53(4) 1268.01(5) 1258.39(6) 1274.53(11)
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Z 8 4 4 4

Dc/g cm-3 1.299 1.332 1.450 1.487

μ/mm-1 2.253 2.213 4.184 0.269

Measured data 9855 5049 4685 5859

Radiation Cu Kα Cu Kα Cu Kα Mo Kα

θ range/° 4.0 – 75.0 4.9 – 75.0 4.9 – 75.0 2.3 – 27.5

Unique data 4995 2586 2554 5859

Observed data (I  2.0σ(I)) 4702 2346 2243 4753

No. parameters 307 164 163 362

R, obs. data; all data 0.030; 0.032 0.029; 0.033 0.031; 0.037 0.041; 0.054

a; b in weighting scheme 0.039; 0.851 0.033; 0.456 0.040; 0.220 0.056; 0.615

Rw, obs. data; all data 0.077; 0.078 0.071; 0.074 0.075; 0.080 0.104; 0.114

Range of residual electron

density peaks/eÅ-3 -0.30 – 0.29 -0.22 – 0.21 -0.31 – 0.24 -0.30 – 0.82
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Computational studies

A conformational search was performed through a Monte Carlo algorithm using the Merck 

Molecular Force Field (MMFF),39 as available in Spartan’16,40,41 with the energy cut-off being set 

to 9.6 kcal mol-1.  To increase the accuracy on the Boltzmann distribution, the generated 

conformers were subjected to geometry optimisation using the ab initio HF/3-21G model42,43 

followed by energy calculations through the long-range corrected wB97XD density functional 

with Grimme’s D2 dispersion model44 coupled with Pople’s 6-31G(d) basis set.45  The long-range 

corrected hybrid model has been shown to greatly reduce self-interaction errors and give better 

accuracy in the interaction energies.46  Upon elimination of redundant structures with minor 

conformational changes as well as those exceeding the 9.6 kcal mol-1 energy window, the 

remaining conformers were then submitted for further optimisation at the wB97XD/6-311+G(d,p) 

level.47,48  At this stage, a frequency analysis was performed using the same level of theory and 

basis set to ensure the validity of the ground state structures.  Finally, all identified conformers 

were submitted into Gaussian1649 for optimisation using wB97XD with Ahlrichs’s valence triple-

zeta polarization basis sets (wB97XD/def2-TZVP)50,51 and with the employment of the Polarisable 

Continuum Model by placing the solute in a cavity within an ethanol solvent reaction field through 

the integral equation formalism variant of polarisable continuum model (IEFPCM).52  The Gibbs 

free energies were obtained through frequency calculations of the optimised structures at the same 

level of theory and basis set.  

The relative population of each conformer was determined through a Boltzmann weighting 

factor using equation (1),53 with ΔGi being the Gibbs free energy of species i relative to the most 

stable conformer, j is the specific conformer (j = 1, 2, 3…), R is the gas constant and T is absolute 

temperature set to 298 K.

Page 72 of 120CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://doi.org/10.1039/d0ce01810d


13

(1)Boltzmann weighting factor, 𝑃𝑖 =
𝑒

―∆𝐺𝑖/𝑅𝑇

∑
𝑗 = 1𝑒

―∆𝐺𝑗/𝑅𝑇 × 100%

Several molecular properties were computed in an attempt to correlate the molecular packing 

in 1-4.  Briefly, the atomic charges for the corresponding optimised structures were obtained by 

natural population analysis (NPA)54,55 using wB97XD/def2-TZVP.  The electrostatic potential 

(ESP) was mapped onto the electron density iso-surfaces with constant electronic charge of 0.002 

electrons/bohr3 through the cubegen utility as available in GaussView6.56  Further, a molecular 

packing analysis was performed using Mercury,57 with the analysis criteria being set that only 

molecules within the 20% tolerance for both distances and angles were included in the calculation 

while molecules with a variation > 20% were discarded.  Differences in the molecular structures 

(i.e. the substituents in the 4-position) and molecular inversions were allowed during the 

calculation.

For the qualitative evaluation on the strength of interactions, a non-covalent interaction 

(NCI) visualisation index was generated for the respective interacting dimers using NCIPLOT58 

through the plotting of the reduced density gradient as a function of the density across the 

molecules.  The computed density derivatives were mapped as iso-surfaces which correspond to 

any favourable or unfavourable interactions as determined by the sign of the second density 

Hessian eigenvalue times the density and visualised using VMD Molecular Graphics Viewer.59

Hirshfeld surface mapping, the corresponding two-dimensional fingerprint plots as well as 

pairwise interaction calculation were generated using Crystal Explorer 17 (ref. 60) through an 

established method as reported previously,61 with the experimental structures being used as the 

input with X–H bond lengths adjusted to their neutron-derived values.62  The interaction energy 

calculations were performed using the dispersion corrected CE-B3LYP/6-31G(d,p) model as 
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available in the program, with the total intermolecular energy being the sum of energies of four 

main components, comprising electrostatic, polarisation, dispersion and exchange-repulsion with 

scale factors of 1.057, 0.740, 0.871 and 0.618, respectively.63  The model was validated against 

the B3LYP-D2/6-31G(d,p) counterpoise corrected energy model as well as the benchmark 

CCSD(T)/ CBS model with considerable accuracy.64  The energy frameworks for 1-4 were 

computed for a cluster of 2 × 2 × 2 unit cells with the energy cut-off being set to 1.9 kcal mol-1.  

Finally, the total energy was obtained for a cluster of molecules within a 25 Å radius from a 

selected reference molecule through the same level of theory and basis set model.  The lattice 

energy for the corresponding crystals were calculated using equation (2),65 where the second term 

is the cell dipole energy correction, with ρcell being the vector sum of the molecular dipole 

moments, Vcell being the volume and Z being the number of formula units in the unit cell, 

respectively.  Typically, the cell dipole energy correction is negligible (< 0.24 kcal/mol) for a unit 

cell with small dipole moment.66

(2)𝐸lattice =  
1
2∑

𝑅AB < 𝑅𝐸AB
total ―

2𝜋𝜌2
cell

3𝑍𝑉cell

For 1 and 4, each with Z' = 2, the lattice energy was calculated as the average of lattice sums for 

each molecule in the asymmetric unit.

Results and Discussion

Synthesis and characterisation

The (HOCH2CH2)2NC(=S)N(H)(C6H4Y-4), Y = H (1), Me (2), Cl (3) and NO2 (4), compounds 

have been prepared in good yield (78-82%) yield as colourless (1-3) and yellow (4) crystals.  In 
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the IR spectra, characteristic bands in the regions 1291-1312 cm-1 and 1025-1062 cm-1 are assigned 

to υ(C–N) and υ(C=S), respectively.  In the 1H NMR spectra, measured in DMSO-d6 solution, the 

expected resonances and integration, including for the N–H and O–H protons, were noted.  In the 

13C{1H} NMR spectra, resonances due to the quaternary-C1 atom were seen downfield, in the 

range 181.50 (4) to 187.04 ppm (2).  In order to assign the transitions in the UV spectra, an analysis 

on the HOMO-LUMO profile was performed for the lowest energy conformer at the ground state 

(vide infra) for each of 1-4; see ESI† Fig. S1.  This revealed the HOMO is located at the C1=S1 

chromophore for 1-3, while the LUMO, LUMO(+1) and LUMO(+2) are located at the delocalised 

C1=N1/C1=N2, C2=C3 and C4=C5/C6=C7 chromophores, respectively, which indicates that the 

experimental UV absorption bands at approximately 280, 250 and 220 nm can be attributed to n 

→ π*, π → π* and π → π* transitions, respectively.  As for 4, the delocalised chromophore 

associated with the nitro group contributes to LUMO(+1) and hence, the additional absorption 

band at approximately 350 nm can be assigned to π → π*.  The PXRD pattern measured for each 

of 1-4 closely match the simulated pattern calculated from their single crystal data, confirming the 

phase similarity between the respective bulk materials (293 K) and experimental structures (100 

K); see ESI† Fig. S2.

Experimental molecular structures

Crystal structures were established for 1-4; for each of 1 and 4, two independent molecules 

comprise the asymmetric unit, henceforth 1a & 1b and 4a & 4b, respectively.  The molecular 

structures are shown in Fig. 2 and selected geometric data are collated in Table 2.  The first 

independent molecule of 1, Fig. 2(a), features a planar C1,N1,N2,S1 chromophore which exhibits 

a r.m.s. deviation of 0.0038 Å for the fitted atoms.  The mono-substituted amine-N1 atom carries 
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a phenyl ring and the di-substituted amine-N2 atom carries two hydroxyethyl groups.  A significant 

twist in the molecule is apparent with the dihedral angle between the central plane and appended 

phenyl ring being 59.39(4)°.  This observation plus that the two methylene-C atoms bound to the 

N2 atom suggests there is not extensive delocalisation of π-electron density over the molecule; the 

C1–N bond lengths are experimentally equivalent.  Consistent with the presence of the C1=S1 

double bond at the C1 atom, the angles subtended at the N2 atom involving the C1 atom are the 

widest.  However, the widest angle at a nitrogen atom is the C1–N1–C2 angle which reflects the 

presence of the amine-H atom.  A similar distortion in angles is seen about the C1 atom.  Rather 

than being “dangling”, the hydroxyl groups are orientated towards the rest of the molecule enabling 

the formation of intramolecular hydroxyl-O–H···S(thione) and amine-N–H···O(hydroxyl) 

hydrogen bonds and S(7) loops, as detailed in Table 3.  As seen from Table 2, the key bond lengths 

and angle defining the independent molecules of 1, Fig. 2(b), are generally close with the most 

significant difference being a wider angle by about 3° for C1–N1–C2 in the second molecule.  

Greater differences are noted in torsion angles, Table 2.  The maximum difference of 

approximately 20° is noted in the C1–N1–C2–C3 torsion angles followed by approximately 10° 

for the N2–C8–C9–O1 torsion angles.  A difference of approximately 20° is also seen in the 

CN2S/aryl torsion angles with reduced splaying between the planes noted in the second molecule 

of 1.

Very similar molecular conformations are noted for 2-4, Figs 2(c)-(f) and Table 2, including 

the formation of the intramolecular hydrogen bonds, Table 3.  The most notable differences 

between 1 and each of 2-4 relate to the more planar S1–C1–N1–C2 torsion angles and to the 

reduced N2–C10–C11–O2 torsion angles, by up to 18°, in 2-4.  Two independent molecules 

comprise the asymmetric unit of 4 but each presents very similar geometric parameters, Table 2.  
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However, a distinguishing feature of the two molecules comprising 4 and each of 1-3 relates to an 

apparent disparity in the C1–N1 and C1–N2 bond lengths in 4 not seen in the latter; this 

observation is discussed further below.  An overlay diagram of the experimental molecular 

structures is shown in Fig. 2(g) from which it is plain that significant conformational differences 

with respect to the relative orientations of both the hydroxyethyl and aryl groups are evident across 

the series.

Fig. 2.  Molecular structures of (a) 1 (first independent molecule), (b) 1 (second molecule), (c) 2, 

(d) 3, (e) 4 (first independent molecule) and (f) 4 (second independent molecule), all showing atom 

labelling schemes and displacement ellipsoids at the 50% probability level.  Overlap diagrams of 

the (g) experimental and (h) geometry optimised structures – the molecules have been overlapped 

so that the central N2S residues are coincident.  Colour code: 1 (first independent molecule), red; 

1 (second independent molecule), green; 2 (inverted), blue; 3, cyan; 4 (first independent molecule), 

pink; 4 (inverted second independent molecule), yellow.
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Table 2  Selected experimental and calculated (in italics) geometric data (Å, º) characterising 1-4

Parameter 1a 1b 2 3 4a 4b

C1‒S1 1.7028(12) 1.6985(12) 1.6986(13) 1.6968(16) 1.6900(18) 1.6893(18)

1.695 1.696 1.694 1.690

C1‒N1 1.3518(16) 1.3511(15) 1.3573(16) 1.360(2) 1.375(2) 1.374(2)

1.370 1.368 1.372 1.380

C1‒N2 1.3499(15) 1.3544(15) 1.3539(16) 1.354(2) 1.344(2) 1.345(2)

1.376 1.376 1.375 1.372

C1‒N1‒C2 127.40(11) 130.19(10) 127.08(11) 126.00(14) 128.13(15) 128.95(15)

128.4 128.1 128.3 129.8

C1‒N2‒C8 122.75(10) 122.65(10) 123.22(10) 123.07(13) 123.67(15) 123.44(15)

122.9 122.8 122.9 123.1

C1‒N2‒C10 122.86(10) 122.59(10) 121.49(11) 121.54(13) 121.06(15) 121.47(15)
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120.9 120.9 120.8 120.8

C8‒N2‒C10 114.35(9) 114.70(9) 115.29(10) 115.39(12) 115.27(14) 115.08(14)

115.8 115.8 115.8 115.7

S1‒C1‒N1 122.32(9) 123.78(9) 122.78(10) 122.52(12) 122.81(14) 123.14(14)

123.3 123.2 123.2 123.3

S1‒C1‒N2 122.68(9) 121.91(9) 122.69(9) 122.83(12) 123.09(14) 123.10(13)

122.9 122.9 123.0 123.3

N1‒C1‒N2 114.99(10) 114.29(10) 114.52(11) 114.64(14) 114.09(15) 113.74(15)

113.8 113.9 113.8 113.4

S1‒C1‒N1‒C2 14.67(18) 13.32(18) 4.79(19) -5.3(2) 3.9(3) -5.8(3)

13.9 13.2 -13.8 -19.0

C1‒N1‒C2‒C3 51.55(19) 31.80(19) 53.74(19) -55.6(2) 42.1(3) -39.5(3)

44.0 46.3 -43.5 -30.8

S1‒C1‒N2‒C8 -165.08(9) -160.46(9) -166.78(9) 166.73(12) -166.45(13) 165.12(13)
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-158.3 -158.1 158.6 159.8

S1‒C1‒N2‒C10 17.34(16) 16.56(16) 13.32(16) -13.6(2) 13.9(2) -16.0(2)

13.1 13.3 -12.8 -12.0

N2‒C8‒C9‒O1 73.33(12) 82.80(13) 71.13(14) -71.15(17) 61.7(2) -63.9(2)

72.1 72.3 -72.0 -71.2

N2‒C10‒C11‒O2 74.54(13) 73.76(13) 59.47(14) -58.80(18) 52.5(2) -55.1(2)

49.8 50.0 -49.4 -48.7

r.m.s. deviation CN2S 0.0038 0.0065 0.0027 0.0036 0.0048 0.0043

CN2S/aryl 59.39(4) 39.07(4) 54.3(5) 56.98(6) 42.70(7) 41.33(8)

51.6 53.2 51.0 43.4
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Table 3  Summary of intra- and inter-molecular interactions (A–H…B; Å, º) operating in the crystals of 1-4

A H B A–H H…B A…B A–H…B Symmetry

operation

1

N1 H1n O1 0.873(14) 1.914(14) 2.7514(15) 160.1(15) x, y, z

O2 H2o S1 0.841(14) 2.269(15) 3.1009(9) 170.1(13) x, y, z

N21 H21n O21 0.872(13) 1.900(14) 2.7624(14) 169.4(13) x, y, z

O22 H22o S21 0.838(14) 2.323(15) 3.1470(9) 167.6(14) x, y, z

O1 H1o O22 0.839(11) 1.841(11) 2.6753(13) 173.0(17) x, y, z

O21 H21o O2 0.842(16) 1.842(16) 2.6825(14) 176.1(15) x, y, 1+z

C9 H9a Cg(C22-C27) 0.99 2.68 3.6030(13) 155 1-x, 1-y, 1-z

C9 H9b Cg(C22-C27) 0.99 2.78 3.6822(13) 151 -½+x, ½-y, - ½+z

C29 H29b Cg(C2-C7) 0.99 2.95 3.8131(14) 147 1-x, 1-y, 1-z

2

N1 H1n O1 0.875(14) 1.906(13) 2.7449(16) 160.1(14) x, y, z

O2 H2o S1 0.839(12) 2.367(15) 3.1500(10) 155.4(16) x, y, z

O1 H1o O2 0.837(15) 1.882(16) 2.7137(14) 172.0(19) -½-x, -½+y, 1½-z
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C8 H8a Cg(C2-C7) 0.99 2.89 3.4957(13) 120 -1+x, y, z

C10 H10b C6 0.99 2.73 3.6263(19) 150 -½+x, ½-y, -½+z

3

N1 H1n O1 0.881(18) 1.907(18) 2.7453(19) 158.3(17) x, y, z

O2 H2o S1 0.828(13) 2.388(16) 3.1591(13) 155.2(18) x, y, z

O1 H1o O2 0.837(17) 1.879(17) 2.7156(18) 178(2) -½-x, ½+y, ½-z

C8 H8a Cg(C2-C7) 0.99 2.95 3.5488(17) 120 -1+x, y, z

C10 H10b C1l 0.99 2.85 3.6738(14) 141 -1½+x, 1½-y, -½+z

C5 Cl1 Cl1 1.7448(17) 3.4432(6) – 154.00(6) 2-x, 1-y, 1-z

4

N1 H1n O1 0.88(2) 2.03(2) 2.842(2) 153(2) x, y, z

O2 H2o S1 0.84(3) 2.40(2) 3.1671(16) 152(3) x, y, z

N21 H21n O21 0.88(2) 2.02(2) 2.839(2) 154(2) x, y, z

O22 H22o S21 0.839(14) 2.41(2) 3.1767(16) 152(3) x, y, z

O1 H1o O22 0.838(19) 1.890(19) 2.723(2) 173(2) x, 1+y, z

O21 H21o O2 0.83(2) 1.90(2) 2.732(2) 172.7(19) x, y, z

C29 H29b O1 0.99 2.39 3.375(3) 175 -x, 1-y, 1-z
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C11 H11b O3 0.99 2.39 3.360(3) 165 x, y, 1+z

C10 H10b Cg(C22-C27) 0.99 2.72 3.475(2) 133 1-x, 1-y, 2-z

C9 H9b Cg(C2-C7) 0.99 2.71 3.483(2) 135 1-x, 1-y, 1-z

Cg(C22-C27) Cg(C22-C27) – – 3.6105(12) 0 -x, -y, 2-z
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Molecular packing

The geometric parameters characterising the specific intermolecular contacts operating in the 

crystals of 1-4 are collated in Table 3.  The common feature of the supramolecular aggregation 

is the formation of supramolecular chains mediated by hydroxyl-O–H···O(hydroxyl) hydrogen 

bonding.  However, the topologies of the resultant chains are distinct.  In 1, the two similarly 

orientated molecules comprising the asymmetric unit are connected by a single hydroxyl-O–

H···O(hydroxyl) hydrogen bond and the resultant two-molecule aggregates are connected into 

a linear supramolecular chain parallel to the c-axis in the crystal with monoclinic space group 

P21/n.  In isostructural 2 and 3, helical chains are formed, being propagated by 21-screw 

symmetry along the b-axis in monoclinic space group P21/n, in their crystals.  In 4, the 

independent molecules are connected into a V-shaped aggregate which are connected to 

translationally related aggregates to form a zig-zag chain along the b-axis in the triclinic (P1̄) 

crystal.  The side- and end-on views of the supramolecular chains are illustrated for 1, 2 and 4 

in Fig. 3, and for 3 in ESI† Fig. S3.  The differences in the topologies is reflected in the 

distances between translationally related pairs of molecules, i.e. 16.49, 10.75, 10.77 and 11.21 

Å, respectively, indicating more open arrangements in the sequence 1 > 4 > 3 and 2.

Page 84 of 120CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://pubs.rsc.org/en/content/articlelanding/2020/ce/d0ce01478h/unauth#fn1
https://doi.org/10.1039/d0ce01810d


25

Fig. 3.  Side- and end-on views of the supramolecular chains featuring by hydroxyl-O–

H···O(hydroxyl) hydrogen bonding, shown as orange dashed lines, in the crystals of (a) 1, (b) 

2 and (c) 4.

In 1, the only other identifiable points of contact between the supramolecular chains are 

methylene-C–H···π(aryl) interactions, with the C22-C27 ring accepting two interactions to 

either side, and these serve to assemble the chains into a three-dimensional architecture, Fig. 

4(a).  
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Fig. 4.  Unit-cell contents for (a) 1, viewed down the c-axis, (b) 2, viewed down the b-axis, (c) 

3, viewed down the a-axis and (d) 4, viewed down the b-axis; the views in (a), (b) and (d) are 

in projection down the axes of propagation of the chains.  The hydroxyl-O–H···O(hydroxyl), 

methylene-C–H···π(aryl), methylene-C–H···C(aryl), methylene-C–H···Cl, Cl···Cl, 

methylene-C–H···O(hydroxyl, nitro) and π(aryl)···π(aryl) interactions are shown as orange, 

purple, pink, dark-red, cyan, blue and dark-green dashed lines, respectively.

In the crystal of 2, the chains are connected into a two-dimensional array in the ab-plane 

by methylene-C–H···π(C2-C7) interactions.  The layers stack along the c-axis with the closest 

interaction between them being a methylene-C–H···C(aryl) contact, Table 3.  A view of the 

unit-cell contents for isostructural 3 is shown in Fig. 4(c).  Here, there is evidence for weak 

inter-layer methylene-C–H···Cl and Cl···Cl contacts, Table 3.  A distinct molecular packing is 
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noted in the crystal of 4 primarily owing to the participation of hydroxyl- and nitro-O atoms 

along with face-to-face π···π contacts, Table 3.  Thus, the methylene-C–H···π(aryl) contacts, 

present in all crystals connect chains into a centrosymmetric double-layer in the bc-plane, 

within which are supporting methylene-C–H···O(nitro) contacts.  The double-layers stack 

along the a-axis with methylene-C–H···O(hydroxyl) and π(aryl)···π(aryl) contacts assembling 

the layers into a three-dimensional architecture, Fig. 4(d).  The π(aryl)···π(aryl) contacts occur 

between centrosymmetrically related residues and the rings are off-set to optimise the 

attraction: the inter-plane separation is 3.4128(8) Å and the slippage is 1.18 Å.

Molecular packing similarity analysis

A packing similarity analysis was performed between 1-4 to identify any similarities in the 

molecular arrangements in their crystals.57  The results show that the packing in 1 is quite 

distinct to that of 2, 3 and 4, with only one molecule out of 15 falling within the 20% tolerance 

in both distance and angle deviations.  The r.m.s. deviation between 1 & 2, 1 & 3 and 1 & 4 

amounts to 0.946, 0.931 and 0.934 Å, respectively.  The major deviation arises as in the crystal 

of 1, the molecules are mainly connected through hydroxyl-O–H···O(hydroxyl) interactions in 

a linear arrangement, while in each of 2-4, the molecules are connected by the same interaction 

but arranged in a helix (2 and 3) and a zig-zag chain (4), as highlighted in the overlay diagrams 

for 1 & 2 and 1 & 4 of Figs 5(a) and (b), respectively. For comparison, Fig. 5(c) shows the 

equivalent image for isostructural 2 and 3 where the r.m.s. deviation is 0.173 Å.  An 

intermediate situation when 2 (and 3) is compared with 4, Fig. 5(d), where the r.m.s. deviation 

is 0.388 Å; the r.m.s. deviation between 3 and 4 is 0.461 Å.  A closer inspection of the 

supramolecular chains of 2 and 4, Fig. 5(e), shows every second molecule of 2 has an alternate 
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orientation, reflecting the 21-screw symmetry, compared with the molecules having the same 

relative orientation reflecting the pseudo-mirror symmetry of the zig-zag chain of 4.

Fig. 5  Comparisons of the molecular packing leading to the supramolecular chains (only four 

molecules of each are shown) between (a) 1 (blue) and 2 (green), (b) 1 and 4 (red), (c) 2 and 3 

(magenta), (d) 2 and 4 and (e) end-on view of 2 and 4 with the differently-orientated hydroxyl-

O–H···O(hydroxyl) interactions.  In (a)-(e), best-fitting molecules are highlighted in ball and 

stick representation.

Conformational analysis
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Owing to the presence of the hydroxyethyl moieties in 1-4, which may participate in various 

intra- and inter-molecular interactions depending on the conformations they adopt, a detailed 

conformational analysis of a representative molecule, namely 4, was conducted to assess 

whether the observed experimental structure represents a conformation at or close to the global 

minimum on the potential energy surface.  A striking feature of the molecular structures of 1-

4 was the universal formation of intramolecular hydroxyl-O–H···S(thione) and amine-N–

H···O(hydroxyl) hydrogen bonds, Fig. 2 and Table 3.  The (any 

atom)N(H)C(=S)N(CH2CH2OH)2 fragment is relatively rare in the crystallographic literature,67 

being restricted to a small number of ArC(=O)N(H)C(=S)N(CH2CH2OH)2 molecules68-71 and 

a bi-functional analogue.72  A common feature of the literature precedents is the formation of 

the intramolecular amine-N–H···O(hydroxyl) hydrogen bonds but no analogous intramolecular 

hydroxyl-O–H···S(thione) interactions as in 1-4.  Given this observation, it was thought of 

interest to ascertain whether the orientations of the flexible hydroxyethyl residues in 1-4 

corresponded to the global potential energy minima.  Accordingly, a conformational analysis 

through a series of optimisation steps (see Experimental) was performed on a representative 

molecule, namely, 4.  In all, nine conformers with lowest energy were identified upon 

consecutive elimination of the redundant conformers and those with the relative energy 

exceeding 9.6 kcal mol-1 throughout the series of optimisation steps.  As validated through the 

vibrational analysis with zero imaginary frequency, final optimisation showed that all nine 

conformers were either true local minima or the global minimum structure on the potential 

energy surface.  The chemical diagrams for the identified conformers together with the energy 

details are presented in Fig. 6.  Clearly, among all possible conformations identified for 4, 

conformer 4-1 is the global minimum structure with the lowest Gibbs free energy and is also 

the most dominant conformer with the highest relative population of about 82%.  Two other 

conformers lie within 2 kcal mol-1, namely 4-2 and 4-3, with Boltzmann populations of 10.45 

Page 89 of 120 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://doi.org/10.1039/d0ce01810d


30

and 3.52%, respectively.  Clearly, the intramolecular hydrogen bonds play a crucial role in 

stabilising the observed molecular conformation, by about 1-5 kcal mol-1 compared to the 

conformation without intramolecular hydrogen bonding, i.e. 4-9.

Fig. 6  Chemical diagrams for the nine most stable conformers calculated for 4, i.e. 4-1 to 4-9, 

their relative energies and Boltzmann distribution.

Additional structural information was revealed through this analysis.  Crucially, the six 

most stable conformations, 4-1 to 4-6, have an anti-disposition of the thione-S and amine-H 

atoms, with S1–C1–N1–H1n torsion angles in the range 140.1 to 156.9°, compared syn-

dispositions in 4-7 to 4-9 (S1–C1–N1–H1n: 19.7 to 20.8°) with the difference in energy 

between 4-6 and 4-7 being 0.2-0.3 kcal mol-1.  The analysis also highlights the importance of 

the intramolecular amine-N–H···O(hydroxyl) hydrogen bonds compared with the hydroxyl-

O–H···S(thione) and putative hydroxyl-O–H···O(hydroxyl) hydrogen bonds, with conformers 

4-1 to 4-4 being lower in energy compared with conformers without amine-N–H···O(hydroxyl) 

hydrogen bonds.
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Geometry optimisation calculations for 1-4 were conducted and an overlay diagram for 

these are shown in Fig. 2(h) from which it can be seen that the disparities in the conformations 

of the experimentally-determined structures no longer persist, with only minor differences 

noted in the relative orientations conformations of the aryl groups.  Selected geometric 

parameters for the optimised structures are collated in Table 2.  First and foremost, any 

differences apparent between the independent molecules of 1 and of 4 are no longer apparent.  

For example, the difference in the C1–N1–C2 angles of approximately 3° in 1 disappears.  

Concerning the relative dispositions of the aryl groups, Fig. 2(h), it was noted above the S1–

C1–N1–C2 angles in experimental 2-4 were closer to planarity compared with 1 but in the 

optimised molecules, all approximate the conformation seen in experimental and theoretical 1, 

yet a range of angles, i.e. 13.2° (2) to -19.0° (4) is still apparent.  This along with a range of 

about 12° for the C1–N1–C2–C3 torsion angles are the exceptional differences with all of the 

other angles equal within a degree of each other.  With respect to bond lengths, in the crystals 

of 1-3 the C1–N1, N2 bond lengths are equal within experimental error but are distinct for each 

independent molecule in 4, Table 2.  In the optimised structures, C1–N2 is marginally longer 

than C1–N1 in 1-3 but, for 4, there are more significant differences apparent with the C1–N1 

bond length being longer than C1–N2.  This change is related to the influence of the 

electronegative nitro substituent in 4.  The above systematic variations in geometric parameters 

notwithstanding, it is emphasised the differences are small and are unlikely to have a significant 

influence upon the molecular packing.

Molecular electrostatic potential (MEP) and natural population analysis (NPA)

Compounds 1-4 were subjected to molecular electrostatic potential (MEP) mapping and a 

natural population analysis (NPA) in order to better comprehend the distribution of electron 

density over the molecules (the relative polarity) with the view to correlate any systematic 
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trends with the non-covalent interactions operating in the respective crystals.  It is noted that 

the NPA approach was chosen for the charge calculations for its reliability and for being less 

sensitive to the choice of basis set functions.73

As shown in Fig. 7, the MEP maps were plotted onto the iso-density surfaces (0.0004 

a.u., the low value being chosen for the generation of high-quality mapping) for 1-4; a listing 

of the electrostatic charges is given in ESI† Table S1.  The most noteworthy features of the 

MEP plots are the intense positive (blue) regions centred on the H1o atoms as well as the 

negative (orange to red) regions around the S1 and O2 atoms with the electrostatic potential 

charge (VESP) on the surfaces being in the range of +55.73 to +59.49 kcal mol-1 for H1o, -30.37 

to -36.09 kcal mol-1 for S1, and -39.30 to -42.45 kcal mol-1 for the O2 atom.  The electrostatic 

potential charges correspond well with the experimental findings in that electropositive-H1o 

interacts with electronegative-O2 through charge-complementary, electrostatic attractions that 

results in systematic hydroxy-O–H···O(hydroxy) hydrogen bond formation in 1-4.  While there 

are some inequivalent distributions of electrostatic potential charge on the H1o and O1 atoms 

in 1-4, the net charge (ΔVESP) is approximately the same across the series with the values being 

97.74, 98.44, 98.72 and 98.79 kcal mol-1, respectively, indicating similar strengths for these 

interactions.  These net charge values are relatively greater than the electrostatic attraction for 

putative methylene-C–H···S(thione) interactions in the molecular packing for 1 and 4, with 

energies of 65.12 and 66.61 kcal mol-1, respectively and aryl-C–H···S(thione) for 1 with an 

energy = 41.05 kcal mol-1.  However, in 1, these occur at distances beyond the van der Waals 

radii so are not indicated in the analysis conducted using PLATON37 but are noted in the 

Hirshfeld surface analysis (vide infra).  The identified methylene-C–H···Cl1 and Cl···Cl 

interactions in 3, Table 3, have net charge values of 32.40 and -1.88 kcal mol-1, respectively, 

indicating the latter is diffusive in nature.  As well, methylene-C–H···O(nitro) and aryl-C–

Page 92 of 120CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://pubs.rsc.org/en/content/articlelanding/2020/ce/d0ce01478h/unauth#fn1
https://doi.org/10.1039/d0ce01810d


33

H···O(nitro) in 4 have energies equal to 49.43 and 44.72 kcal mol-1, respectively; the latter 

occur at separations greater than the van der Waals radii.

Fig. 7  Electrostatic potentials mapped onto the iso-density surfaces (0.0004 a.u.) for 1-4, in 

the range -60.00 to +60.00 kcal mol-1.

The effect on the variation of the 4-Y substituent of the aryl rings is evidenced through 

MEP mapping.  Thus, the electrostatic charge on the centroid of the aryl ring becomes more 

negative from 1 to 2 due to the electron donating nature of the Y = Me substituent in 2, while 

the opposite is true for 3 and 4, as the aryl rings become less negative owing to the electron-

withdrawing effects of the Y = Cl and NO2 substituents.

Similar to the MEP analysis, the NPA study was conducted to seek trends in the charge 

distribution on specific atoms especially those participating in intermolecular interactions for 
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correlation with molecular packing.  A list of selected NPA values is given in Table 4 and a 

full listing is given in ESI† Table S2.  The NPA charge analysis shows that the most basic sites 

are located on the hydroxyl-O1 and O2 atoms with the natural charge values in the ranges -

0.736 to -0.737 and -0.743 to -0.749, respectively, indicating the O2 atom is marginally more 

negative.  The corresponding H1o and H2o atoms are the most acidic sites with charge values 

of about 0.50 and 0.48, respectively, in accord with the trends with the hydroxyl-O atoms.  

Consistent with the MEP study, are the relatively large difference in the natural charges 

between the hydroxyl-oxygen and -hydrogen atoms and this is the main contributing factor for 

the formation of the common hydroxy-O–H···O(hydroxy) hydrogen bonded chain formation 

in 1-4.

Table 4  The natural charges for selected atoms in the optimised molecules of 1-4.

Atom    Natural Charge, |e|

1 2 3 4

S1 -0.393 -0.397 -0.387 -0.361

N1 -0.613 -0.611 -0.613 -0.614

N2 -0.396 -0.397 -0.393 -0.384

O1 -0.737 -0.737 -0.737 -0.736

O2 -0.748 -0.749 -0.747 -0.743

C1 0.345 0.346 0.344 0.338

C2 0.141 0.126 0.141 0.195

C3 -0.215 -0.205 -0.197 -0.222

C4 -0.208 -0.212 -0.224 -0.169

C5 -0.226 -0.024 -0.053 -0.010

C6 -0.205 -0.209 -0.222 -0.164

C7 -0.234 -0.224 -0.216 -0.235

H1o 0.496 0.496 0.496 0.498
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H2o 0.480 0.480 0.480 0.480

H1n 0.444 0.444 0.445 0.448

It is noted that small but consistent trends in the charges residing on the S1 and N2 atoms 

are apparent, with respect to 1, minor increases in 2 and decreases in 3 and 4 correlated with 

the electronegativity of Y.  Variations in the natural charges are also noted in the aryl rings, in 

particular for the C5 atoms with respect to 1, observations again related to the Y-substituents.  

For 2, the inductive effect of the σ-electron donating methyl group disperses charge around the 

π-system through the resonance effect.74  A similar observation is found for the Cl substituent 

in 3 as it able to donate the lone-pair of electrons to the aryl ring leading to a similar inductive 

effect as for the methyl substituent despite the chloride atom being known as a weak electron-

withdrawing group.75  The significant differences for all atoms comprising the aryl ring in 4 

relates specifically to the electronegative nitro substituent.  Overall, the net charge shift76 for 

the 4-substituted phenylthiourea fragments compared to the parent molecule, i.e. 

[Σq(SCNHC6H4Y) - Σq(SCNHC6H5)], computes to 0.004, -0.007 and -0.033 e for 2-4, 

respectively, which correlates to the electron-donating nature of Me and electron-withdrawing 

characteristics of Cl and NO2.

Hirshfeld surface analysis

Compounds 1-4 were subjected to Hirshfeld surface analysis in order to gain further insight on 

the nature of interactions present in each crystal, especially those not identified in the 

conventional analysis of the molecular packing, as well as important surface contacts; the 

analysis includes the contributions made by the individual components comprising the 

asymmetric unit of each of 1 and 4, labelled henceforth 1a & 1b and 4a & 4b, respectively  

The mapping of the normalised contact distances (dnorm) reveals several red spots on the iso-

Page 95 of 120 CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://doi.org/10.1039/d0ce01810d


36

density surfaces of the molecules ranging from strong to weak intensity due to the presence of 

several close contacts with separations shorter than the sum of van der Waals radii.62  These 

are categorised into five main types as H···O/O···H (type I), H···C/C···H (type II), H···S/S···H 

(type III), C···O/O···C (type IV) and H···Cl/Cl···H or Cl···Cl (type V), Fig. 8.  A summary of 

the contacts detected on the Hirshfeld surfaces is provided in ESI† Table S3 where all the X–

H bond lengths have been adjusted to their neutron values.

The most intense red spots arise from H···O/O···H interactions due to the hydroxyl-O–

H···O(hydroxyl) hydrogen bonds and these are a common feature of all crystals under 

investigation.  The differences between the molecules are observed mainly in the diminutive 

red spots comprising type II, III, IV and V contacts.  For instance, a type IV contact appears 

only for 1b due to thiourea-C1···O(hydroxyl) interaction, while type III contacts are observed 

in 1 and 4 attributed to methylene-/aryl-C–H···S(thione) interactions but no such contact is 

noted either of  2 and 3.  The inclusion of Cl and NO2 substituents in the 4-positions of 3 and 

4 introduces additional contacts compared with the parent molecule of 1 as evidenced from the 

presence of red spots, albeit of weak intensity.  For 3, these arise from methylene-C–H···Cl 

and Cl···Cl interactions in 3; while the NO2 substituent in 4 gives rise to methylene-/aryl-C–

H···O(nitro) interactions.  Almost all of these interactions identified through the Hirshfeld 

surface analysis can be considered weak contacts which complement those interactions 

detected via PLATON.37
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Fig. 8  Complementary views of the Hirshfeld surface mapped over dnorm within the range of -

0.0788 to 1.0548 arbitrary units, revealing close contacts shorter than the sum of van der Waals 

radii through red spots on the surfaces which are categorised into H···O/O···H (type I), 

H···C/C···H (type II), H···S/ S···H (type III), C···O/O···C (type IV) and H···Cl/Cl···H or 

Cl···Cl (type V) for (a) 1a, (b) 1b, (c) 2, (d) 3, (e) 4a and (f) 4b.

The quantification of the close contacts to the Hirshfeld surface was achieved though the 

analysis of the two-dimensional fingerprint plots for the respective molecules in 1-4.  In 

general, the variation of intermolecular interactions owing to the differences in molecular 

packing is reflected in the fingerprint profiles for the individual molecules, despite these often 

being subtle, particularly in the diffuse regions of the overall profiles as illustrated in ESI† Fig. 

S4.

The most prominent features of the fingerprint plots are the pairs of forceps-like spikes 

tipped at di + de distances within 1.70-1.76 Å which are much shorter than the sum of van der 
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Waals radii (vdW) for O···H [Σ(vdW)O···H = 2.61 Å], cf. the dnorm contact distances listed in 

ESI† Table S3.  These features arise due to the H···O/O···H hydrogen bonding contacts leading 

to the supramolecular chains.  Also prominent are the pincers-like distributions in the 

decomposed fingerprint plots for the H···C/C···H contacts with di + de distances in the range 

2.65-2.76 Å which are slightly shorter than Σ(vdW)C···H of 2.79 Å.  The H···S/ S···H contacts 

are also reflected as pincers-like profile but with di + de distances in range 2.83 to 2.94 Å for 1 

& 4 and 2.90 to 3.03 Å for 2 & 3 compared with the Σ(vdW)S···H = 2.89 Å.  It is for this reason 

that diminutive red spots were observed in the relevant plots for 1 and 4 but not in those for 2 

& 3; as discussed below, the H…S contacts in 2-4 are intra-chain contacts.  Distinctive 

characteristics are noted in 3 arising from H···Cl/Cl···H as well as Cl···Cl contacts with di + 

de of about 2.78  and 3.42 Å which are shorter than Σ(vdW)Cl···H and Σ(vdW)Cl···Cl of 2.84 and 

3.50 Å, respectively, Fig. 9.  Other contacts co-exist on the Hirshfeld surface but are less 

significant owing to long contact separations.

Fig. 9  Decomposed fingerprint plots for 3 delineated into (a) H···Cl/Cl···H and (b) Cl···Cl 

contacts.

In terms of contact distributions, crystals 1 and 2 are dominated by several major contact 

contributions to the Hirshfeld surfaces in the order of H···H (ca 57.3-59.5%), H···C/C···H (ca 
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17.2-18.7%), H···S/S···H (ca 10.6-12.0%) and H···O/O···H (ca 8.4-10.8%) followed by other 

less significant contacts with each contributing less than 1% as shown in Fig. 10.  The 

decomposition of the distribution shows that almost all contacts in 1 and 2 are evenly 

distributed between the internal (i.e. the donor or acceptor atoms internal to the surface) and 

external (i.e. the donor or acceptor atoms external to the surface) interactions except for 

H···C/C···H and H···S/S···H which are slightly inclined toward (internal)-X···H-(external) 

rather than (internal)-H···X-(external) (X = C and S) owing to their relatively large exposure 

surfaces that attract the contact from hydrogen atoms, e.g. for C···H, the contact is mainly 

concentrated within the aryl ring with a large exposure surface.

Fig. 10  Relative distribution of different contacts to the Hirshfeld surfaces for individual 

molecules in 1-4.  Other minor but significant contacts include C···Cl/Cl···C (2.8%), 

H···N/N···H (2.3%) and Cl···Cl (1.1%) for 3.  For 4a and 4b: H···N/N···H (2.5%), 

O···C/C···O (1.0-2.3%), O···S/ S···O (1.4-1.5%) and O···O (0.1-1.3%), and specifically for 

4b C···C (3.0%).
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Distinctive distributions are noted for each of 3 and 4 owing to the influence of the Y = 

Cl an NO2 substituents, respectively.  Thus for 3, the contributions are in the order H···H 

(41.3%), H···C/C···H (15.7%), H···Cl/Cl···H (14.7%), H···S/S···H (10.8%) and H···O/O···H 

(9.8%) and other minor contacts including the Cl···Cl contact which constitutes only 1.1%.  

For 4, the order is H···O/O···H (ca 32.2-35.2%), H···H (ca 32.4-33.6%), H···C/C···H (ca 

12.2-17.1%), H···S/ S···H (ca 8.5%) followed by other long contacts (ca 9.7-10.8%).  Similar 

to 1 and 2, decomposition of the corresponding contacts exhibits uneven distributions between 

the internal and external contacts for H···Cl/Cl···H in 3 as well as H···O/O···H in 4 in addition 

to the H···C/C···H and H···S/S···H contacts in both molecules, for which the interactions are 

inclined toward (internal)-X···H-(external) (X = Cl, O, C and S) indicating the electronegative 

nature of those acceptor atoms.

Interaction energies and energy frameworks

An analysis of the interaction energies associated with identified intermolecular contacts was 

quantitatively assessed in attempt to rank the stabilisation energies provided by specific 

contacts in 1-4.  The strength of each interaction as identified from the Hirshfeld surface 

analysis was assessed following the approach as detailed in the experimental section.  As noted 

from Table 5, among all pairwise-interactions between molecules, the hydroxyl-O–

H···O(hydroxyl) interactions provide the strongest interactions with the energy, Eint, for each 

pair lying in the range -17.81 to -12.09 kcal mol-1.  These strengths are comparable to that of 

ca -18 and -17 kcal mol-1 as calculated for the classical amide-N–H···O(amide)77 and 

carboxylic-O–H···O(carboxylic acid) interactions,78 respectively.  A close inspection of the 

data shows that the Eint(O–H···O) is the greatest in crystal 2, and this is followed by 3, 4 and 1 

respectively.
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Apart from the O–H···O interactions, crystals 1-4 also feature C–H···O and C–H···π 

interactions with the Eint ranging from -2.27 to -10.56 kcal mol-1 and -4.09 to -8.58 kcal mol-1, 

respectively.  Additional C–H···S and C···O interactions found in 1 have relatively strong 

interaction energies with Eint(C–H···S) in the range -2.20 to -7.93 kcal mol-1 and Eint(C···O) in 

the range -4.11 to -11.76 kcal mol-1.  The C–H···Cl interaction in 3 exhibits a relatively weak 

Eint of -2.01 kcal mol-1 and the Cl···Cl interaction is very weak with Eint being close to 0 kcal 

mol-1.  The only π···π interactions among the series is only present in 4 and gives rise to a 

relatively strong Eint of -13.53 kcal mol-1.

From the data in Table 5, it is evident the molecular packing of 1-4 is mainly stabilised 

by electrostatic forces owing to the strong O–H···O interactions which lead to the directional 

topology aligned along the c-axis for 1 and along b-axes for 2-4, Fig. 11.  The crystals also 

feature dispersive forces due to the other complementary contacts.  The overall energy 

framework of 1 has a ladder-like topology in contrast to the zig-zag, sheet-like energy 

framework for 4, while crystals 2 and 3 exhibit a similar, rack-shape topology consistent with 

their isostructural relationship.  It is noteworthy some smaller repulsive forces are observed 

within the rack-shaped topology of 2 and 3 owing to the close proximity of the main 

electrostatic force resulting from the O–H···O interactions, the magnitude of which is inversely 

proportional to the distance of the point charges in accord with Coulomb’s law.79  Equivalent 

repulsive forces are not observed in 1 and 4.
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Table 5 Corrected interaction energies (kcal mol-1) for all intermolecular close contacts present in 1 to 4, with scale factors of 1.057, 0.740, 0.871 

and 0.618 being applied for Eelectrostatic, Epolarization, Edispersion and Erepulsion, respectively, as obtained from the CE-B3LYP/6-31G(d,p) model.63

Contact Eelectrostatic Epolarization Edispersion Erepulsion Etotal Symmetry operation

1

O1–H1o···O22 -16.27 -3.11 -2.04 9.34 -12.09 x, y, z

O21–H21o···O2 -17.36 -3.41 -3.73 9.85 -14.65 x, y, 1+z

C28–H28b···O1/ 

C9–H9a···π(C22–C27)/ 

C29–H29a···π(C2–C7) -4.93 -1.15 -9.76 5.29 -10.56 1-x, 1-y, 1-z

C5–H5···O1 -1.59 -0.35 -3.56 1.40 -4.11 1½-x, ½+y, ½-z

C29–H29b··· π(C2–C7) -4.85 -1.38 -6.08 4.56 -7.74 -½+x, ½-y, ½+z

C4–H4···S21 -1.67 -0.28 -1.73 1.46 -2.20 1½-x, ½+y, ½-z

C8–H8a···S21/ 

C10–H10a··· π(C22–C27) -5.03 -0.94 -4.73 2.76 -7.93 -½+x, ½-y, -½+z
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C21···O22 -5.48 -2.12 -8.97 4.80 -11.76 1-x, 1-y, 1-z

2

O1–H1o···O2 -17.89 -3.71 -6.43 10.22 -17.81 -½-x, -½+y, 1½-z

C6–H6···O2/ 

C4–H4···C10 -2.75 -0.90 -7.85 4.02 -7.48 ½-x, -½+y, 1½-z

C10–H10b···π(C2–C7) -2.73 -0.64 -4.91 3.31 -4.95 -½+x, ½-y, -½+z

C9–H9a···π(C2–C7)/ 

C8–H8b···π(C2–C7) -4.37 -1.49 -7.41 4.70 -8.58 -1+x, y, z

3

O1–H1o···O2 -17.13 -3.91 -6.45 10.43 -17.09 -½-x, ½+y, ½-z
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C6–H6···O2/ 

C4–H4···C10 -4.95 -0.81 -7.97 4.67 -9.08 ½-x, ½+y, ½-z

C10–H10a···π(C2–C7) -1.52 -0.62 -4.98 3.03 -4.09 -½+x, 1½-y, -½+z

C9–H9b···π(C2–C7)/

C8–H8a···π(C2–C7) -2.85 -1.22 -6.85 3.97 -6.69 -1+x, y, z

C10–H10b···Cl1 -1.29 -0.16 -1.85 1.29 -2.01 -1½+x, 1½-y, -½+z

Cl1···Cl1 -0.13 -0.02 -0.73 0.83 -0.05 2-x, 1-y, 1-z

4

O1–H1o···O22 -14.83 -4.00 -7.02 9.70 -16.13 x, 1+y, z

O21–H21o···O2 -14.45 -4.10 -7.22 9.59 -16.18 x, y, z

C29–H29b···O1 -0.43 -0.48 -3.98 2.60 -2.27 -x, 1-y, 1-z

C11–H11b···O3 -4.85 -0.78 -2.41 2.42 -5.62 x, y, 1+z
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C7–H7···O23 -2.58 -0.46 -2.98 1.67 -4.35 x, 1+y, -1+z

C27–H27···O3 -2.78 -0.46 -3.02 1.67 -4.59 x, y, 1+z

C30–H30a··· π(C2–C7)/ 

C30–H30b···S1 -4.14 -0.88 -7.49 5.29 -7.24 1-x, 1-y, 1-z

C10–H10b··· π(C22–C27)/ 

C10–H10a···S21 -3.79 -0.83 -7.20 4.77 -7.07 1-x, 1-y, 2-z

C31–H31a···O23 -3.87 -0.62 -2.17 1.20 -5.47 x, y, -1+z

π(C22–C27)···π(C22–C27) -6.24 -0.87 -10.89 4.46 -13.53 -x, -y, 2-z
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Fig. 11  Perspective views of the energy frameworks of 1-4 showing the (a) electrostatic force, 

(b) dispersion force and (c) total energy diagram.  The cylindrical radius is proportional to the 
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relative strengths of the corresponding energies and were adjusted to the same scale factor of 

100 with a cut-off value of 1.91 kcal mol-1 within 2 × 2 × 2 unit-cells.

Data in Table 6 indicate the calculated lattice energies follow the order of 2 (-25.70 kcal 

mol-1) > 1 > 3 > 4 (-23.78 kcal mol-1) with the range being about 2 kcal mol-1.  The order of the 

lattice energies correlates nicely with the relative greater contributions to the energies of 

stabilisation provided by the C–H···π(aryl) interactions through enhanced contributions which 

follow the same order.  Further, the identified methylene-C–H···Cl(chloride) and aryl-C–

H···O(nitro) interactions in 3 and 4, respectively, exert little influence upon the lattice energies 

due to their weak nature.  By contrast, the energy contribution from the π(aryl)···π(aryl) contact 

is 4 is significant.

Table 6  The lattice energy (Elattice) in kcal mol-1 and the corresponding energy components 

(Eelectrostatic, Epolarization, Edispersion and Erepulsion) calculated for a cluster of molecules within 25 Å 

from a reference molecule through the CE-B3LYP/6-31G(d,p) model.

Crystal Eelectrostatic Epolarization Edispersion Erepulsion Elattice

1 -16.19 -4.23 -16.70 12.29 -24.83

2 -14.72 -4.33 -19.30 12.65 -25.70

3 -14.77 -4.29 -18.62 13.06 -24.62

4 -15.01 -3.98 -16.82 12.03 -23.78
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Non-covalent interaction (NCI) plots

Non-covalent interaction plots58 were calculated for selected interactions identified in the 

crystals of 1-4 to verify the attractive nature of the interactions through visualisation a red-

blue-green colour scheme on the iso-surface; red is indicative of a strong repulsive interaction, 

blue is indicative of a strong attractive interaction while green is indicative of a weak 

interaction.80  The images of Fig. 12 reveal that the intermolecular hydroxyl-O–

H···O(hydroxyl) interaction, common in all crystals, along with the intramolecular amide-N–

H···O(hydroxyl) and hydroxyl-O–H···S(thione) contacts, are strong and attractive in nature 

with the low density, low reduced gradient trough for those interactions lying at the negative 

region at about -0.20 to -0.35 a.u. in the respective two-dimensional NCI plots.

Fig. 12  NCI plots along with the two-dimensional plots of reduced density gradient (RDG) 

versus sign(λ2)ρ(r) for the molecular dimers of 1-4 connected by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds and highlighting the intramolecular amide-N–H···O(hydroxyl) and hydroxyl-

O–H···S(thione) hydrogen bonds.  The gradient cut-off is set at 0.4 and the colour scale is -

0.04 < ρ < 0.04 a.u.  Non-essential atoms are truncated for clarity.
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Interestingly, for pairs of molecules connected by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds in 2-4, there are relatively large, diffuse green domains between the 

hydroxyethyl-H-and thione-S atoms (see ESI† Fig. S5) that serve to complement the hydrogen 

bonds; this confirmed in the corresponding QTAIM analysis80 (see ESI† Fig. S6).  The 

attractive interactions further strengthen the interactions leading to the supramolecular chains 

and are likely contributors to the reduction in their pitch.

In line with the Hirshfeld surface analysis, additional contacts are detected in 3, i.e. 

methylene-C–H···Cl(aryl) and Cl···Cl, and 4, i.e. methylene-C–H···O(nitro) and aryl-C–

H···O(nitro), necessarily absent in 1 and 2.  As indicated from the light-green domains in the 

respective NCI plots of Fig. 13, these correspond to weak interactions.  Other common 

interactions involving the aryl rings and methylene chains are considered weak and are 

evidenced through the high-density localised domains in the NCI plots of ESI† Fig. S5.

Fig. 13  NCI plots for the molecular dimers highlighting weak contacts in 3: (a) methylene-C–

H···Cl(aryl) and (b) Cl···Cl and 4: (c) methylene-C–H···O(nitro) and (d) aryl-C–H···O(nitro).
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Overview

Crystals of 1 comprise two independent molecules which associate to form a linear, 

supramolecular chain sustained, in part, by hydroxyl-O–H···O(hydroxyl) hydrogen bonds.  In 

common with isostructural 2 and 3, the space group of 1 is monoclinic, P21/n.  There is a simple 

relationship between the crystals in that the unit-cell edge a in 2 and 3 is about half that of 1, 

Table 1.  Quite distinct crystal symmetry is noted for 4, i.e. triclinic, P1̄ with Z' = 2.  Despite 

these differences, supramolecular chains featuring by hydroxyl-O–H···O(hydroxyl) hydrogen 

bonds are prominent in the crystals of 1-4.  However, unlike 1, in the isostructural crystals of 

2 and 3, the chains have a helical topology.  In 4, zig-zag chains are apparent.  In short, the 

topology of the supramolecular chains in 1-4 are syntactic with the crystalline environment in 

which they exist.84

Isostructural relationships are not uncommon for molecules differing in a chloro/methyl 

substituent, which have similar volumes, i.e. 19 Å3 for chloride and 24 Å3 for methyl.82  Such 

cases of structural mimicry are commonly known as the chloro/methyl exchange,83 but this 

concept can be expanded to include other substituents.10  A chloro/methyl exchange in 

isostructural crystals implies similar influences upon the molecular packing by these 

substituents.  This suggests the methylene-C–H···Cl(aryl) and Cl···Cl contacts noted in 3, 

which occur in the inter-layer region, are not structure-directing even if weakly attractive.  The 

methyl groups in 2, which are also directed towards the inter-layer region, do not engage in 

directional interactions.

In terms of directional interactions, C–H···π(aryl) contacts feature in each crystal of 1-

4, and in 1, lead to a three-dimensional architecture, in 2 and 3, to a two-dimensional array and 

in 4, to a double-layer.  Further directional interactions are largely absent in 2 and 3.  By 

contrast, methylene-C–H···O(hydroxyl) and π(aryl)···π(aryl) interactions assemble the 
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double-layers in 4 (also stabilised by intra-layer methylene-C–H···O(nitro) contacts) into a 

three-dimensional arrangement.

At this stage it is salient to recall the results of the geometry optimisation calculations 

which indicate no significant influence is exerted by the methyl and chloro substituents in 2 

and 3 but significant activation of the aryl ring owing to the electronegative nitro group in 4.  

This latter observation correlates with the formation of the off-set π(aryl)···π(aryl) 

interactions observed in 4 but not in 1-3.

An evaluation of the relative contributions of the different interaction energies to the 

overall energies of identified interactions reveals interesting trends.  Thus, the energies (relative 

contributions) contributed by the hydroxyl-O–H···O(hydroxyl) hydrogen bonds are 

approximately -14.72 and -14.77 kcal mol-1 (46%) for 2 and 3, -15.01 kcal mol-1 (40%) for 4 

and -16.19 kcal mol-1 (38%) for 1.  This correlates with the repeat distances of the 

supramolecular chains with the greater energy contribution by hydroxyl-O–H···O(hydroxyl) 

hydrogen bonds to the overall energy of packing being associated with the chains with shortest 

repeat distances, i.e. 2 and 3 (10.77 Å) < 4 (11.21 Å) < 1 (16.47 Å).

While an exhaustive literature survey of this phenomenon is not feasible, as mentioned 

in the Introduction, a number of systematic studies have been described whereby the influence 

of small chemical changes upon supramolecular aggregation patterns investigated.10-27  Except 

for an isostructural series10 and universal adoption of the carboxylic dimer synthon in another 

series,17 variations in the topology of the aggregate/chain/layer are the norm as small chemical 

changes are made to molecular formulae, even when comparable hydrogen bonds are evident.  

Such an observation confirms that in order to design a crystal let alone an aggregate within a 

crystal,85 all supramolecular associations need to be taken in account.
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Finally, it should be mentioned that during the course of these studies conducted over 

a period of well over five years in two different Institutions, involving repeated synthesis and 

crystallisations, no evidence for polymorphs or solvates was found.  This is not to suggest that 

different crystalline forms are waiting to be discovered, in accord with the McCrone axiom.86  

However, it is stressed the experimental conformations in the crystals isolated in this study 

closely match the gas-phase optimised geometries suggesting the obtained crystals were the 

thermodynamic forms.

Conclusions

The crystal structure analyses along with detailed analyses of the supramolecular association 

in the crystals isolated for 1-4 show the formation of pervasive, hydrogen bonded chains that 

differ in topology: linear (1), helical (2 and 3) and zig-zag (4); no evidence for different 

crystalline forms was found in this study.  In consideration of the (i) persistence of the 

hydroxyl-O–H···O(hydroxyl) hydrogen bonds leading to one-dimensional chains, (ii) the 

closeness of the calculated lattice energies, (iii) the relative importance of C–H···π(aryl) 

contacts operating normal to the chains and (iv) the, on average, more C–H···π(aryl) contacts 

formed per molecule in 1, compared with 2-4, it is concluded the different topologies of the 

supramolecular chains are related primarily to the influence of directional C–H···π(aryl) 

contacts.  In 1, where no other directional interactions are apparent, a more open, linear 

arrangement facilitates the formation of inter-chain C–H···π(aryl) interactions, by definition 

occupying a larger volume of space.  In 2 and 3, where C–H···π(aryl) interactions are less 

dominant, an observation traced to the Y = Me and Y = Cl substituents, helical chains are 

apparent.  In 4, where calculations indicate the aryl rings are activated, π(aryl)···π(aryl) 

interactions come to the fore and zig-zag chains are now apparent.  Even if remote substituents 

Page 112 of 120CrystEngComm

C
ry

st
E

ng
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 1
9 

Ja
nu

ar
y 

20
21

. D
ow

nl
oa

de
d 

by
 L

an
ca

st
er

 U
ni

ve
rs

ity
 o

n 
1/

19
/2

02
1 

6:
44

:1
6 

A
M

. 

View Article Online
DOI: 10.1039/D0CE01810D

https://doi.org/10.1039/d0ce01810d


53

do not alter significantly the overall electronic structure of the molecules, their influence in 

participating in “second-tier” supramolecular association can direct the predominant mode of 

association between molecules leading to specific architectures.

In summary, the situation may be envisaged whereby the molecules precipitate from 

solution and align to form supramolecular chains via the predominant hydroxyl-O–

H···O(hydroxyl) hydrogen bonds and the adopted topology is dictated by the need to optimise 

the supramolecular association between chains which, in turn, is moderated by the specific 

requirements of the remote substituents.
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