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Abstract: An overview is presented of the crystal structures of transition metal, main group element,
and lanthanide compounds containing poly-functional dithiocarbamate ligands, namely species
containing two or more connected NCS2

− residues. In all, there are 40 different ligands of this type
that have been characterised crystallographically in their heavy-element compounds with up to
six NCS2

− residues; all are bridging. In most cases, the resulting aggregates are zero-dimensional,
often di-nuclear, but aggregates of up to 36 metal (gold) atoms are noted. There are smaller numbers
of one-, two-, and three-dimensional architectures sustained by poly-functional dithiocarbamate
ligands in their respective crystals. The survey highlights the opportunities afforded by this generally
under-studied class of ligand.

Keywords: thiolate ligands; dithiocarbamate ligands; coordination polymers; metal clusters;
crystal structures

1. Introduction

The facile reaction between a secondary amine and carbon disulphide in the presence
of an alkali metal hydroxide or ammonium hydroxide as the base leads to the formation
of arguably one of the more important classes of thiolate ligands, the dithiocarbamates,
formulated in its simplest form as −S2CNR2, for R = alkyl or aryl. While it is not cer-
tain when dithiocarbamates were first prepared [1], they have most likely been around
for well over 150 years based on the observation that Debus reported the synthesis of
dithiocarbamic acids in 1850 [2]; subsequently, Delépine described the synthesis of metal
salts of dithiocarbamates in 1907 [3]. The variety of dithiocarbamate anions that can be
synthesised is limited by the number of amines available for reaction, and it can extend to
primary amines and, relevant to the present survey, molecules bearing two or more amine
residues giving rise to poly-functional dithiocarbamate ligands. Being a most prominent
ligand in coordination chemistry, over the years, a number of authoritative reviews have
summarised advances in the field of dithiocarbamate chemistry and that of their seleno-
derivatives [1,4–8], with additional surveys focussing upon aspects of their structural
chemistry and modes of supramolecular association in their crystals for specific groups of
elements [9–14].

The importance of dithiocarbamate ligands in coordination chemistry notwithstand-
ing, their use in expanding the burgeoning field of metal organic frameworks (MOFs) and
coordination polymers is quite plainly lagging compared with, for example, the ubiquitous
carboxylates [15]. This is not to suggest there is no role for sulphur in extended frame-
work assemblies. This fact is highlighted in a few very recent reports in the literature
exploring the utility of sulphur/sulphur-based ligands in this context. For example, by
exploiting band gaps between p- and d-orbitals, two-dimensional metal-organosulphide
arrays have long been recognised as important functional materials with applications
relating to conductivity, photoluminescence, and ferro-magnetism [16–18]. The authors of
a recent study exploring the utility of two-dimensional europium materials featuring Eu–S
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bonds as semi-conductors and as precursors for nano-sheets query the apparent lack of
sulphur-based materials in this context and conclude this may relate to the perception that
metal–sulphur bonds have too much ionic character and are too labile [19]. The present
authors also suggest that poor solubility may also be a perceived issue. In terms of specific
dithiocarbamate ligands employed in the construction of coordination polymers, perhaps
the most relevant recent study relates to a series of heterometallic, platinum(II)/zinc(II) one-
and two-dimensional coordination polymers that were synthesised from multi-functional
dithiocarbamate ligands featuring both dithiocarbamate and carboxylate residues [20],
which were chosen for their complexation ability towards soft platinum(II) and hard
zinc(II) centres, respectively. In the context of drug delivery, nanosized thiol-functionalised
MOFs have been employed for the transport of the known anti-cancer (leukaemia) and
anti-inflammatory drug, 6-mercaptopurine (6-MPH), to cells [21]. Here, 6-MPH was linked,
via a disulphide bond, to 2,5-disulfanylterephthalate ligands within a zirconium-based
MOF. In the intra-cellular environment, glutathione (GSH), which is present in a higher
concentration than in extra-cellular surroundings, reduces the disulphide bond to release
6-MPH in a GSH-responsive drug-delivery strategy that results in a 3-fold efficacy of the
drug [21]. In other zirconium-based MOFs, regiospecific and modular substitution in the
organic staves of the framework by (thio-ether) sulphur resulted in the formation of boiling
water-insensitive materials that could be subjected to controlled, post-synthetic oxidation
by hydrogen peroxide [22]; it is noted that (thiophene-)sulphur can play related roles for
oxygen reduction in covalent organic frameworks [23]. In one final example highlighting
the potential utility of sulphur-modified MOFs, recently, thio-functionalised MOFs have
been shown to be effective in bioremediation. Thus, sulphur incorporated into a zinc
phosphite framework, through the agency of 2,5-thiophenedicarboxylate linkers, enabled
the efficient removal of Hg2+ cations from aqueous solution [24].

With the above in mind, it is perhaps surprising that dithiocarbamate ligands do
not appear to play a greater or even a prominent role in the construction of MOFs let
alone coordination polymers. In this survey, the coordination potential of poly-functional
dithiocarbamate ligands, which is defined as molecules having two or more dithiocar-
bamate residues, that is NCS2

−, available for coordination, is evaluated. The survey is
based on the structural data included in the Cambridge Structural Database (CSD) [25].
In all, 102 different crystals have been evaluated, revealing a total of 40 different poly-
functional dithiocarbamate ligands, clearly highlighting the potential of this class of ligand.
Zero-dimensional aggregation patterns predominate but, examples of one-, two-, and three-
dimensional aggregates are apparent. Structures are discussed in terms of their position in
the periodic table and in order of increasing nuclearity.

2. Methods

For the present bibliographic review of the crystallographic literature, the CSD (version
5.41 + three updates) [25] was searched employing ConQuest (version 2.0.4) [26]. The
fragment searched for was S2CN-spacer-NCS2, where the spacer was zero or any element
in a chain up to a maximum length of 22 atoms. No other restrictions were applied
as structures with relatively high values of R and/or feature disorder can still provide
reliable molecular connectivity. Indeed, disorder was often confined to solvent and/or
counter-ions and sometimes modelled with the SQUEEZE routine in PLATON [27]. All
retrieved structures were manually evaluated, leading to a total of 102 independent crystal
structures. A total of 40 different S2CN-spacer-NCS2 species were identified, and the
chemical diagrams for these are given in Figure 1. The full composition of each crystal is
given in Table 1 along with their CSD REFCODES. All crystallographic diagrams presented
herein are original and were generated with DIAMOND [28] employing data available in
the deposited CIFs [25].
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Figure 1. Chemical diagrams for poly-functional dithiocarbamate anions L1 to L40. The asterisk for each of L29 and L30 in-
dicates the point of attachment. 
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Table 1. Summary of structures 1–102 covered in this bibliographic review.

Crystal Formulation Motif CSD REFCODE Ref.

1 [Mo(=O)2(L1)]2 0-D/dimer OFOZIS [29]
2 [Ru(dppm)2]2(L2), 2(BF4), 3(CHCl3) 0-D/dimer QAVHAX [30]
3 [Cp(Ph3P)Ru]2(L3), 1.4(C6H14) 0-D/dimer CULLAW [31]
4 [(dppm)2Ru(L2)Pd(PPh3)2], 2(BF4), 3(CH2Cl2), C4H10O 0-D/dimer QONVAR [32]
5 [(dppe)Ni]2(L2), 2(PF6) 0-D/dimer RUDLIM [33]
6 [(dppf)Ni]2(L2), 2(PF6), 4(CH2Cl2) 0-D/dimer RUDLOS [33]
7 [(dppf)Ni]2(L1), 2(PF6), CH2Cl2 0-D/dimer ISEWEJ [34]
8 Ni2(L4)2, CH3CN 0-D/dimer ELUFOG [35]
9 Ni2(L5)2, 4(H2O) 0-D/dimer QAHFUB [36]
10 [(Ph3P)2Pd]2(L2), 2(PF6), C4H10O 0-D/dimer KEKKAP [37]
11 [(Ph3P)2Pd]2(L2), 2(PF6), C4H10O 0-D/dimer KEKKET [37]
12 [(Ph3P)2Pd]2(L1), 2(PF6), C4H10O 0-D/dimer KEKKIX [37]
13 [(dppf)Pd]2(L1), 2(PF6), CH2Cl2, CH3CH2OH 0-D/dimer ISEWIN [34]
14 [(dppf)Pd]2(L2), 2(BF4), 2.6(CH2Cl2) 0-D/dimer RUDLEI [33]
15 Pd2(L6)2 0-D/dimer KENYIN [38]
16 Pd2(L6)2, CHCl3 0-D/dimer KENYOT [38]
17 Pd2(L5)2, 2(CH3OH), 2.5(H2O) 0-D/dimer QAHGAI [36]
18 Pd2(L7)2, 2(CH3OH) 0-D/dimer IXIWAN [39]
19 [(Et3P)2Pt]2(L2), 2(PF6) 0-D/dimer RUDLAE [33]
20 [(Ph3P)2Pt]2(L2), 2(PF6) 0-D/dimer RUDKUX [33]
21 [(Ph3P)2Cu]2(L2) 0-D/dimer XUHYAB [40]
22 [(Ph2PCH2N(Ph)CH2PPh2)Cu]2(L2), 2(C3H7NO) 0-D/dimer ASANUF [41]
23 Cu2(L8)2, 2(FeCl4), 2(C6H6) 0-D/dimer WOXFAQ [42]
24 Cu2(L9)2, CH2Cl2 0-D/dimer GUTQIW [43]
25 Cu2(L9)2, ReO4 0-D/dimer IDEBIC [44]
26 Cu4(L10)2 0-D /tetramer GUTQES [43]
27 Cu8(L11)4, 7(I3), I, 6(H2O) 0-D/octamer CUPLAA [45]
28 (Me3PAu)2(L1) 0-D/dimer ISEWUZ [34]
29 (Ph3PAu)2(L1), 2(CH2Cl2), 0.5(CH3CH2OH) 0-D/dimer ISEWOT [34]
30 [(Ph3P)2Au]2(L2), 2(CHCl3) 0-D/dimer YAFMEZ [46]
31 [(dppf)Au2]2(L2), 2(PF6), 1.75(C4H10O) 0-D/tetramer PUCFAV [47]
32 Au6(L12)3, CHCl3 0-D/hexamer EFARUZ [48]
33 Au8(L13)2, unknown solvate 0-D/octamer KUNCUT [49]
34 Au8(L13)2, unknown solvate 0-D/octamer KUNDAA [49]
35 Au12(L14)6, 3(CHCl3), 7(H2O) 0-D/12-mer MOLMEG [50]
36 Au16(L15)4(µ-dppm)8, 8(BF4), 2(C2H3N) 0-D/16-mer MUGJUV [51]
37 Au16(L2)4(dppm)2, 8(PF6) 0-D/16-mer TEBFEM [52]
38 Au36(L12)18, 10(CHCl3), 26(H2O) 0-D/36-mer EFAROT [48]
39 Zn2(L16)2, CH2Cl2, 2(H2O) 0-D/dimer FIPYAF [53]
40 Zn2(L12)2, CH3CH2OH, 0.5(H2O) 0-D/dimer BAGLIF [54]
41 Zn2(L5)2(pyridine)2, 2(C5H5N) 0-D/dimer QAHGEM [36]
42 Zn2(L9)2(N(CH2CH2)3N) 0-D/dimer FEDDOI [55]
43 Zn6(L11)3(pyridine)6, 7.5(CH3CH2OH) 0-D/hexamer CUPKUT [44]
44 Zn6(L17)3(pyridine)6, 9(CH3CH2OH), 10.5(H2O) 0-D/hexamer MAKVUP [56]
45 [Zn(L18)]n 2-D FUFFAQ [57]
46 Cd6(L11)3(pyridine)6, 6(CH3CH2OH), 27(H2O) 0-D/hexamer MAKVOJ [56]
47 Cd6(L17)3(pyridine)6, 15(CH3CH2OH), 9(H2O) 0-D/hexamer MAKVID [56]
48 (PhHg)2(L12), 1.5(EtOEt) 0-D/dimer FUPFOM [58]
49 (PhHg)2(L19) 0-D/dimer YOMXIJ [59]
50 Hg2(L20)2, 2(C2H2Cl4) 0-D/dimer XOHBAZ [60]
51 (Me2Sn)2(L21)2 0-D/dimer BOMCOW [61]
52 (Me2Sn)2(L22)2, 2(C6H6) 0-D/dimer BOMBUB [61]
53 (Me2Sn)2(L23)2, 2(CH2Cl2) 0-D/dimer BOMCAI [61]
54 (Me2Sn)2(L24)2, 10(CDCl3) 0-D/dimer SAPSAF [62]
55 (Me2Sn)2(L25)2, 2(CHCl3) 0-D/dimer XONHIS [63]
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Table 1. Cont.

Crystal Formulation Motif CSD REFCODE Ref.

56 (Me2Sn)2(L26)2, 2(CH2Cl2), 4(C6H6) 0-D/dimer BOMCEM [61]
57 [(nBu)2Sn]2(L25)2, CH2Cl2 0-D/dimer XONHOY [63]
58 [(nBu)2Sn]2(L21)2 0-D/dimer BOMCIQ [61]
59 [(nBu)2Sn]2(L27)2, CH3CN 0-D/dimer JOVQET [64]
60 [(nBu)2Sn]2(L28)2 0-D/dimer JOVQIX [64]
61 [(nBu)2Sn]2(L29)2 0-D/dimer JOVQOD [64]
62 [(nBu)2Sn]2(L30)2, 2(CHCl3) 0-D/dimer JOVQUJ [64]
63 [(tBu)2Sn]2(L18)2, 4(C4H8O) 0-D/dimer DORZIT [65]
64 [(PhCH2)2Sn]2(L31)2, CH2Cl2 0-D/dimer TOHBUP [66]
65 (Ph2Sn)2(L21)2 0-D/dimer BOMCUC [61]
66 (Ph2Sn)2(L32)2, 6(C6H6) 0-D/dimer SEWGIM [67]
67 (Me2SnCl)2(L1) 0-D/dimer UJAFUH [68]
68 (Me2SnCl)2(L33) 0-D/dimer SEWGEI [67]
69 (Me2SnCl)2(L34), 2(CHCl3) 0-D/dimer DOSJAY [69]
70 [(nBu)2SnCl]2(L1) 0-D/dimer UJAGAO [68]
71 [(nBu)2SnCl]2(L32) 0-D/dimer POMPOY [70]
72 [(nBu)2SnCl]2(L34) 0-D/dimer DOSJEC [69]
73 [(nBu)2SnCl]2(L35) 0-D/dimer PUNDOU [71]
74 (Ph2SnCl)2(L2) 0-D/dimer QUJVUN [72]
75 (Ph2SnCl)2(L32) 0-D/dimer POMPUE [70]
76 (Ph2SnCl)2(L36) 0-D/dimer SANMOL [73]

77 [PhSn(Cl)CH2Si(Me)2C6H4C6H4Si(Me)2CH2Sn(Ph)Cl](L2),
2(C4H8O)

0-D/dimer KOKJIG [74]

78 [PhSn(I)CH2Si(Me)2C6H4C6H4Si(Me)2CH2Sn(Ph)I](L2),
CH2Cl2

0-D/dimer KOKJAY [74]

79 (Cy3Sn)2(L37)2 0-D/dimer JUMWEW [75]
80 [(PhCH2)3Sn]2(L32) 0-D/dimer POMQAL [70]
81 [(2-FC6H4CH2)3Sn]2(L2) 0-D/dimer EXEQAZ [76]
82 [(2-ClC6H4CH2)3Sn]2(L2) 0-D/dimer EXUSEV [77]
83 [(Me2(Ph)CCH2)3Sn]2(L2) 0-D/dimer BESKUG [78]
84 (Ph3Sn)2(L2), CH2Cl2 0-D/dimer POFVAI [79]
85 (Ph3Sn)2(L2), 2(CH3OH) 0-D/dimer MOTLUC [80]
86 (Ph3Sn)2(L2), 2(H2O) 0-D/dimer NORSAP [81]
87 (Ph3Sn)2(L31) 0-D/dimer TOHGEE [66]
88 (Ph3Sn)2(L32) 0-D/dimer POMQEP [70]
89 (Ph3Sn)2(L33), 1.5(CHCl3) 0-D/dimer YIGHAZ [67]
90 (Ph3Sn)2(L36) 0-D/dimer SANMIF [73]
91 (Me2SnCl)3(L38) 0-D/trimer UJAGES [68]
92 (Me2SnCl)3(L39) 0-D/trimer UJAGIW [68]
93 [(tBu)2SnCl]3(L38), CH3CH2OH 0-D/trimer UJAGOC [68]
94 (Ph2SnCl)3(L38) 0-D/trimer NOLKUV [82]
95 (Ph2Sn)3(L39)2, 2(CHBr3) 0-D/trimer NOLLEG [82]
96 (Ph2Sn)3(L40)2, 2(CHCl3), 3(C6H6) 0-D/trimer NOLLAC [82]
97 {(H3O)[Ce(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D PAYPEN [83]
98 {(H3O)[Sm(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D PAYPIR [83]
99 {(H3O)[Eu(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D PAYPOX [83]
100 {(H3O)[Gd(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D PAYPUD [83]
101 {(H3O)[Tb(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D PAYQAK [83]
102 {(H3O)[Nd(L2)2], 2.5(CH3NO2), 1.5(H2O)}n 3-D XUPQUW [84]

3. Results
3.1. Coordination Chemistry of a Molybdenum Poly-Dithiocarbamate Complex

In the crystal of 1 [29], originally prepared in connection with studies on steric effects
exerted by ligands upon the electrochemistry and kinetics of oxygen atom transfer reactions
of relevance to oxomolydenum(VI) enzymes such as sulphite oxidase, two Mo(=O)2 centres
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are bridged by two L1 dianions to form a di-nuclear molecule, [Mo(=O)2(L1)]2, as shown in
Figure 2. The assembly lacks crystallographic symmetry, and the molybdenum(VI) centres
exist in distorted octahedral coordination geometries defined by O2S4-donor sets, as the
dithiocarbamate residues are chelating.
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for this and subsequent diagrams: central metal atom, orange; sulphur, yellow; red, oxygen; blue,
nitrogen; grey, carbon. Hydrogen atoms have been omitted for clarity.

3.2. Coordination Chemistry of Ruthenium Poly-Dithiocarbamate Complexes

There are two structures conforming to the general formula [Ru](S2CN-spacer-NCS2)
[Ru]. Whereas the structure of di-cationic {[(dppm)2Ru]2(L2)}2+ in 2 [30] lacks crystal-
lographic symmetry, that of neutral [Cp(Ph3P)Ru]2(L3) in 3 [31], Figure 3a, is disposed
about a centre of inversion; dppm is Ph2PCH2PPh2 and Cp is C5H5

−. The L3 di-anion
in 3 was synthesised by the insertion of phenylisothiocyanate into the silicon–sulphur
bond of a silanethiolate precursor complex [31]. The coordination geometry for ruthenium
in each case is based on a distorted octahedron. In the realisation of the synthetic target
towards the formation of hetero-metallic systems, an unusual hetero-metallic species was
characterised in 4 [32], namely [(dppm)2Ru(L2)Pd(PPh3)2]2+. The di-cation was prepared
from the reaction of [Ru(S2CNC4H8NH)(dppm)2](BF4)2 with carbon disulphide under
basic conditions followed by the addition of [PdCl2(PPh3)2] [32]. In the structure, Figure 3b,
the L2 di-anion links ruthenium(II) and palladium(II) atoms by chelating each metal centre.
The coordination geometry for the ruthenium(II) atom resembles that in 2; the anticipated
distorted square-planar geometry is seen for the palladium(II) atom.
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3.3. Coordination Chemistry of Nickel-Triad Poly-Dithiocarbamate Complexes

Poly-nuclear dithiocarbamate complexes are known for each of the nickel-triad ele-
ments with those of palladium being structurally characterised the most frequently. Across
the triad, regardless of the metal centre, only two distinct structural motifs are observed.
There are three di-nuclear nickel(II) complexes formulated as di-cationic {[Ni](S2CN-spacer-
NCS2)[Ni]}2+, each of which is disposed about a centre of inversion. The di-cations
found in the crystals of 5–7, respectively, are {[(dppe)Ni]2(L2)}2+, {[(dppf)Ni]2(L2)}2+ [33],
as illustrated in Figure 4a, and {[(dppf)Ni]2(L1)}2+ [34]; dppe is Ph2P(CH2)2PPh2 and
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dppf is Ph2P(C5H4FeC5H4)PPh2; these were prepared from the metathetical reactions of
NiCl2(dppe) or NiCl2(dppf) with the potassium salts of L1 or L2, and they were used in
the functionalisation of gold nanoparticles by the displacement of a citrate shell [33]. In
each case, the P2S2 donor sets in each di-nuclear molecule define a distorted square-planar
geometry. The second structural motif is also di-nuclear but charge-neutral and has been
characterised in two crystals, namely Ni2(L4)2 (8) [35], as shown in Figure 4b, and Ni2(L5)2
(9) [36]. Here, the –CS2

− residues are well-separated and provide bridges to two nickel(II)
atoms, each within a square-planar geometry defined by a S4-donor set. In 8, being an
early example describing the use of dithiocarbamate ligands for the construction of metal-
directed, self-assembled di-metallic cryptands, the di-nuclear molecule is disposed about a
centre of inversion and has an open conformation. By contrast, there is no crystallographic
symmetry imposed for the di-cation in 9, which has a twisted conformation.
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The palladium structures in this section adopt the same structural motifs as for
nickel(II). For the motif shown in Figure 4a, two polymorphic forms are known for the
{[(Ph3P)2Pd]2(L2)}2+ di-cation, one being disposed about a centre of inversion (10) and
the other lacking symmetry (11) [37]; {[(Ph3P)2Pd]2(L1)}2+ in 12 [37] also lacks symme-
try. The primary motivation for the synthesis of 10–12 is related to the study of their
potential catalytic activity [37], being evaluated as catalysts for the selective C–H bond
functionalisation in the methoxylation of benzo[h]quinoline: the obtained yields of 10-
methoxybenzo[h]quinoline were high for each putative catalyst [37]. The same struc-
tural motif shown in Figure 4a is found in each of {[(dppf)Pd]2(L1)}2+ (13) [34] and
{[(dppf)Pd]2(L2)}2+ (14) [33]. The structure of each of the next four palladium(II) com-
plexes to be described adopts the di-nuclear structural motif illustrated in Figure 4b. Thus,
Pd2(L6)2 (15) [38] is centrosymmetric as for 8. When the same molecule was isolated as its
chloroform mono-solvate, in 16 [38], it lacks the crystallographic symmetry of 15, but it
adopts essentially the same conformation. The molecular structure of Pd2(L5)2 (17) [36]
closely resembles that of the nickel(II) analogue, Ni2(L5)2 (9) [36] and was prepared in a
one-pot synthesis from the diamine, carbon disulphide, potassium hydroxide with K2PdCl4
in THF-H2O. A rather more complicated dithiocarbamate di-anion, that is, L7, being con-
structed about a dihydroxycalix(4)arene residue, is noted in the crystal of 18, leading to a
di-nuclear complex formulated as Pd2(L7)2 [39]. Despite the complexity of the formula, the
centrosymmetric, di-nuclear molecule resembles the simpler analogues described above.

There are only two platinum(II) complexes with poly-functional dithiocarbamate di-
anions, namely, di-cationic and centrosymmetric {[(Et3P)2Pt]2(L2)}2+ (19) and {[(Ph3P)2Pt]2
(L2)}2+ (20) [33], which resemble closely their nickel and palladium congeners.
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3.4. Coordination Chemistry of Copper and Gold Poly-Dithiocarbamate Compounds

A total of 18 structures fall into this category, and a fascinating variety of structural mo-
tifs are observed for the seven copper-containing and 11 gold-containing structures, there
being no examples of silver-containing species. The structural diversity notwithstanding,
all aggregation patterns lead to zero-dimensional species.

Five of the copper complexes are di-nuclear and contain copper in varying oxidation
states. Two copper(I) centres are linked by a µ2-bridging L2 di-anion in [(Ph3P)2Cu]2(L2)
(21) [40], prepared from the reaction of (Ph3P)2Cu(NO3) and Na2(L2), and these were of
interest for their molecular conducting and non-linear optical properties. The centrosym-
metric molecule in 21, shown in Figure 5a, with a P2S2-donor set defining a distorted
tetrahedral geometry, is also seen in [(Ph2PCH2N(Ph)CH2PPh2)Cu]2(L2) (22) [41], having a
less commonly observed diphosphane ligand and synthesised for an investigation of its
photophysical properties. The next three structures feature well-spaced dithiocarbamate
residues enabling the chelation of two copper centres and the formation of metal-containing
macrocycles. In the centrosymmetric di-cation, {[Cu2(L8)2]}2+, of crystal 23 [42], the square-
planar copper centres are in the +III oxidation state, providing an exemplary example
of the ability of the dithiocarbamate ligand being able to stabilise high oxidation states
owing to a significant contribution of the dithiolate canonical form, that is, (−S)2C=N+R2,
to the electronic structure of the dithiocarbamate residue. Indeed, the motivation for the
synthesis of 23 is related to investigations of electrochemical anion sensing by copper-
based, redox-active, self-assembled macrocycles. A similar molecular structure is found in
neutral Cu2(L9)2 (24) [43], Figure 5b, indicating the presence of copper(II) centres. A more
complicated situation occurs in the crystal of mixed-valent 25 [44], which is the product of
the oxidation of 24 and features large aromatic spacer groups enabling the control of cavity
size in the resultant aggregates. The complex is formulated as the catenane, {[Cu2(L9)2]}2

2+,
and lacks crystallographically imposed symmetry; each di-nuclear molecule contains both
copper(II) and copper(III) centres. One component of the catenane is shown in Figure 5c,
and the mutual interpenetration of two molecules leading to the catenane is represented in
Figure 5d.
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When the dithiocarbamate di-anion L10 complexes copper(I) centres, a tetra-nuclear
aggregate is observed, namely Cu4(L10)2 (26) [43]. As seen from Figure 6a, each µ3-bridging
dithiocarbamate residue links three copper(I) centres whereby one sulphur atom connects
to one copper(I) atom and the second sulphur atom connects to two copper(II) atoms. The
core of the cluster is a distorted Cu4 tetrahedron disposed about a 2-fold axis of symmetry.
The final copper structure to be described reverts to square-planar copper(III) centres in octa-
nuclear [Cu8(L11)4]8+ of (27), which were developed for host–guest chemistry [45]. The octa-
cationic species has S4 symmetry and features four resorcarene ligands, each functionalised
with four dithiocarbamate residues, with each residue chelating a copper(III) centre, as
detailed in Figure 6b. Four such resorcarene ligands are connected into a tetrahedral
assembly, being mediated by the eight copper(III) atoms, resulting in the cluster shown in
Figure 6c.
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L11 di-anion in [Cu8(L11)4]8+ in 27 and (c) molecular structure of octa-nuclear [Cu8(L11)4]8+ in 27.

Of the 11 gold complexes of poly-functional dithiocarbamate ligands, three are di-
nuclear, and of these, two are gold(I) mono-phosphane species, (Me3PAu)2(L1) in the
crystal of 28 [34], Figure 7a, and (Ph3PAu)2(L1) in 29 [34]; these were prepared by the facile
reaction of the phosphanegold(I) chloride precursor with K2(L1). Each of these molecules
is situated about a centre of inversion, and a monodentate mode of coordination is noted
for the dithiocarbamate residue. While the crystallographic symmetry persists in the
molecule of [(Ph3P)2Au]2(L2) in 30 [46], as shown in Figure 7b, which was prepared as a
synthetic precursor for gold nanoparticles, a distinct coordination geometry is apparent
arising from a different mode of coordination by the dithiocarbamate residue. Thus, the
gold atom is coordinated by two phosphane-P atoms and is simultaneously chelated
by the dithiocarbamate residue, albeit with significantly longer Au–P and Au–S bond
lengths compared to those observed in 28 and 29; the P2S2-donor set in 30 defines a
distorted tetrahedral geometry, resembling the nickel(II) and copper(I) congeners, for
example 6 and 22, illustrated in Figures 4a and 5a, respectively. Each of the independent
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dithiocarbamate residues in the {[(dppf)Au2]2(L2)}2+ di-cation of 31 [47], prepared by the
reaction of (dppf)(AuCl)2, K2(L2) and NH4[PF6], employs each sulphur atom in a bond
to a gold atom. These are further bridged by a dppf molecule to form the tetra-nuclear
molecule illustrated in Figure 7c. This arrangement facilitates the formation of aurophilic
(Au . . . Au) bonds, which are long known to be prevalent in the supramolecular chemistry
of gold complexes [85–87]. Such aurophilic interactions also feature prominently in the
subsequent multi-nuclear structures to be described in this section.
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Figure 7. Molecular structures of (a) di-nuclear (Me3PAu)2(L1) in the crystal of 28, (b) di-nuclear
[(Ph3P)2Au]2(L2) in 30, (c) tetra-nuclear [(dppf)Au2]2(L2) in 31, and (d) hexa-nuclear Au6(L12)3 in
32, with a simplified version shown in the right-hand side image. When present, the orange dashed
lines represent aurophilic (Au . . . Au) bonding interactions.

A hexa-nuclear aggregate, Au6(L12)3, is evident in the crystal of 32 [48] and is repre-
sented in the two views of Figure 7d. As in 31, each sulphur atom of each dithiocarbamate
residue links a gold atom so that each L12 di-anion connects to four gold atoms, and in
turn, each gold atom is linked to two L12 di-anions; the aggregate lacks symmetry. This
arrangement leads to the formation of three eight-membered {SCSAu . . . AuSCS} rings, each
encompassing an aurophilic interaction. In addition, there are two inter-dimer aurophilic
interactions contributing to the stability of the hexamer, and this arrangement facilitates a
close to co-planar arrangement of the six gold atoms. The remaining structures contain
even more gold atoms in the assembled zero-dimensional aggregates. The motivation
for their synthesis was multi-faceted with the primary idea to generate, via a stepwise
macro-cyclisation strategy exploiting aurophilic interactions, giant ring systems with poten-
tial applications in host–guest chemistry, molecular recognition, and possibly as selective
luminescent materials for sensors and OLEDs.
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The structures of 33 and 34 [49] have the common feature of having neutral species for-
mulated as Au8(L13)2. The L13 tetra-anion, a tetrakis-dithiocarbamate-calix[4]arene ligand,
employs each of the eight sulphur atoms to connect a distinct gold atom. Each of the latter is
connected similarly to a second L13 tetra-anion to generate an octa-nuclear capsule or, alter-
natively, a “gold(I)-containing metallosupramolecular cage”; the aggregate lacks symmetry.
Each gold atom is linearly coordinated within an S2-donor set. The capping of pairs of gold
atoms results is the formation of four eight-membered {SCSAu . . . AuSCS} rings featuring
intramolecular aurophilic interactions, as seen in Figure 8a. There are additional, weaker
aurophilic interactions within the cage as well as intermolecular aurophilic interactions; the
latter lead to a supramolecular layer in the crystal. Similar “quadruple-stranded helicate
dimeric cages” are found for the two independent molecules comprising the asymmetric
unit of 34; however, a difference occurs in that the intermolecular aurophilic interactions
evident in 33 are absent in the crystal of 34. A similar mode of coordination to that just
described is observed for the six L14 ligands in the neutral molecule of Au12(L14)6 in the
crystal of 35 [50]; the aggregate lacks symmetry, as shown in Figure 8b. The connections
between the 12 gold(I) atoms lying in an approximate plane are mediated by aurophilic
interactions and the bridging dithiocarbamate residues resides alternatively above and
below the best plane through the Au12 ring.
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The basic repeating unit in the 16-gold atom cluster, octa-cationic [Au16(L15)4]8+, in
the crystal of 36 [51] is a tetramer, that is, di-cationic {[(dppm)Au2]2(L15)}2+, whereby each
sulphur atom of each dithiocarbamate residue binds a gold atom. The pairs of gold atoms
linked by each dithiocarbamate residue are also bridged by a dppm ligand, leading to eight-
membered {–PCPAuSCSAu} rings. As observed above, when this mode of coordination is
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apparent, intramolecular aurophilic interactions are formed. In addition, six intermolecular
aurophilic interactions are apparent, leading to two curved chains comprising eight gold
atoms each, as shown in Figure 9a. A 16-membered gold atom ring is not formed as the
separation between two pairs of terminal gold atoms, of approximately 4.40 Å, is considered
too long to represent a significant interaction between the atoms. The dithiocarbamate
residues around the ring lie on opposite sides, as highlighted in the simplified view of
Figure 9a. A similar molecular structure is found in the crystal of 37, featuring [Au16(L2)4]8+

octa-cations [52], as shown in Figure 9b. The mode of coordination of the L2 di-anions and
their alternating sequence of orientations around the girth of the molecule are as for 36. A
difference occurs as in this case; there are aurophilic interactions between each adjacent
pair of gold atoms, so the 16 gold atoms define a closed ring with the shape of a bowl, as
shown in Figure 9b.
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The final structure to be described in this section is that of 38, Au36(L12)18 [48], which
is notable for being a 36 gold atom cluster, as shown in Figure 10. The simplest description
of the molecule revolves around a 24-membered ring comprising gold atoms, each forming
an aurophilic interaction with its neighbour. Decorating the ring are six additional pairs
of gold atoms connected every four Au . . . Au bonds along the circumference of the ring
and orientated perpendicular to the ring so one of the gold atoms is linked to the ring by a
pair of aurophilic interactions leading to a { . . . Au . . . Au . . . Au} triangle. This can be seen
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in the lower views of Figure 10, where the L12 dithiocarbamate ligands have been colour-
coded to emphasise the Au6(L12)3 repeat unit, which resembles a first approximation of
the molecular structure observed for the hexa-nuclear Au6(L12)3 cluster in the crystal of 32,
as shown in Figure 7d.
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3.5. Coordination Chemistry of Zinc-Triad Poly-Dithiocarbamate Compounds

The most numerous examples in this section are species containing zinc with smaller
numbers of examples containing cadmium and mercury. There are four instances of di-
nuclear zinc(II) aggregates and, curiously, each presents a distinct structural motif, as shown
in Figure 11. The original interest in 39 [53] and 40 [54], examples of ditopic poly-ferrocenyl
zinc(II)-dithiocarbamate macrocyclic receptors, was to investigate the ability of these
substrates to bind and sense, electrochemically, anionic guest species such as isonicotinate
and benzoate. Both species were prepared via an in situ route; for example, 39 was prepared
from the one-pot reaction of the relevant diamine ligand, potassium hydroxide, carbon
disulphide, and zinc(II) acetate hydrate. In the di-nuclear Zn2(L16)2 molecule in the crystal
of 39 [53], the dithiocarbamate residues of di-anionic L16 coordinate in a distinctive fashion,
with one chelating one zinc(II) centre and the other residue being bidentate, µ2-bridging. In
this way, an eight-membered {–ZnSCS}2 ring is formed and, being disposed about a centre
of inversion, it has an extended chair conformation, as shown in Figure 11a; transannular
Zn . . . S contacts are noted. The remaining examples, namely Zn2(L12)2 in the crystal of
40 [54], Zn2(L5)2(pyridine)2 in 41 [36], and Zn2(L9)2(N(CH2CH2)3N) in 42 [55] each have the
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common feature that both dithiocarbamate residues are chelating. As shown in Figure 11b,
the two zinc(II) centres in 40 are well separated from each other; two independent, non-
symmetric molecules comprise the asymmetric unit. The shared feature of the zinc(II)
coordination geometries in 39 and 40, each defined by an S4-donor set, is the adoption
of distorted tetrahedra. The structural chemistry of mono-functional dithiocarbamate
compounds of the zinc-triad elements has been reviewed recently [13], and both dimeric
and monomeric structural precedents for each of 39 and 40 are known, but there is a definite
predominance of the dimeric form [13]. Isolated monomeric species are generally adopted
when the pendant R substituents are large such as in the case when R = cyclohexyl (Cy), as
in Zn(S2CNCy2)2 [88], pointing to an influence of steric hindrance upon the adoption of the
structural motif adopted in the condensed phase. In the present circumstances, it is noted
that there are 14 atoms in the S . . . S bridge between zinc(II) centres in 39 as opposed to 11
atoms in 40, perhaps suggesting a greater number of atoms offer flexibility in the ligand
backbone to enable dimerisation. Similar di-nuclear molecules to that observed in 40 form
the core of the structures of 41 [36] and 42 [55] in which complexation to additional donors
leads to new structural motifs.
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Figure 11. Molecular structures of (a) Zn2(L16)2 in the crystal of 39 (dashed lines indicate transannular Zn . . . S interactions),
(b) Zn2(L12)2 in 40, (c) Zn2(L5)2(pyridine)2 in 41 and (d) Zn2(L9)2(N(CH2CH2)3N) in 42. Additional colour code: green, for
acidic hydrogen atoms.

In centrosymmetric 41 [36], each zinc(II) atom is additionally coordinated by a pyridine-
nitrogen atom with the resulting NS4-donor set being intermediate between distorted
trigonal-bipyramidal and square-pyramidal, as shown in Figure 11c. In a sense, an inverse
situation is evident in 42, whereby a DABCO (1,4-diazabicyclo(2.2.2)octane) molecule
provides an internal bridge between the two zinc(II) centres, so the dithiocarbamate-based
macrocycle might be considered a receptor, as shown in Figure 11d. Here, the NS4-donor set
defines a coordination geometry approximating a square-pyramid; the di-nuclear molecule
is disposed about a centre of inversion, implying the DABCO molecule is disordered. The
coordination of the zinc-triad elements by additional donor atoms, such as pyridyl-nitrogen
atoms, leads to a very rich diversity of structural outcomes [14], suggesting that further
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work in this area is certainly warranted. The next two structures to be discussed are
hexa-nuclear and, as for 40–42, feature isolated zinc(II) centres as opposed to the dimers
of 39.

The tetrakis dithiocarbamate ligand based on four resorcarene ligands, L11, in neutral
Zn6(L11)3 in 43 [45] was observed previously in the [Cu8(L11)4]8+ octa-cation of 27, as
shown in Figure 6c. However, in 43, a different arrangement in the hexa-nuclear cluster is
noted. Each dithiocarbamate ligand of L11 chelates a zinc atom, and these in turn connect
to a second L11 tetra-anion in a cyclic fashion to form the ring shown in the images of
Figure 12. The molecule has the shape of a cylinder and is disposed about a crystallographic
site of symmetry ¯3. The NS4-donor set for the independent zinc(II) atom is completed by
a pyridine–nitrogen atom and defines a close to square-pyramidal geometry. The structure
of Zn6(L17)3 in the crystal of 44 has also been described, where L17 is the N-bound n-butyl
analogue of L11 [56]. There is an isomorphous relationship between 43 and 44.
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Figure 12. Molecular structure of neutral Zn6(L11)3 in the crystal of 43: plan and side-on views.

The only coordination polymer is this section, which has only very recently been
described, is formed in the crystal of 45, comprising [Zn(L18)]n [57]. The structure is notable
for two additional reasons. Firstly, it is the first of two rare examples in the present survey
where the dithiocarbamate–nitrogen atom bears a proton and secondly, this compound
is long known as an effective fungicide, marketed under the name Zineb® [89]. Indeed,
45 was one of the first industrially relevant fungicides, being commercially available as a
fungicide for major crops in Europe and the United States of America during the second
half of the 20th century. The asymmetric unit of 45 comprises a zinc(II) atom and two half
L18 di-anions, each being disposed about a centre of inversion. The mode of coordination
of one of the L18 di-anions is chelating, and that of the other is µ2-bridging, resembling
that seen in [Zn2(L16)2] in 39, as shown in Figure 11a. The result is illustrated in Figure 13,
namely, a flat, two-dimensional coordination polymer. The thio–amide–N–H atoms project
to either side of the layer, enabling the formation of N–H . . . S hydrogen bonds, leading to
a three-dimensional architecture.
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Figure 13. A plan view of the flat, supramolecular layer formed by [Zn(L18)]n in the crystal of 45.

There are only two cadmium(II) structures to be described—that is, Cd6(L11)3 in 46
and Cd6(L17)3 in 47 [56], and these are isostructural with their zinc(II) analogues, 44 and
45, with the hexa-nuclear molecule of the former illustrated in Figure 12. In each case, the
NS4-donor set defines square-pyramidal coordination geometry for the cadmium atom.

The first two of three mercury(II) dithiocarbamate structures to be described in this
section are hitherto rare organometallic species. In (PhHg)2(L12) in crystal 48 [58], as shown
in Figure 14a, each dithiocarbamate residue coordinates a mercury(II) atom in a monoden-
tate mode, leading to a di-nuclear molecule; no intramolecular Hg . . . Hg interaction is
apparent with the separation being 4.53 Å. Being a heterometallic compound containing
both phenylmercury(II) residues and L12, bearing ferrocenyl groups, the objective leading
to the synthesis of 48 was to observe differences in the electrochemical and optoelectronic
properties with the view of developing novel sensors [58]. Whereas in 48, the phenylmer-
cury species are proximate, occupying syn positions in the molecule, in centrosymmetric
49 [59], the phenylmercury components of (PhHg)2(L19) are anti, as shown in Figure 14b.
Along with solvent, as detailed in Table 1, two independent molecules of Hg2(L20)2 com-
prise the asymmetric unit of 50 [60]; each of the latter is situated about a centre of inversion.
One of the di-nuclear molecules is shown in Figure 14c from which it can be seen that one
dithiocarbamate residue is chelating while the other is µ2-bridging, leading to distorted
tetrahedra defined by S4-donor sets. This is the common structural motif adopted by
mercury(II) mono-functional dithiocarbamate compounds [90].
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3.6. Coordination Chemistry of Organotin Poly-Dithiocarbamate Compounds

Of all the elements included in this bibliographic review, the most represented are
those of tin, with 46 examples. As highlighted in places below, much of the interest in
the chemistry of tin dithiocarbamates lies with their various applications [91]. Despite the
large number of structures, the number of structural motifs is rather small, being limited to
five distinct aggregation patterns. In the following di-functional dithiocarbamate ligands
are described before tri-functional analogues, within each category, diorganotin derivatives
before triorganotin species, and the discussion is in order of increasing nuclearity of
resultant zero-dimensional aggregate.

A total of 16 structures conform to the general formula (R2Sn)2(S2CN-spacer-NCS2)2,
namely (Me2Sn)2(L21)2 in the crystal of 51 [61], (Me2Sn)2(L22)2 (52) [61], (Me2Sn)2(L23)2
(53) [61], (Me2Sn)2(L24)2 (54) [62], (Me2Sn)2(L25)2 (55) [63], (Me2Sn)2(L26)2 (56) [61],
[(nBu)2Sn]2(L25)2 (57) [63], [(nBu)2Sn]2(L21)2 (58) [61], [(nBu)2Sn]2(L27)2 (59) [64],
[(nBu)2Sn]2(L28)2 (60) [64], [(nBu)2Sn]2(L29)2 (61) [64], [(nBu)2Sn]2(L30)2 (62), [64],
[(tBu)2Sn]2(L18)2 (63) [65], [(PhCH2)2Sn]2(L31)2, (64) [66], (Ph2Sn)2(L21)2 (65) [61], and

(Ph2Sn)2(L32)2 (66) [67]. The original interest in compounds 51, 52, and, indeed, many of
the other oligomeric compounds whose structures will be described herein, related to the
desire to incorporate organotin groups, as representatives of organometallic compounds,
into metallo-supramolecular architectures having cage-like, macrocyclic, or polymeric
structures and having accessible sites for post-synthetic modification for the optimisation
of molecular properties. As with many of the compounds in this overview, the synthesis
was facile such as in the metathetical reaction leading to 51: the diorganotin dichloride
was reacted with K2[L21]. Additional interest in 59–61 related to their putative anti-cancer
potential along with utility as precursors for the deposition of tin sulphide nanomateri-
als [64], each being classical applications of organotin dithiocarbamates [91]. The screening
for anti-cancer potential indicated that the halogen-containing substituents in the dithio-
carbamate ligands, as in 59 and 60, increase the cytotoxicity [64]. With the exception of
65, each of the di-nuclear structures in 51–66 is disposed about a centre of inversion; in
51, two independent molecules comprise the asymmetric unit, each being centrosymmet-
ric. A representative molecule, with one of the more unusual dithiocarbamate di-anions
covered in this survey, that is, of (Me2Sn)2(L24)2 in (54), is shown in Figure 15a. Another
unusual dithiocarbamate di-anion is present in (Me2Sn)2(L26)2 (56), as shown in Figure 15b.
The common feature of the tin-atom geometries of 54 and 56, and indeed most of the
structures conforming to the (R2Sn)2(S2CN-spacer-NCS2)2 formula is the adoption of a
skew-trapezoidal bipyramidal geometry. This arises as the co-planar dithiocarbamate
residues coordinate in an asymmetric mode with the two longer Sn–S bonds lying to the
same side of the skew-trapezoidal plane through the S4 atoms. The tin-bound organo sub-
stituents lie over the weaker Sn–S bonds. There are three exceptions to this generalisation.
In (tBu)2Sn(L18)2 in 63, as shown in Figure 15c, one of the dithiocarbamate residues coordi-
nates in a monodentate mode, so the coordination geometry is almost exactly intermediate
between square-pyramidal and trigonal-bipyramidal. In each of (Ph2Sn)2(L21)2 (65) and
(Ph2Sn)2(L32)2 in (66), as shown in Figure 15d, more symmetric modes of coordination of
the dithiocarbamate residues are apparent, so the cis-C2S4 coordination geometries are
distorted octahedral. Such perplexing coordination flexibility has been long recognised [91],
especially as mono-nuclear diphenyltin bis(dithiocarbamate) molecules which are known
to adopt both skew-trapezoidal bipyramidal and octahedral geometries in a ratio of 1:2,
and therefore, the study of their structural characteristics continues to attract attention [92].
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Figure 15. Molecular structures of (a) (Me2Sn)2(L24)2 in the crystal of 54, (b) (Me2Sn)2(L26)2 in 56, (c)
[(tBu)2Sn]2(L18)2 in 63, and (d) (Ph2Sn)2(L32)2 in 66.

Despite having a different general formula to the preceding class of compounds,
molecules of composition (R2SnX)2(S2CN-spacer-NCS2) adopt very similar structural
motifs in their crystals: (Me2SnCl)2(L1) in the crystal of 67 [68], (Me2SnCl)2(L33) (68) [67],
(Me2SnCl)2(L34) (69) [69], [(nBu)2SnCl]2(L1)] (70) [68], [(nBu)2SnCl]2(L32) (71) [70],
[(nBu)2SnCl]2(L34) (72) [69], [(nBu)2Sn]2(L35) (73) [71], (Ph2SnCl)2(L2) (74) [72], (Ph2SnCl)2
(L32) (75) [70], (Ph2SnCl)2(L36) (76) [73], and [PhSn(X)CH2Si(Me)2C6H4C6H4Si(Me)2CH2
Sn(Ph)X](L2) for X = Cl (77) and X = I (78) [74]. However, by contrast to the (R2Sn)2(S2CN-
spacer-NCS2)2 molecules in crystals 51-66, there is a significant diversity of symmetry in the
12 di-nuclear (R2SnX)2(S2CN-spacer-NCS2) compounds: four have no crystallographically
imposed symmetry, that is, 67, Figure 16a, 71, 74, and 75. Compounds 68, as shown in
Figure 16b, and 72 are generated by 2-fold symmetry, whereas compounds 69, 70, and 73,
as shown in Figure 16c, and 76 are disposed about a centre of inversion; molecules related
to 73 attract interest as sensors for anions [71]. In each of 77, as shown in Figure 16d, and
78, where the tin-bound R groups are disparate and one pair of tin-bound R groups is
connected, the molecules lack symmetry. The common features of the structures are an
asymmetric mode of coordination of the dithiocarbamate residues and the presence of five-
coordinate R2S2X-donor sets that are highly distorted from the ideal trigonal-bipyramidal
and square-pyramidal extremes. However, owing to the presence of tin-bound electronega-
tive X substituents in the molecular formula, (R2SnX)2(S2CN-spacer-NCS2), the degree of
asymmetry in the mode of coordination is somewhat reduced compared with that in the
aforementioned (R2Sn)2(S2CN-spacer-NCS2)2 molecules.
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Figure 16. Molecular structures of (a) (Me2SnCl)2(L1) in the crystal of 67, (b) (Me2SnCl)2(L33) in 68,
(c) [(nBu)2Sn]2(L35) in 73, and (d) [PhSn(Cl)CH2Si(Me)2C6H4C6H4Si(Me)2CH2Sn(Ph)Cl](L2) in 77.

The next category of molecular structures also resembles the preceding two classes
and conforms to the general formula (R3Sn)2(S2C-spacer-CS2). In all, there are 12 examples
in this category: (Cy3Sn)2(L37) in the crystal of 79 [75], [(PhCH2)3Sn]2(L32) (80) [70], [(2-
FC6H4CH2)3Sn]2(L2) (81) [76], [(2-ClC6H4CH2)3Sn]2(L2) (82) [77], [(Me2(Ph)CCH2)3Sn]2(L2)
(83) [78], (Ph3Sn)2(L2) (84) [79], (Ph3Sn]2(L2) (85) [80], (Ph3Sn)2(L2) (86) [81], (Ph3Sn)2(L31)
(87) [66], (Ph3Sn)2(L32) (88) [70], (Ph3Sn)2(L33) (89) [67], and (Ph3Sn)2(L36) (90) [73]. The
molecules are invariably di-nuclear with two representative examples being (Ph3Sn)2(L31)
in 87 and (Ph3Sn)2(L36) in 90, as illustrated in Figure 17. With the exception of 80, 88, and
90, all of the aggregates are disposed about a centre of inversion; in 80, two independent
molecules comprise the asymmetric unit. The mode of coordination of the dithiocarba-
mate residues is to a first approximation considered monodentate, reflecting the reduced
Lewis acidity of the tin atom centres in the triorganotin species compared with diorganotin
species. The C3S-donor sets are based on tetrahedra with distortions usually related to
the close approach of the non-coordinating thione–sulphur atom. The molecule of 90 is of
special interest as the presence of acidic hydroxyl–hydrogen atoms afford the opportunity
of hydrogen-bond formation in the crystal. Indeed, each hydroxyl–hydrogen atom forms a
hydrogen-bond to a thione–sulphur atom to form a linear, supramolecular tape.
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In addition to cytotoxic 59 and 60, [64], several organotin poly-dithiocarbamate com-
pounds showed promising biological activities. Thus, 64 and 87 were tested, in vitro, for
fungicidal activity and were found to display good anti-fungal activity towards S. sclerotio-
rum [66]. Furthermore, 71, 75, 80, and 88 showed promising anti-leishmanial activities [70].
The cytotoxic activities of both 76 and 90 were assayed against two human tumour cell
lines; that is, CoLo 205 (colon carcinoma cell) and Bcap37 (mammary tumour cell): the
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diorganotin species 76 showed poor cytotoxic activity against the cell lines in comparison
to the triorganotin derivative, 90 [73].

The six remaining organotin structures feature tri-functional dithiocarbamate lig-
ands with four of these being (Me2SnCl)3(L38) in the crystal of 91, (Me2SnCl)3(L39) (92),
[(tBu)2SnCl]2(L38) in (93) [68], and (Ph2SnCl)2(L38) (94) [84]. Specific interest in these
compounds, which were synthesised in situ, related to the development of metallo-
supramolecular organotin assemblies. None of the tri-nuclear molecules have crystal-
lographically imposed symmetry. As shown in Figure 18a, overall, the molecule in 91 has
a bowl-shaped conformation, and this is also evident in each of 93 and 94. By contrast, a
somewhat flattened conformation is apparent for 92, as shown in Figure 18b. The C2ClS2-
donor sets define distorted geometries for the tin atoms as described above, that is, they
are intermediate between square-pyramidal and trigonal-bipyramidal.
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In should be stressed here that comparisons of key geometric parameters formed by 
the poly-functional dithiocarbamate ligands with those formed by their mono-functional 
congeners indicate no definitive trends. This observation is entirely consistent with the 
results of density functional theory (DFT) calculations which indicate that little or no in-

Figure 18. Molecular structures of (a) (Me2SnCl)3(L38) in the crystal of 91 and (b) (Me2SnCl)3(L39)
in 92.

The molecules of (Ph2Sn)3(L39)2 in the crystal of 95 and (Ph2Sn)3(L40)2 in 96 [82]
are hexa-nuclear. Two views of 95 are given in Figure 19, one slightly off-set from the
three-fold axis (the molecule is situated about a crystallographic site of symmetry 32 and
the other, side-on). The overall molecule has the shape of a flattened capsule. A similar
conformation is noted for (Ph2Sn)3(L40)2 in 96, which has crystallographic 3-fold symmetry.
The coordination geometries are distorted octahedral, being based on cis-C2S4-donor sets.
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In should be stressed here that comparisons of key geometric parameters formed by
the poly-functional dithiocarbamate ligands with those formed by their mono-functional
congeners indicate no definitive trends. This observation is entirely consistent with the
results of density functional theory (DFT) calculations which indicate that little or no
influence upon the electronic structure of the NCS2

− chromophore is exerted by the nature
of the N-bound alkyl substituents [93].

3.7. Coordination Chemistry of Lanthanide Poly-Dithiocarbamate Complexes

The motivation for studying lanthanide MOFs, LnMOFs, largely revolves around
the luminescent properties of these materials [94] in recognition that such materials are
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relatively unexplored. In this context, a series of tri-valent lanthanides were synthesised,
each formulated as {(H3O)[Ln(L2)2] 2.5(CH3NO2), 1.5(H2O)}n for Ln = cerium (97), samar-
ium (98), europium (99), gadolinium (100), terbium (101) [83], and neodymium (102) [84]
with all six structures being isostructural; the compounds were synthesised from the re-
actions of Ln(NO3)3.6H2O (Ln = Ce, Sm, Eu, Gd, Tb and Nd) with an aqueous solution
of Na2[L2]. Thus, it is the very last set of structures to be described in this overview that
emphasises the potential of poly-functional dithiocarbamate ligands for the construction
MOFs. As shown in Figure 20, the {[Nd(L2)2]−}n anions in the crystal of 102 [84] assemble
into a three-dimensional framework that defines square channels when viewed down the
crystallographic c-axis; the framework is disordered by symmetry, and the channels are
occupied by disordered cations and solvents. The L2 di-anions are µ2-bridging, chelating
two neodymium(III) atoms, each of which is eight-coordinated within a distorted S8-cube.
In terms of photoluminescence properties, 98 exhibited well-resolved emission bands in
the visible and near-infrared regions in comparison with the other materials [83].

Inorganics 2021, 9, x FOR PEER REVIEW 22 of 27 
 

 

fluence upon the electronic structure of the NCS2− chromophore is exerted by the nature 
of the N-bound alkyl substituents [93]. 

3.7. Coordination Chemistry of Lanthanide Poly-Dithiocarbamate Complexes 
The motivation for studying lanthanide MOFs, LnMOFs, largely revolves around 

the luminescent properties of these materials [94] in recognition that such materials are 
relatively unexplored. In this context, a series of tri-valent lanthanides were synthesised, 
each formulated as {(H3O)[Ln(L2)2] 2.5(CH3NO2), 1.5(H2O)}n for Ln = cerium (97), samar-
ium (98), europium (99), gadolinium (100), terbium (101) [83], and neodymium (102) [84] 
with all six structures being isostructural; the compounds were synthesised from the re-
actions of Ln(NO3)3.6H2O (Ln = Ce, Sm, Eu, Gd, Tb and Nd) with an aqueous solution of 
Na2[L2]. Thus, it is the very last set of structures to be described in this overview that 
emphasises the potential of poly-functional dithiocarbamate ligands for the construction 
MOFs. As shown in Figure 20, the {[Nd(L2)2]−}n anions in the crystal of 102 [84] assemble 
into a three-dimensional framework that defines square channels when viewed down the 
crystallographic c-axis; the framework is disordered by symmetry, and the channels are 
occupied by disordered cations and solvents. The L2 di-anions are µ2-bridging, chelating 
two neodymium(III) atoms, each of which is eight-coordinated within a distorted 
S8-cube. In terms of photoluminescence properties, 98 exhibited well-resolved emission 
bands in the visible and near-infrared regions in comparison with the other materials 
[83]. 

 
Figure 20. A view in projection down the c-axis of the three-dimensional framework defined by {[Nd(L2)2]−}n anions in the 
crystal of 102. 

4. Conclusions 
This survey of the crystallographic literature has revealed the utility of 

poly-functional dithiocarbamate ligands in forming multi-nuclear compounds of transi-
tion metals, main group elements, and lanthanides. The overwhelming majority of 
structures are zero-dimensional, ranging from a minimum of two atoms, as is commonly 
observed, to a maximum 36, the latter in a gold-rich cluster. Rare examples of one-, two-, 

Figure 20. A view in projection down the c-axis of the three-dimensional framework defined by {[Nd(L2)2]−}n anions in the
crystal of 102.

4. Conclusions

This survey of the crystallographic literature has revealed the utility of poly-functional
dithiocarbamate ligands in forming multi-nuclear compounds of transition metals, main
group elements, and lanthanides. The overwhelming majority of structures are zero-
dimensional, ranging from a minimum of two atoms, as is commonly observed, to a
maximum 36, the latter in a gold-rich cluster. Rare examples of one-, two-, and three-
dimensional aggregation patterns are observed in the crystals. The diversity of poly-
functional dithiocarbamate ligands is broad with 40 examples represented herein. All
but three of these contain two –CS2

− residues with the exceptional examples having
three –CS2

− residues. In all cases, all –CS2
− residues were engaged in coordination to

a heavy element. The scope for increasing the range of poly-functional dithiocarbamate
ligands with a variety of –CS2

− residues is limited only by the number of amine precursor
molecules. The synthesis of the compounds is facile, usually relying on simple metathetical
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reactions; often, the compounds may be prepared in situ without the need of isolating the
poly-functional dithiocarbamate ligands themselves.

With the vast range of amine precursors available, the facile synthesis of the ligands
and their heavy element compounds, opportunities in connecting lower dimensional
aggregates into higher dimensional aggregation patterns via bridging pyridyl, and related
molecules coupled with the potential applications, for example in the biomedical and
materials fields, there is enormous scope for this branch chemistry, the exploration of which
promises exciting discoveries.
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