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ABSTRACT 

The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen 

bonding interactions.  These secondary bonding interactions are found to operate independently 

of complementary intermolecular interactions in about 13% of the structures they can 

potentially form.  This number rises significantly when more specific interactions are 

considered, e.g. Se...O(carbonyl) interactions occur in 50% of cases where they can potentially 

form.  In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) 

interactions are one-dimensional architectures, with the next most prominent being zero-

dimensional assemblies, at 30%. 
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1. Introduction 

Being present in the three domains of life, i.e. Archaea, Bacteria and Eukarya, 

selenocysteine has long being recognised as the 21st proteinogenic amino acid [1-3].  Natural 

biological functions of selenocysteine relate to redox moderation and anti-oxidant effects such 

as in the mammalian oxidoreductase system, thioredoxin reductase (TrxR), where it is present 

in the active site [4].  In connection with thyroid disease, selenocysteine is also present in the 

active sites of deiodinase enzymes which can activate or inactivate thyroid hormones [5].  The 

crucial role of selenium in natural biological functions implies a selenium-deficient diet causes 

disease and requires intervention [6].  Complimenting dietary supplements, synthetic selenium 

compounds also play a role/have potential as therapeutics [7-10].  The most prominent 

selenium drug is Ebselen™, i.e. N-phenyl-1,2-benzisoselenazol-3(2H)-one, which is known to 

exhibit a variety of biological activities, partially owing to its ability to mimic the glutathione 

peroxidase enzyme, which regulates redox homeostasis and which protects cells from oxidative 

stress [7-10].  Other medicinal benefits of Ebselen™ include cytoprotective and 

neuroprotective properties, and potential therapeutic applications relate to anti-cancer, anti-

bacterial and anti-inflammatory activities [7-10].  With this background, it is not surprising the 

biological mechanism(s) of Ebselen™ and related species have been investigated thoroughly 

[11,12].  These experimental and theoretical investigations often point to the importance of 

both inter- and intra-molecular Se…O interactions in crucial biological processes [11,12].  

Stabilising Se…O interactions are now classified among chalcogen bonding interactions, a term 

possibly first employed in 1998 [15], whereby the Group XVI element functions as an 

electrophile [13,14].  It is stressed that the focus of the present review is upon the role of 

intermolecular Se…O contacts and upon the supramolecular aggregation patterns they sustain.  

In general terms, chalcogen interactions find very practical applications in a range of contexts 

beyond biology and medicine [16-18], such as in molecular/anion recognition [19-22], catalysts 
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[23,24] and materials science [25,26].  With this level of activity, it is not surprising there are 

several authoritative reviews of chalcogen bonding [27-30], including reviews of different 

physiochemical procedures for their detection in phases other than in crystals [31-33], the 

primary importance of X-ray crystallographic investigations notwithstanding. 

The most convenient method for identifying chalcogen bonding in the solid-state relies 

upon crystal structure analysis with the earliest investigations of chalcogen bonding depending 

on the evaluation of crystal structures for contacts occurring at separations intermediate 

between the respective sums of the covalent and van der Waals radii for the participating atoms.  

In these present times where all manner of intermolecular contacts/supramolecular synthons 

are being “revealed”, it might be tempting to suggest chalcogen bonding, and related tetrel and 

pnictogen interactions involving, respectively, Group XIV and XV elements acting as the 

electrophile, are a recent phenomenon.  While obviously these interactions already exist in the 

crystals of the relevant compounds capable of forming such interactions and may not 

necessarily have been recognised or appreciated as being significant previously, it turns out the 

discussion of secondary bonding interactions actually goes back well over 50 years.  Among 

the first bibliographic reviews of the topic are those by H.A. Bent [34], Noble Laureate O. 

Hassel [35] and N.W. Alcock [36], with these being followed up by a number of general 

overviews of the topic [37-40].  It is likely the first time the term secondary bonding was used 

in the context of these donor-acceptor interactions appeared in the title of a research paper was 

in a Conference Abstract published in 1975 [41] and then in a follow-up Journal article in 1977 

[42].  The use of secondary bonding as a design element in crystal engineering endeavours was 

suggested as early as 1999 [43]. 

An initially disconcerting feature of many secondary bonding interactions, including 

halogen bonding [44], which also comes under the appellation secondary bonding [36], was 

that the interaction often occurred between two electron-rich species, i.e. a low oxidation state 
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main group element, implying a lone-pair or even lone-pairs of electrons, and donors also 

having at least one lone-pair of electrons.  Through the concept of a σ-hole, theory now aids 

the understanding of this apparent violation of basic electrostatic arguments.  Conventionally 

the bonding in chalcogen bonds was described in terms of charge transfer from a lone-pair of 

electrons of the donor atom (D) to an anti-bonding orbital of the bond involving the chalcogen 

atom (A–X), i.e. (D)n2 → σ*(A–X), but the problem remains in that two electron-rich species 

are brought into close contact.  The σ -hole concept, widely employed to explain the bonding 

in such circumstances [45,46], relates to the anisotropic distribution of charge about the bonded 

chalcogen atom.  With reference to the bonding axis of a A–X bond, there is an equatorial band 

of electron density about the A atom, i.e. perpendicular to the A–X bond, and a significant 

electron-deficient region at the extension of the bonding axis, the σ-hole (or polar cap).  It is 

the latter that can form stabilising interactions with nucleophilic species.  The success and 

general applicability of this approach in rationalising the formation of chalcogen bonds as well 

as tetrel, pnictogen and halogen bonds [47] notwithstanding, recent studies point to the 

importance of orbital delocalisation as being relevant [48].  Having a model for bonding, the 

question then arises as to what are the energies of stabilisation are provided by chalcogen and 

related interactions.  Naturally, the calculated energies will be highly dependent on the nature 

of the bonds about the interacting atoms, steric profiles of the interacting residues and whether 

a chalcogen or other intermolecular interaction is operating independently of supporting or 

competing intermolecular interactions not to mention the level of theory/basis sets employed 

in the performing of the calculations.  Nevertheless, there appears a consensus from 

calculations [49-53] that the energies of stabilisation afforded by secondary bonding 

interactions are comparable and often exceed those provided by conventional hydrogen 

bonding interactions [54] and which, in turn, are comparable to the energies associated with 
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other supramolecular synthons involving heavy elements such as π(chelate ring)…π(chelate) 

interactions [55]. 

It was in the context of a long-held interest in secondary bonding interactions and the 

supramolecular architectures they sustain [56-64] and in the aforementioned biological 

relevance of Se…O chalcogen bonding interactions that the present survey of Se…O interactions 

operating in crystals was undertaken.  This review of the crystallographic literature serves to 

highlight the diverse nature of selenium atom environments, geometries, oxidation states and 

numbers and types of Se…O secondary bonding interactions formed by selenium and the wide 

variety of supramolecular architectures these chalcogen bonding interactions sustain. 

 

2 Methodology 

The Cambridge Structural Database (CSD; version 5.41) [65] was searched employing 

ConQuest (version 2.0.4) [66] for Se…O contacts present in crystals based on the distance 

criterion that the separation between the selenium and oxygen atoms had to be equal to or less 

than the sum of the van der Waals radii, i.e. assumed in the CSD as 3.42 Å [65].  Other general 

criteria were applied in order to keep the number of retrieved structures to a reasonable number 

and to ensure reliability in the data, namely structures with errors, were charged, polymeric and 

contained transition metal elements were omitted along with those with R >0.075.  In all 274 

structures were retrieved.  These were then evaluated manually to ensure that the Se…O 

interaction was operating in isolation of other obvious supramolecular synthons employing 

PLATON [67], Mercury [68] and DIAMOND [69]. 

Three classes of compounds were rejected from further analysis.  Firstly, several 

structures that registered as the hit was in fact a false positive as the putative Se…O(hydroxyl) 

interaction (3.30 Å) was embedded within a hydroxyl-O–H…Se hydrogen bond.  This is 

illustrated in Fig. 1a for (-)-t-butylphenylphosphinoselenoic acid [70], where hydroxyl-O–
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H…Se hydrogen bonding occurs between the two independent molecules comprising the 

asymmetric unit in the crystal.  The second scenario leading to the omission of structures also 

involved hydrogen bonding.  Thus, in bi-nuclear 2,2'-(diselane-1,2-diyl)bis(pyridin-3-ol) [71], 

two centrosymmetrically related molecules are connected into a dimeric aggregate via 

hydroxyl-O–H…N(pyridyl) hydrogen bonds as shown in Fig. 1b.  Contributing to the stability 

of this aggregate are Se…O(hydroxyl) contacts (3.36 Å) which, obviously, are not operating 

independently and so examples such as this were omitted from the survey.  The third class of 

omitted compounds featured complementary secondary bonding interactions.  An example of 

this is shown in Fig. 1c where some of the supramolecular association operating in the 1:1 co-

crystal formed between co-formers 2,2-dimethyl-N-(7-oxo-6,7-

dihydro[1,2,5]selenadiazolo[3,4-d]pyrimidin-5-yl)propanamide and 2,2-dimethylpropanoic 

acid [72] are highlighted.  While Se…O interactions (3.27 Å) are noted, these occur within a 

tetra-molecule assembly sustained by Se…N secondary bonding interactions (2.83 Å) and eight-

membered {…HOCO…NCNH} synthons. 
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Fig. 1.  Examples of excluded structures from the present survey owing to (a) the Se…O contact 

being embedded within a hydroxyl-O–H…Se hydrogen bond, (b) the Se…O contact occurring 

within an assembly also mediated by hydroxyl-O–H…N(pyridyl) hydrogen bonds and (c) the 

Se…O contacts occurring within a tetra-molecule aggregate already sustained by a combination 

of Se…N secondary bonding interactions and hydrogen bonding.  Hydrogen bonds are shown 

as orange dashed lines, Se…O contacts as orange-red dashed lines and Se…N contacts as orange-

blue dashed lines.  In this and subsequent diagrams, only acidic-H atoms are shown.  Colour 

code: selenium (orange), phosphorus (pink), oxygen (red), nitrogen (blue), carbon (grey) and 

hydrogen (green). 

 

After manual screening, there remained 224 examples of supramolecular aggregation 

featuring Se…O secondary bonding interactions.  All of these are illustrated in Appendix A 

along with detail of the full composition of the crystal, citation details, selected distances and 

angles, and comments on supramolecular aggregation along with image(s).  The structures are 

generally arranged in terms of the supramolecular aggregation patterns sustained by the Se…O 

secondary bonding interactions operating in the crystals, i.e. zero-, one-, two- and three-

dimensional.  For completeness, Se…O interactions occurring in solvates and co-crystals are 

also included.  Within each of these categories, discussion of selenium(II) atoms participating 

in Se…O interactions precedes those involving selenium(IV) centres and, when known, 

selenium(VI) examples.  Within in each oxidation state, mono-nuclear species are covered 

before bi-nuclear species, etc. and within each of these categories, aggregates sustained by one 

interaction are illustrated before those sustained by two interactions, etc.  Generally, the 

examples are included in order of increasing Se…O distances.  The exception to the last 

guideline occurs when there are significant numbers of closely related compounds.  Comments 

on hydrogen bonding, when present in the crystal, are also included in Appendix A rather than 
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in the main text unless pertinent to the discussion of the identified Se…O contacts.  Finally, 

while the focus herein is upon intermolecular Se…O contacts, hypervalent intramolecular 

Se…O, and more rarely Se…F and Se…S contacts, are noted in a number of the structures 

included in this survey.  In cases where these occur, details are also included in Appendix A. 

 

3 Zero-dimensional assembles mediated by Se…O chalcogen bonding 

 In 55 structures zero-dimensional assemblies are formed mediated by Se…O chalcogen 

bonding interactions.  These can be connected by one Se…O contact, usually two Se…O 

contacts but aggregates sustained by up to 10 Se…O contacts are known.  Selenium(II), (IV) 

and (VI) species are all shown to form zero-dimensional aggregates. 

 

3.1 Selenium(II) species 

 There are a total of 32 selenium(II) species, 1–32 [11,73-96,98-101], forming Se…O 

contacts leading to zero-dimensional aggregates.  The chemical diagrams for the interacting 

species in these structures are shown in Fig. 2. 
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Fig. 2.  Chemical diagrams for the interacting species, 1–32, in selenium(II) compounds 

featuring Se…O contacts leading to zero-dimensional aggregates.  The point of attachment at 

the nitrogen atom in 22 is indicated by an asterisk. 

 

3.1.1 Aggregates sustained by a single Se…O contact 

 The common feature of mono-selenium(II) molecules 1–5 [11,73-76] is that dimeric 

aggregates are sustained by a single Se…O chalcogen bonding interaction; in each of 2–5, the 
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selenium atom is incorporated within a ring.  For 2 [74], 4 [76] and 5 [11], Fig. 3a, the contact 

forms between the two independent molecules comprising the crystallographic asymmetric 

unit.  In 1 [73], there are four independent molecules and two pairs are connected by a single 

Se…O(carbonyl) interaction.  In 3 [75], there are eight independent selenium(II)-containing 

molecules and four DMSO molecules in the asymmetric unit.  In this instance, only one pair 

of selenium(II)-containing molecules is connected by a single Se…O(hydroxyl) contact.  This 

is a relatively rare case as, usually, in cases where multiple molecules comprise the 

crystallographic asymmetric unit, all participate in the formation of Se…O contacts (vide infra).  

In diselenide 6 [77], a Se…O(ether) interaction is featured between the two independent 

molecules of the asymmetric unit, Fig. 3b.  Compound 7 [78] features both selenium(II) and 

selenium(IV) centres connected within a ring with the selenium(II) atom of one of these 

connecting to an oxygen atom of the second independent molecule via a Se…O(N-oxo) contact 

as shown in Fig. 3c.  In 8 [79], with four independent molecules in the asymmetric unit, two 

pairs of molecules are connected by a single Se…O(methoxy) contact.  A similar situation 

pertains in tri-nuclear 9 [80], where a single Se…O(methoxy) contact links the two independent 

molecules, Fig. 3d.  The molecule of 9 is notable in that in addition to two ring selenium atoms, 

a phosphorus-bound selenide selenium(II) atom is present but, it is one of the ring selenium 

atoms that engages in the Se…O(methoxy) interaction.  Despite the presence of multiple 

selenium atoms in 6-9, only one of the possible selenium atoms in each is engaged in a Se…O 

contact. 
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Fig. 3.  Representative examples of supramolecular association in selenium(II) compounds 

leading to zero-dimensional aggregation patterns based on Se…O chalcogen bonding 

interactions: (a) 5 [11; Se…O = 2.96 Å], (b) 6 [77; 3.25 Å], (c) 7 [78; 3.41 Å], (d) 9 [80; 3.31 

Å], (e) 12 [83; 3.34 Å], (f) 11 [82; 3.27 Å], (g) 13 [84; 3.36 Å], (h) 27 [96; 3.14 Å], (i) 15 [86; 

3.27 Å], (j) 18 [89; 3.37 Å], (k) 19 [90; 2.80 Å], (l) 20 [91; 2.85 Å], (m) 21 [92; 2.93 Å], (n) 

22 [93; 3.24 Å], (o) 25 [95; 2.91 Å] and (p) 32 [101; 2.98 Å] (including simplified view).  

Additional colour codes: bromide (olive-green), chloride (cyan), yellow (sulphur), fluoride 

(plum). 
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3.1.2 Aggregates sustained by two Se…O contacts 

 The overwhelming majority of mono-nuclear selenium(II) molecules in this category 

adopt a two-molecule motif sustained by two Se…O contacts.  This motif is found in the crystals 

of 10–27 [81-96].   Molecules 10–12 feature acyclic, two-coordinated selenium, 13 is a selenide 

and those of 14–27 are also two-coordinated but with the selenium atom incorporated within a 

ring.  In 10 [81] and 20 [91] the Se…O interactions occur between the two independent 

molecules comprising the asymmetric unit whereas in the remaining examples, they occur 

between centrosymmetrically related molecules.  The selenium atoms in 10 [81] and 12 [83], 

Fig. 3e, associate with nitro-oxygen atoms, in 11 [82] with carbonyl-oxygen, Fig. 3f, and in 13 

[84], Fig. 3g, with hydroxyl-oxygen, the selenium donor being a phosphorous-bound selenide 

atom.  While attention is directed towards intermolecular Se…O interactions in the present 

survey, it is worth highlighting here that several of these species discussed herein also feature 

close intramolecular Se…O contacts.  This feature first occurs in 12 where, owing to the close 

proximity of a pendant nitro substituent, an intramolecular Se…O(nitro) contact of 2.58 Å 

occurs which is significantly shorter than the intermolecular Se…O(nitro) separation of 3.34 Å.  

While details of these intramolecular Se…O contacts, and rare examples of intramolecular Se…F 

and Se…O contacts, are not discussed herein comments on these are included in Appendix A. 

 The ring-selenium atoms are generally incorporated within five-membered rings but 

form part of a six membered ring in 27 [96] and part of an eight-membered ring in 18 [89].  

The molecules in 14 [85], 16 [87] and 27 [96], the latter having potential sulphoxide-oxygen 

atoms capable of forming Se…O contacts, Fig. 3h, associate via Se…O(carbonyl) contacts.  In 

the crystals of 15 [86], Se…O(hydroxyl) contacts are formed despite the presence of bromide 

atoms, Fig. 3i, and in each of 17 [88] and 18 [89], Fig. 3j, Se…O(ether) contacts are formed 

despite the presence of potential carbonyl-oxygen donors.  Phosphorus-bound oxide atoms 

provide the oxygen atoms to form the dimeric aggregate in 19 [90], Fig. 3k, amide-O in 20 
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[91], Fig. 3l, and N-oxide in 21 [92], Fig. 3m.  The dimeric aggregates formed in 22 [93], Fig. 

3n, 23 [94] and 24 [93] are sustained by Se…O(nitro) interactions despite the presence of 

potential competitive interactions with bromide (22) and carbonyl-O (23).  The two remaining 

molecules in this section feature adjacent selenium and oxygen atoms in the five-membered 

ring and each of these, i.e. 25 [95] and 26 [95], assemble about a centre of inversion to form a 

supramolecular four-membered {…Se–O}2 synthon.  In 25, Fig. 3o, there are nitro- and 

hydroxyl-oxygen atoms also capable of forming Se…O interactions but, do not.  A related 

{…Se–N}2 synthon was observed in Fig. 1c and has been discussed in terms of being a reliable 

synthon in the supramolecular chemistry of selenium-nitrogen materials [97].  The foregoing 

highlights the fact that a myriad of oxygen atoms can participate in Se…O interactions and no 

definitive preference for one type oxygen atom over another is obvious. 

 There are four examples of bi-nuclear selenium(II) species forming centrosymmetric 

aggregates.  In diselenide 28 [98], Se…O(N-oxide) interactions sustain the dimer while 

Se…O(carbonyl) contacts are found in each of 29 [99] and 30 [100].  In 31 [93], one of the ring-

selenium atoms of the bi-nuclear molecule associates with a nitro-oxygen atom, similar to that 

seen in Fig. 3n.  An extraordinary mode of association via Se…O(carbonyl) contacts is found 

in 32 [101].  Here, a four-molecule aggregate is formed about a four-fold rotatory inversion 

axis (4) as shown in the images of Fig. 3p. 

 

3.2 Selenium(IV) and selenium(VI) species 

 Less common but, nevertheless well represented in this survey are selenium(IV) 

compounds, which differ by having a single lone-pair of electrons as opposed to two for 

selenium(II) species.  Even less frequently observed herein are selenium(VI) species, devoid 

of stereochemically-active lone-pairs on the selenium centre.  The interactions selenium(VI) 

species form with oxygen reflect more conventional Lewis acid-Lewis base interactions.  There 
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are 18 selenium(IV) species, 33–50 [100,102-115], and five selenium(VI) species, 51–55 [116-

119], forming Se…O contacts leading to zero-dimensional aggregates, with the chemical 

diagrams for the interacting species in these shown in Fig. 4. 

 

 

Fig. 4.  Chemical diagrams for the interacting species, 33–55, in selenium(IV) and 

selenium(VI) compounds featuring Se…O contacts leading to zero-dimensional aggregates. 

 

3.2.1 Aggregates of selenium(IV) species sustained by two Se…O contacts 

 The majority of the selenium(IV) compounds form centrosymmetric dimers, indeed 14 

of the 18 crystals feature this motif, and each of these is constructed about a four-membered 

{…Se–O}2 synthon.  Compounds 33 [102], 34 [103], 35–37 [104] conform to the general 

formula R(R′)Se=O.  The dimeric aggregate for 34, being representative for this series, is 

shown in Fig. 5a, is sustained by Se…O(oxide) interactions and is notable for the presence of 

potentially competitive but, non-interacting sulphur, fluoride and bromide donors.  Two 

structures conform to the formula R(R′O)Se=O.  In 38 [100], with R′ = H, the interaction 
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sustaining the dimer is Se…O(carbonyl), Fig. 5b, while the Se…O(oxide) interactions persist in 

39 [105], R′ = Me.  Similar Se…O(oxide) interactions sustain dimers in instances when the 

selenium is incorporated in a five-membered ring as in the crystals of 40 [106] and 41 [107].  

The first non-selenium oxide molecule is this section is 42 [108], Fig. 5c, where the selenium 

atom is C,O-chelated by two distinct ligands leading to four- and five-membered rings; the 

dimer is stabilised by Se…O(alkoxide) contacts.  A similar contact occurs in the 

triorganoselenium species 43 [109], Fig. 5d, where the selenium atom is incorporated within a 

six-membered ring.  The molecules in 44 [110], Fig. 5e, are connected by Se…O(N-oxo) 

interactions and those in 45 [111], Fig. 5f, and bi-nuclear 46 [112], Fig. 5g, by Se…O(alkoxide) 

and Se…O(oxide) interactions, respectively.  The structure of 44 is the earliest reported crystal 

structure included in the present survey, being described in 1972.  It is also noted here that the 

authors of this paper discussed the supramolecular association mediated by Se…O secondary 

bonding in their description of the molecular packing in this crystal.  Higher nuclearity 

aggregates are noted in the remaining selenium(IV) structures to be described in this section. 
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Fig. 5.  Representative examples of supramolecular association in selenium(IV) and 

selenium(VI) compounds leading to zero-dimensional aggregation patterns based on Se…O 

chalcogen bonding interactions: (a) 34 [103; Se…O = 2.92 Å], (b) 38 [100; 2.85 Å], (c) 42 [108; 

3.22 Å], (d) 43 [109; 3.00 Å], (e) 44 [110; 3.20 Å], (f) 45 [111; 3.29 Å], (g) 46 [112; 3.19 Å], 

(h) 47 [113; 2.81-3.24], (i) 48 [113; 2.96-3.20 Å], (j) 49 [114; 2.60-3.20 Å], (k) 50 [115; 2.66-

3.33 Å], (l) 51 [116; 3.35 Å], (m) 53 [117; 3.23 Å], (n) 54 [118; 3.17 Å] and (o) 55 [119; 3.11 

Å]; the cores in hexameric 49 and 50 are also included. 

 

3.2.2 Aggregates of selenium(IV) species sustained by more than two Se…O contacts 
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 Each of 47 and 48 [113] assemble into tetrameric aggregates in the solid-state.  In the 

crystal of 47, there are two independent molecules in the asymmetric unit.  One of these 

assembles about a centre of inversion by the familiar four-membered {…Se–O}2 synthon.  

Attached to either side of this aggregate are two of the second independent molecules whereby 

each selenium of each of the terminal molecules effectively bridges the oxo atom, already 

engaged in a Se…O contact implying this atom is bifurcated, and an alkoxide-oxygen atom of 

the O,O-chelating ligand, Fig. 5h.  The tetrameric aggregate in 48, Fig. 5i, has the same 

centrosymmetric {Se…O}2 core but, the terminal connections are also of the type {Se…O}2, 

also formed by the second independent molecules.  This compound is of particular interest as 

the asymmetric unit comprises four independent molecules.  Two engage as shown in Fig. 5i, 

while the other two engage to form a supramolecular chain as discussed below, see 175 [113].  

The last two selenium(IV) aggregates to be described are hexamers. 

 In the crystal of 49 [114], three independent molecules comprise the asymmetric unit.  

A hexagon of selenium atoms, with a pronounced chair conformation, is formed about a centre 

of inversion, with the connections between them being of the type Se…O(oxide), Fig. 5j.  In 

this scheme, two of the independent molecules associate via the four-membered {…Se–O}2 

synthon with two of these bridged by two of the third independent molecules.  Thus, two of the 

selenium atom forms two Se…O(oxide) contacts and four make a single Se…O(oxide) contact.  

In terms of the oxide donors, two form two Se…O(oxide) contacts and the remaining four oxide-

oxygen atoms participate in a single contact, indicating the hexamer is sustained by eight 

Se…O(oxide) interactions in all.  A related situation pertains for the hexamer formed in the 

crystal of 50 [115], Fig. 5k.  The core and asymmetry in the hexamer comprising 50 is as 

descried for 49.  However, in the case of 50, there are two independent and linked {…Se–O}2 

synthons which are bridged over the centre of inversion via a pair of Se…O(oxide) interactions.  
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So, four of the selenium atoms form two Se…O(oxide) contacts and two make a single 

Se…O(oxide) contact, leading to a total of 10 Se…O(oxide) contacts sustaining the hexamer. 

 

3.2.3 Aggregates of selenium(VI) species sustained by Se…O contacts 

 There are five selenium(VI) species featuring Se...O interactions, each leading to a 

centrosymmetric, dimeric aggregate.  Compounds 51 [116], 52 [117], 53 [117] and 54 [118] 

feature Se(=O)2 entities, while that of 55 [119] is an adduct of Se(=O)3.  A {…Se–O}2 core is 

found in each of the five dimers.  In diorgano 51, the selenium atom is incorporated within a 

six-membered ring, Fig. 5l.  Two species feature CNO2 coordination geometries, i.e. 52 and 

53, Fig. 5m.  An O,O-chelating ligand, leading to a five-membered ring, is seen in 54, Fig. 5n.  

In the only example of a molecule based on Se(=O)3 core is the ether adduct, 55, Fig. 5o. 

 

4. One-dimensional assembles mediated by Se…O chalcogen bonding 

 The most numerous among the supramolecular aggregation patterns described herein 

are one-dimensional chains.  In all, 125 structures fall in this category, being over half of all 

examples included in this survey.  The following description is based on the oxidation state of 

the selenium atom forming the Se…O chalcogen bonding contact, the nuclearity of the molecule 

and the topology of the resultant chain, i.e. linear, zig-zag, helical and twisted. 

 

4.1 Mono-nuclear selenium(II) species forming linear supramolecular chains 

 The chemical diagrams of the 19 mono-nuclear selenium(II) molecules aggregating to 

form linear supramolecular chains in their crystals based on Se...O chalcogen bonding contacts, 

i.e. 56–74 [12, 120-137], are shown in Fig. 6. 
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Fig. 6.  Chemical diagrams for the interacting species, 56–74, in selenium(II) compounds 

featuring Se…O contacts leading to linear one-dimensional aggregates. 

 

 A variety of selenium(II) and oxygen atom environments participate in Se…O contacts 

leading to linear, one-dimensional chains.  The first six molecules have the common feature 

that they are diorganoselenium(II) species with the selenium atom not enclosed within a ring.  

Fig. 7a shows the formation of Se…O(ether) contacts giving rise to the chain in the crystal of 

56 [120].  Molecules 57 [121], 58 [122], 59 [123] and 60 [124] employ carbonyl-oxygen atoms 

in the chalcogen bonding interaction.  As seen in Fig. 7b for 57, Se…O(carbonyl) interactions 

form in preference to putative Se…O(N-oxo, nitro) contacts.  A similar situation pertains in 58 

where bromide, cyano-nitrogen and two kinds of ether-oxygen atoms are available for 

secondary bonding interactions.  The presence of Se…O(nitro) interactions are responsible for 

chain formation in the crystal of 61 [11], Fig. 7c.  In 62 [125], Fig. 7d, Se…O(nitro) interactions 

are also formed.  The interacting selenium atom in 62 is a rare example of a selenide forming 

Se…O interactions, as is the case for 63 [126], which forms Se…O(methoxy) contacts. 
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Fig. 7.  Representative examples of supramolecular association in selenium(II) compounds 

leading to linear, one-dimensional chains based on Se…O chalcogen bonding interactions: (a) 

56 [120; Se…O = 3.08 Å], (b) 57 [121; 3.12 Å], (c) 61 [11; 3.29 Å], (d) 62 [125; 3.29 Å], (e) 

64 [128; 3.09 Å], (f) 69 [132; 3.39 Å], (g) 72 [135; 3.19 Å], (h) 73 [136; 3.19 Å] and (i) 74 

[137; 3.21 Å]. 

 

 The selenium atom is incorporated within a five-membered ring and is flanked by two 

carbon atoms in five molecules: 64 [127], 65 [128], 66 [129], 67 [130] and 68 [131].  The 

Se…O(carbonyl) contacts in the chain formed by 64 are highlighted in Fig. 7e.  The structure 

of 64 is notable as two independent molecules comprise the asymmetric unit and each self-

assembles into a linear supramolecular chain.  A similar mode association is found in the crystal 
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of 68, where each of the two independent molecules self-associate into a linear chain.  By 

contrast, in 65–67 the Se…O association involves ether-, methoxy- and nitro-oxygen atoms.  In 

69 [132], the selenium atom is incorporated within a six-membered ring and molecules 

assemble via Se…O(carbonyl) contacts, Fig. 7f.  In each of the four remaining five-membered 

ring-containing molecules, the selenium atom is flanked by carbon and nitrogen atoms.  In 70 

[133], 71 [134] and 72 [135], Fig. 7g, the molecules are linked by Se…O(carbonyl) interactions 

whereas in 73 [136], Fig. 7h, Se…O(nitro) contacts are evident.  The last structure is this 

category to be described is that of 74 [137] where the selenium atom formally carries a positive 

charge and one of three carboxylic acid substituents is deprotonated.  As seen from Fig. 7i, the 

linear chain is sustained by Se…O(carbonyl) interactions; the carboxylate residue engaged is 

charge-assisted hydrogen bonding, precluding it from participating in Se…O contacts. 

 

4.2 Mono-nuclear selenium(II) species forming zig-zag supramolecular chains 

 The chemical diagrams of the 32 mono-nuclear selenium(II) molecules, i.e. 75–106 [11, 

74,101,133 138-162], forming zig-zag supramolecular chains in their crystals based on Se...O 

chalcogen bonding contacts are shown in Fig. 8.  With two exceptions, as detailed below, the 

zig-zag chains are propagated by crystallographic glide symmetry. 
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Fig. 8.  Chemical diagrams for the interacting species, 75–106, in selenium(II) compounds 

featuring Se…O contacts leading to zig-zag one-dimensional chains.  The point of attachment 

at the nitrogen atom in 99 is indicated by an asterisk. 

 

 Seven compounds have the selenium atom not constrained within a ring while the 

remaining 25 feature cyclised selenium, usually within a five-membered ring.  A representative 

example of a zig-zag chain is shown in Fig. 9a, for 75 [138].  Here, Se…O(carbonyl) interactions 

are in play, as in crystals of 76 [139] and 77 [140].  In 78 [141], Fig. 7b, an example rich in 

heteroatoms, Se…O(sulphoxide) interactions are evident, as they are in 79 [142], Fig. 9c, with 

a rare C,S-donor set for selenium.  The structures of 80 [143] and 81 [144] are examples of 

selenides are engaged in Se…O interactions.  In 80, there are two independent molecules in the 



25 
 

asymmetric unit and each of these self-associates into a supramolecular chain via 

C=Se…O(nitro) interactions, one of these is shown in Fig. 9d.  In 81, where the selenide is 

phosphorus-bound, the zig-zag chain, Fig. 9e, arises as a result of P=S…O(ether) contacts.  The 

remaining molecules to be covered have the selenium atom incorporated with a ring. 

 

Fig. 9.  Representative examples of supramolecular association in selenium(II) compounds 

leading to linear, one-dimensional chains based on Se…O chalcogen bonding interactions: (a) 

75 [138; Se…O = 3.05 Å], (b) 77 [140; 3.06 Å], (c) 78 [141; 3.16 Å], (d) 80 [143; 3.12 Å], (e) 

81 [144; 3.41 Å], (f) 82 [74; 3.05 Å], (g) 85 [101; 3.36 Å], (h) 95 [154; 2.67 Å], (i) 106 [163; 

3.29 & 3.35 Å]. 

 

 In the next six molecules, each selenium(II) atom has a C,C-donor set.  The selenium 

atom in 82 [74] forms part of a four-membered ring and the molecules assemble into a zig-zag 

chain via Se…O(sulphoxide) contacts, Fig. 9f.  The chains in 83 [145] are sustained by 
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Se…O(methoxy) interactions, and in 84 [146], 85 [101], 86 [147] and 87 [148] by 

Se…O(carbonyl) interactions.  Compound 85 is one of two molecules in this section assembling 

into a zig-zag chain not propagated by glide symmetry.  In this case, there are two independent 

molecules which associate to form the supramolecular chain. 

 Next, is a series of molecules constructed about a 5-selanylidene-1H-pyrrol-2-one core, 

i.e. 88–99 [11, 149-157], featuring a variety of substituents, R, at the nitrogen atom: R = CH2Ph 

(88) [149], Ph, polymorphs 89 [11] and 90 [150], Ph-C(=O)OH-4 (91) [151], Ph-Br-4 (92) 

[152], Me (93) [153], H, acid 94 [152], Ph-Br-2 (95) [154], Ph-Me-3 (96) [155], Ph-Me-2 (97) 

[156], Ph-OH-3 (98) [11] and, lastly, R = a fused 1-ethylpiperidine-2,6-dione/naphthalene 

derivative (99) [157].  The common mode of the supramolecular association is the formation 

of Se…O(carbonyl) interactions, as illustrated for 95 [154] in Fig. 9h.  Generally, these contacts 

are short, ranging from 2.53 Å in 88 [149] to 2.86 Å for 99 [157], suggesting considerable 

covalent character in these secondary bonding interactions.  As indicated above, 89 and 90 are 

polymorphs.  These exhibit the same supramolecular aggregation via Se…O(carbonyl) 

interactions with very similar Se…O separations of 2.53 and 2.57 Å, respectively.  Of interest 

is the R = H derivative, 94, i.e. the acid form, where three independent molecules comprise the 

asymmetric unit.  One molecule self-assembles into a zig-zag chain (glide symmetry).  The two 

other molecules associate via a Se…O(carbonyl) interaction and the resultant dimeric 

aggregates assemble into a zig-zag chain, again propagated by glide symmetry.  Variations of 

the above are seen in 100 [133], where the fused C6 ring carries a nitro substituent, and 101 

[158], where the fused C6 ring is fused to a second C6 ring, and in 102 and 103 [159], where 

the fused C6 ring is substituted by a thienyl ring; each of the resultant zig-zag chains are 

sustained by Se…O(carbonyl) interactions.  The Se…O(carbonyl) interactions persist in 104 

[160], where the fused C6 ring is now a pyridyl ring and 105 [161], where the selenium atom 

is incorporated into a six-membered ring.  The final molecule in this section, 106 [162], Fig. 
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9i, is notable in that the selenium atom, embedded within a four-membered ring, forms two 

Se…O(sulphoxide) interactions to sustain the zig-zag chain. 

 

4.3 Mono-nuclear selenium(II) species forming helical and twisted supramolecular 

chains 

 The chemical diagrams of the mono-nuclear selenium(II) molecules, i.e. 107–123 

[152,163-177] and 124–126 [159,178,179], forming, respectively, helical and twisted 

supramolecular chains in their crystals based on Se...O chalcogen bonding contacts are shown 

in Fig. 10. 
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Fig. 10.  Chemical diagrams for the interacting species, 107–123, in selenium(II) compounds 

featuring Se…O contacts leading to helical one-dimensional chains, and 124–126, leading to 

twisted chains. 

 

 The supramolecular chains with helical symmetry are typically propagated by 

crystallographic 21 screw symmetry, with two exceptions only, and, while less numerous that 

zig-zag supramolecular chains sustained by Se…O interactions, comprise 17 examples.  Six of 

the molecules do not have selenium incorporated within a ring, and four of these have selenium 

within a C2-donor set: 107 [163], 108 [164], 109 [165], Fig. 10a, and 110 [166], and two of the 

examples are selenides 111 [167] and 112 [168], Fig. 10b.  Highlighting the diversity of 

oxygen-donors in these chains, in 107 and 109 they feature Se…O(carbonyl) contacts, 108 

Se…(methoxy), 110 Se…O(sulphoxide), 111 Se…O(hydroxyl) and the chains in 112 are 

sustained by Se…O(ether) interactions.  The remaining helical structures feature cyclised 

selenium atoms.  The five-membered rings in 113 [169], 114 [170] and 115 [171] also feature 

C2 donor sets as does the selenium atom in 116 [172], Fig. 10c, which is now incorporated 

within a six-membered ring.  The donor atoms forming the Se…O interactions are hydroxyl in 

113 but, carbonyl in 114–116; in 114, both ether and hydroxyl donors are available but not 

employed in Se…O contacts.  The remaining ring structures contain hetero-atoms, all having at 

least one nitrogen atom, with two exceptions.  In 117 [173], the helical chain is sustained by a 

charge-assisted Se…O(N-oxo) interaction with the separation being a short 2.41 Å.  Molecules 

118 [152], 119 [174], 120 [152] and 121 [175] all feature the 5-selanylidene-1H-pyrrol-2-one 

core, as seen above in the sequence of molecules 88–99.  The chains in 118 and 120 are 

sustained by Se…O(hydroxyl) interaction despite having potential carbonyl donors, whereas 

the chains in 119 and 121 feature Se…O(carbonyl) interactions.  It is noted that 118 has two 

polymorphs: in 5, Fig. 3a, the two independent molecules of the asymmetric unit assemble by 
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a single Se…O(carbonyl) interaction and in second polymorph, 98, molecules assemble into a 

zig-ag chain, but via Se…O(hydroxyl) interactions as in 118.  The helical chain formed in 119 

is especially noteworthy in that rather than the usually observed 21 symmetry, the chain is 

propagated by crystallographic 61 screw symmetry, Fig. 10d.  In 122 [176], where there are 

two nitrogen atoms in the ring, flanking the selenium atom, the helical chain is sustained by 

Se…O(carbonyl) interactions, Fig. 10e.  The supramolecular aggregation in 123 [177] is quite 

unusual, featuring three distinct Se…O contacts for the selenium atoms derived from the two 

independent molecules comprising the asymmetric unit.  As viewed from Fig. 10f, one 

selenium atom forms a single contact with a nitro-oxygen atom while the other selenium atom 

spans the two oxygen atoms of a symmetry related five-membered ring.  The shortest Se…O 

contact of 2.90 Å in the chain is associated with the Se…O(carbonyl) interaction.  The other 

unusual feature of the resulting supramolecular chain is that it is propagated by crystallographic 

41 screw symmetry. 
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Fig. 11.  Representative examples of supramolecular association in selenium(II) compounds 

leading to helical, one-dimensional chains based on Se…O chalcogen bonding interactions: (a) 

109 [165; Se…O = 3.04 Å], (b) 112 [168; 3.39 Å], (c) 116 [172; 3.18 Å], (d) 119 [174; 2.83 Å], 

(e) 122 [176; 2.95 Å], (f) 123 [177; 2.90, 3.30 & 3.38 Å], (g) 125 [159; 2.55 Å] and (h) 126 

[179; 3.26 Å].  Additional colour code: teal, boron. 

 

 There are three molecules, 124 [159], 125 [178] and 126 [179], assembling in their 

crystals to form twisted chains.  In 124, Fig. 10g, and 125, two independent molecules comprise 

the asymmetric unit with the twisted arrangement arising due to the relative orientations of the 

independent molecules in the chains propagated by translational symmetry; chains are 
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sustained by Se…O(carbonyl) contacts.  The molecule in 126, Fig. 10h, has crystallographic 

two-fold symmetry with the selenium atom lying on the axis.  Each selenium atom forms two 

Se…O(nitro) contacts with centrosymmetrically related molecules. 

 

4.4 Multi-nuclear selenium(II) species forming supramolecular chains 

 Most of the molecules in this category are bi-nuclear but, there are several examples of 

tri- and tetra-nuclear selenium(II) compounds.  The chemical structures for the molecules 

forming the supramolecular chains, i.e. 127–159 [80,92,95,104,180-205], are shown in Fig. 11. 
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Fig. 12.  Chemical diagrams for the interacting species, 127–159 [80,95,152,159,180-205], in 

multi-nuclear selenium(II) compounds featuring Se…O contacts leading to supramolecular one-

dimensional chains. 

 

4.4.1 Bi-nuclear selenium(II) species forming linear chains 

 A linear chain is observed in crystals of 127 [180], Fig. 13a, an example whereby the 

selenium atom is not embedded within a ring, and where only one of the selenium atoms is 
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engaged in a Se…O contact, in this case where the donor is a carbonyl-oxygen atom.  When 

embedded within a five-membered ring, the selenium atoms can be next to each other as in 128 

[181] and 129 [182], Fig. 10b, or in a six-membered ring, i.e. 130 [183].  Again, only one of 

the selenium atoms in 128–130 forms a Se…O contact, with the donors being ether-, 

sulphoxide- and carbonyl-oxygen, respectively.  The structure of 129 is especially noteworthy 

in that two molecules comprise the asymmetric unit, and these possess amide donors capable 

of forming hydrogen bonding interactions.  One of the independent molecules forms a 

supramolecular chain, as just mentioned, and these are connected into a double-chain by 

conventional amide-N–H…O(sulphoxide) hydrogen bonds involving the same sulphoxide-

oxygen atom forming the Se…O contacts.  The second independent molecule also forms a 

supramolecular chain but, mediated solely by amide-N–H…O(sulphoxide) hydrogen bonds, 

there being no Se…O interactions of note.  The adoption of Se…O and/or amide-N–

H…O(sulphoxide) hydrogen bonds suggests, at least to a first approximation, some equivalence 

in the energies of stabilisation afforded by these modes of association.  In 131 [184], the 

association leading to a linear chain involves both selenium atoms connecting to the carbonyl-

oxygen atom of a translationally related molecule, Fig. 13c.  A double-chain is noted for 132 

[185], Fig. 13d.  Here, two selenium atoms occur diagonally opposite positions in a 

centrosymmetric C2Se2 square, and each forms a Se…O(carbonyl) interaction to form a linear 

chain.  Two independent molecules also comprise the asymmetric unit of 133 [186].  One of 

these self-associates into a linear chain via Se…O(sulphoxide) contacts whereby one selenium 

atom forms two contacts with translationally related molecules leading to seven-membered 

{…Se…OSSeSeSO} synthons.  Centrosymmetrically related chains assemble into a double-

chain, also via Se…O(sulphoxide) contacts, but involving the second selenium atom (forming 

the shortest Se…O contact) and six-membered {…OSSe}2 synthons, as shown in the views of 

Fig. 13e. 
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Fig. 13.  Representative examples of supramolecular association in selenium(II) compounds 

leading to helical, one-dimensional chains based on Se…O chalcogen bonding interactions: (a) 

127 [180; Se…O = 3.29 Å], (b) 129 [182; 3.22 Å], (c) 131 [184; 3.35 Å], (d) 132 [185; 3.04 Å], 

(e) 133 and view with only ipso-carbon atoms [186; 3.09, 3.37 & 3.35 Å], (f) 136 [189; 3.03 

Å], (g) 138 [95; 3.25 Å], (h) 141 [192; 3.05 Å] and (i) 144 [190; 3.18 & 3.36 Å]. 

 

4.4.2 Bi-nuclear selenium(II) species forming zig-zag chains 

 Four molecules of the general formula RSeSeR form supramolecular zig-zag chains in 

their crystals; these along with the other chains described in this section are propagated by glide 

symmetry.  These are sustained by an average of one Se…O(sulphoxide) contact per molecule 

in 134 [186], Fig. 13f, Se…O(nitro) in 135 [187] and Se…O(carbonyl) in each of 136 [188] and 

137 [189].  A variation is noted for 138 [95], Fig. 13g, where the selenium atoms are connected 

by an oxo bridge and one of these forms Se…O(nitro) contacts.  The selenium atoms are 

adjacent to each other in the five-membered ring of 139 [190] and one of these participates in 

Se…O(sulphoxide) interactions to form the zig-zag chain.  In the five-membered rings of each 
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of 140 [191] and 141 [192], Fig. 13h, the selenium atoms are separated by a carbon atom, and 

the chain is mediated by Se…O(carbonyl) interactions.  In 142 [80], Se…O(hydroxyl) 

interactions involving the ring-bound selenium atom mediate the formation of the zig-zag chain 

rather than putative interactions involving the phosphorus-bound selenide atom.  A variation 

in the general theme of one Se…O link per molecule to sustain the zig-zag chain is noted for 

143 and 144 [190], Fig. 13i, where each selenium atom, occupying adjacent positions in a five-

membered ring, participates in Se…O(sulphoxide) interactions with the same sulphoxide-

oxygen atom. 

 

4.4.3 Bi-nuclear selenium(II) species forming helical chains 

 The common feature of the seven helical chains formed by bi-nuclear selenium(II) 

molecules is that each is propagated by 21 screw symmetry.  The first six molecules employ a 

single selenium atom in forming the Se…O chalcogen bond: 145, 146 [193], Fig. 14a, 147 

[194], 148 [195], 149 [196] and 150 [197].  The oxygen donors span a range of types, i.e. 

sulphoxide (145 and 146), ether (147) and carbonyl (148 and 150) and phenoxide (149).  In 

151 [198], Fig. 14b, the adjacent selenium atoms are embedded within a five-membered ring 

and form contacts to the same carbonyl-oxygen atom to form the helical chain, i.e. bearing a 

close resemblance to the aggregation pattern seen in 143 and 144, Fig. 13i  The bi-molecule in 

152 [199], has two-fold symmetry with the axis bisecting the Se–Se bond, and each selenium 

atom forms a Se…O(nitro) contact to a centrosymmetrically related molecule with the result a 

twisted chain ensues, Fig. 14c. 
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Fig. 14.  Representative examples of supramolecular association in multi-nuclear selenium(II) 

compounds leading to one-dimensional chains of varying topology based on Se…O chalcogen 

bonding interactions: (a) 146 [193; Se…O = 3.19 Å], (b) 151 [198; 3.24 & 3.24 Å], (c) 152 

[199; 3.22 Å], (d) 153 [152; 2.99 & 3.12 Å], (e) 154 [200; 3.34 Å], (f) 155 [201; 3.22 Å], (g) 

156 [202; 3.03 Å], (h) 157 [203; 3.13 Å], (i) 158 [204; 3.35 Å] and (j) 159 [205; 3.16 & 3.17 

Å]. 

 

4.4.4 Multi-nuclear selenium(II) species forming supramolecular chains 

 There are two tri-nuclear selenium(II) species forming supramolecular chains in their 

crystals.  As a result of Se…O(carbonyl) interactions whereby two of the three selenium atoms, 

each within a five-membered ring, form a contact to the same carbonyl-oxygen atom, a linear 

chain is formed in the crystal of 153 [152], Fig. 14d.  In 154 [200], where there is an “open” 
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selenium atom and two selenium atoms within five-membered rings, it is the former that forms 

a Se...O(ether) contact to generate a zig-zag chain via glide symmetry, Fig. 14e. 

 The remaining five selenium(II)-containing species in this section are tetra-nuclear.  In 

155 [201], two five-membered rings, each with a 1,3-disposition of selenium atoms, are 

connected to form the tetra-nuclear molecule.  In the crystal, only one of the selenium atoms 

forms a Se…O(carbonyl) interaction with translationally related molecules so that a linear chain 

is formed, Fig. 14f.  The macrocyclic compound, 156 [202], employs two of its selenium atoms 

to sustain a linear assembly via Se…(methoxy) interactions and eight-membered {…SeC2O}2 

synthons, Fig. 14g.  The molecule 157 [203] is clearly related to 155 but, in this case, this 

assembles into a zig-zag chain (glide symmetry), Fig. 14h.  The remaining molecules, 158 

[204], and 159 [205], assemble into helical chains, for 158, Fig. 14i, propagated by 21 screw 

symmetry.  An interesting variation is noted for 159 in that the four selenium atoms line up in 

a chain within an eight-membered ring; two independent molecules comprise the asymmetric 

unit.  The independent molecules assemble via a Se…O(carbonyl) contact and the resultant 

dimeric aggregate then assembles, via additional Se…O(carbonyl) contacts, into a 

supramolecular helical chain propagated by 31 screw symmetry, Fig. 14j. 

 

4.5 Multi-nuclear selenium(IV) species forming supramolecular chains 

 While far less represented than their selenium(II) counterparts, there are 21 examples 

of selenium(IV) compounds, usually selenoxide derivatives, self-associating in their crystals 

to form one-dimensional chains via Se…O chalcogen bonding.  The chemical diagrams for 

these, i.e. 160–180 [93,104,105,113,188,206-217], are shown in Fig. 15. 
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Fig. 15.  Chemical diagrams for the interacting species, 160–180, in selenium(IV) compounds 

featuring Se…O contacts leading to supramolecular one-dimensional chains. 

 

 The three selenoxides, 160 [104], 161 [104] and 162 [206], Fig. 16a, feature C2O-donor 

sets and associate in their crystals to form linear, supramolecular chains via Se…O(nitro) 

interactions in 160, and Se…O(methoxy) interactions in 161 and 162.  Double-chains are often 

observed in the crystals of the selenium(IV) compounds in this category owing to the formation 

of multiple Se…O interactions.  This is exemplified by 163 [207], Fig. 16b.  Here, 

centrosymmetrically related molecules are connected by a pair of Se…O(oxide) interactions, 

leading to a {…Se–O}2 core, and the resultant dimeric aggregates assemble into a linear, 

double-chain so each selenium atom forms two Se…O contacts.  Similar patterns are noted in 

164 [208], Fig. 16c, and 165 [209] but, with the bridges leading to the chains being interactions 

of the type Se…O(nitro); in 164, the Se…O(carbonyl) separations are shorter than the 

Se…O(nitro) contacts whereas the opposite trend pertains in 165, underscoring the difficulty of 

correlating distances associated with weak interactions as discussed in section 8.  In 166 [210], 

Fig. 16d, with a chelating O,O-ligand leading to a five-membered ring, the double-chain arises 
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as the successive, centrosymmetrically related aggregates are connected by Se…O(alkoxide) 

interactions.  In the dioxide species, 167 [211], Fig. 16e, the centrosymmetric aggregates are 

connected to translationally related dimers via a pair of Se…O(oxide) contacts so each selenium 

atom participates in three Se…O interactions.  A more complicated mode of association 

between molecules occurs in 168 [113], Fig. 16f, for which two independent molecules 

comprise the asymmetric unit.  One of the independent molecules assembles to form a dimer 

and translationally related dimers are bridged by a pair of the second independent molecule.  

There are six independent Se…O contacts involving oxide- (4) and alkoxide-oxygen (2) donors, 

and each selenium atom participates in three Se…O interactions. 

 

 

Fig. 16.  Representative examples of supramolecular association in multi-nuclear selenium(II) 

compounds leading to one-dimensional chains of varying topology based on Se…O chalcogen 

bonding interactions: (a) 162 [206; Se…O = 3.37 Å], (b) 163 [207; 3.24 & 3.32 Å], (c) 165 

[209; 3.14 & 3.22 Å], (d) 166 [210; 2.89 & 2.93 Å], (e) 167 [211; 3.00, 3.26 & 3.29 Å], (f) 168 
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[113; 2.69-3.20 Å], (g) 170 [113; 2.78 Å], (h) 173 [212; 3.22 Å], (i) 175 [113; 2.84-3.21 Å], 

(j) 179 [217; 3.40 Å] and (k) 179 [216; 3.16 & 3.31 Å]. 

 

 Molecules 169 [93], 170 [113], Fig. 16g, and 171 [113], each with C2O donor sets, 

assemble into zig-zag chains mediated by a single Se…O(oxide) contact in each case.  In 171, 

two independent molecules comprise the asymmetric unit and these are connected by a single 

Se…O(oxide) interaction and these dimers then assemble into a zig-zag chain via additional 

Se…O(oxide) interactions.  Compounds 172 [188] and 173 [212], in which the selenium centres 

are O,O-chelated by two chelating ligands, are polymorphic.  In 172, a single Se…O(carbonyl) 

interaction, on average, sustains a zig-zag assembly (glide symmetry).  By contrast, in 173, 

Fig. 16h, the selenium atom lies on a two-fold axis of symmetry and there are, on average two 

Se…O(carbonyl) interactions per molecule with the Se…O(carbonyl) distance of 3.22 Å being 

longer than 3.02 Å observed in 172, as would be expected.  The  molecule in 174 [213], also 

has the selenium atom lying on a two-fold axis of symmetry and a similar mode of association 

as for 173 is noted in its crystal.  The supramolecular association 175 [113] is of particular 

interest.  Here, there are four independent molecules in the asymmetric unit and each 

participates in Se…O contacts.  Two of the independent molecules assemble into a tetrameric 

aggregate via Se…O(oxide) and Se…O(alkoxide) interactions as shown for aggregate 48 [113] 

in Fig. 5h.  In the second assembly found in the crystal of 175, involving the two remaining 

independent molecules, only Se…O(alkoxide) interactions are formed leading to a zig-zag chain 

with each selenium atom forming two Se…O interactions, Fig. 16i. 

 Helical chains (21 screw symmetry) are found in crystals of 176 [105], 177 [214] and 

178 [215], Fig. 16j, sustained by either Se…O(carbonyl), 176 and 177, or Se…O(methoxy), 178, 

interactions.  A helical chain, also with 21 screw symmetry, occurs in the crystal of 179 [216], 

Fig. 16k, as the selenium atom accepts bond Se…O(oxide) and Se…O(hydroxyl) interactions, 



41 
 

rather than the single Se…O interactions of the previous three examples.  Finally, in 180 [217] 

two independent molecules comprise the asymmetric unit and each selenium atom participates 

in two Se…O(carbonyl) interactions with the chain, propagated by translational symmetry, 

having a twisted topology owing to the relative orientation of the independent molecules 

comprising the repeat unit. 

 

5. Two-dimensional assemblies mediated by Se…O chalcogen bonding 

 When Se…O chalcogen bonding extends in two dimensions, supramolecular layers are 

formed: this has been noted in a total of 20 crystals, with 12 selenium(II) and eight 

selenium(IV) examples.  The chemical diagrams for 181–200 [95,113,133,186,218-231] are 

shown in Fig. 17. 

 

Fig. 17.  Chemical diagrams for the interacting species, 181–200, in selenium(II) and 

selenium(IV) compounds featuring Se…O contacts leading to supramolecular, two-dimensional 

arrays. 
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5.1 Two-dimensional assemblies formed by selenium(II) compounds 

 Several different motifs are noted in the two-dimensional arrays formed by the 

compounds in this section.  In the crystal of mono-nuclear 181 [218], Fig. 18a, molecules 

assemble about a centre of inversion, being connected by Se…O(nitro) interactions and eight-

membered {…Se…ONO}2 synthons.  The connections extend laterally as each selenium forms 

two contacts as does each nitro group, via both oxygen atoms, with the resultant layer being 

corrugated.  The selenium atom also forms two contacts in 182 [219] but, with the same, 

bifurcated carbonyl-oxygen atom to sustain a flat, hexagonal-like grid, Fig. 18b.  In the 

following structures, disparate Se…O interactions sustain the resulting two-dimensional array.  

In 183 [220], the selenium atom forms two interactions with carbonyl- and hydroxyl-oxygen 

atoms, derived from symmetry related molecules, which are linked by a hydroxyl-O–

H…O(carbonyl) hydrogen bond.  In 184 [133], the connections are of the type Se…O(carbonyl) 

and Se...O(nitro), and analogous contacts are formed in 185 [221], Fig. 18c.  The layers in each 

of 183–185 have a jagged topology.  There are two bi-nuclear selenium(II) compounds 

adopting two-dimensional aggregation patterns.  In the first of these, 186 [222], each selenium 

atom forms a single contact to a common carbonyl-oxygen atom, Fig. 18d, leading to a flat, 

hexagonal pattern akin to that for 182, Fig. 18b.  In a variation, in 187 [223], each selenium 

atom again forms a single contact but, two different carbonyl-oxygen atoms, Fig. 18e, leading 

to a corrugated topology.  A polymorph of 187 exists, i.e. 132, which adopts a linear, one-

dimensional chain in its crystal, Fig. 13d, forming the same number of Se…O(carbonyl) 

interactions.  The difference in aggregation patterns arise as in 132, centrosymmetric, eight-

membered {…SeC2O}2 synthons are formed whereas in 187, the molecules assemble through 

more open, 16-membered {…SeC2O}4 synthons, Fig. 18e. 
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Fig. 18.  Examples of supramolecular association in mono- and bi-nuclear selenium(II) 

compounds leading to two-dimensional arrays based on Se…O chalcogen bonding interactions: 

(a) 181 [218; Se…O = 3.01 & 3.17 Å], (b) 182 [219; 3.25 Å], (c) 185 [221; 3.06 & 3.16 Å], (d) 

186 [222; 3.06 & 3.18 Å] and (e) 187 [223; 3.14 Å]. 
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 Somewhat squarer arrangements are seen in the crystals of bi-nuclear 188 [224], Fig. 

19a, where each molecule participates in four Se…O(carbonyl) interactions, with one of the 

selenium atoms forming two interactions and one of the carbonyl-oxygen atoms forming two 

interactions; the layer is corrugated.  An even more square appearance is seen for 189 [186], 

Fig. 19b, where the central atom of the tri-nuclear molecule participates in two 

Se…O(sulphoxide) interactions with two difference molecules while at the same time donating 

two sulphoxide-oxygen atoms to another two symmetry related molecules; the resultant layer 

is flat.  In tri-nuclear 190 [225], which has two-fold symmetry with the central selenium atom 

lying on the axis, it is the external selenium atoms of the Se3 chain that each form a single 

Se…O(carbonyl) interaction and each of the carbonyl-oxygen atoms also participate in a Se…O 

contact, Fig. 19c, leading to a corrugated layer.  In tri-nuclear 191 [226], which has mirror 

symmetry with the central selenium lying on the plane, the selenide atoms lie to the periphery 

of the Se=P–Se–P=Se hetero-chain.  In this instance, the selenide atoms form 

Se…O(phenoxide) contacts that generate a grid with a flat topology, Fig. 19d. 
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Fig. 19.  Examples of supramolecular association in selenium(II) compounds leading to two-

dimensional arrays based on Se…O chalcogen bonding interactions: (a) 188 [224; Se…O = 3.29 

& 3.41 Å], (b) 189 [186; 3.22 Å], (c) 190 [225; 3.17 Å] and (d) 191 [226; 3.33 Å]. 

 

 The final selenium(II) compound adopting a two-dimensional array in its crystal is also 

the only example of a tetra-nuclear compound in this category, 192 [205].  Here, the four 

selenium atoms are in a Se4 chain and, as seen from Fig. 20, it is the 1,3-selenium atoms 

forming the Se…O(carbonyl) interactions with two different carbonyl-atoms that are 

responsible for the formation of the layer, which has a distinctive saw-tooth topology. 
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Fig. 20.  Supramolecular association in 192 [205; Se…O = 3.34 & 3.42 Å],  leading to two-

dimensional arrays based on Se…O chalcogen bonding: detail of the Se…O(carbonyl) 

interactions as well as a plan and a side-on view of the layer. 

 

5.2 Two-dimensional assemblies formed by selenium(IV) compounds 

 A smaller number of selenium(IV) compounds assemble into two-dimensional arrays.  

The structure of 193 [227] is the only example in this series where the selenium atom is not 

incorporated within a ring.  This open arrangement coupled with the selenium atom is within 

an O3-donor set enables the formation of three interactions with each of the coordinated triflate 

anions, two of which are Se–O covalent bonds; each of the non-coordinating oxygen atoms 

participates in a Se…O(sulphonate) interaction, as seen from the detail of the selenium-atom 

environment of Fig. 21a.  The packing comprises inter-digitated rows of molecules connected 

by the aforementioned Se…O(sulphonate) interactions to form a flat layer.  In 194 [228], 

molecules are connected into centrosymmetric dimers via Se…O(phenoxide) interactions and 

these in turn are connected into a grid by Se…O(oxide) interactions which form the shorter of 

the separations, Fig. 21b.  Disparate Se…O interactions are evident in 195 [95] and 196 [113].  
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In the former, approximately orthogonal chains sustained by Se…O(nitro) and Se…O(oxide) 

interactions assemble molecules into a two-dimensional array, Fig. 21c.  In 196, 

Se…O(alkoxide) and Se…O(oxide) interactions cooperate in a similar fashion.  The resultant 

layer in each of 195 and 196 is jagged. 

 

 

Fig. 21.  Examples of supramolecular association in selenium(IV) compounds leading to two-

dimensional arrays based on Se…O chalcogen bonding interactions: (a) 193 [227; Se…O = 2.76, 

2.91, 3.14 & 3.14 Å] showing detail of the Se…O(sulphoxide) interactions as well as a plan 

(fluoride atoms omitted) and a side-on view of the layer, (b) 194 [228; 2.76 & 3.29 Å] and (c) 

195 [95; 3.13 & 3.26 Å]. 
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 The selenium atom in 197 [133] is incorporated within a six-membered ring and forms 

a total of three Se…O interactions in the crystal, Fig. 22a.  Centrosymmetrically related 

molecules are connected by via Se…O(alkoxide) interactions, forming the shorter distances, 

and these are connected into a flat, two-dimensional array by Se…O(oxide) interactions.  Two 

independent molecules comprise the asymmetric unit of 198 [229] and these are connected by 

Se…O(carbonyl) interactions to form the array shown in Fig. 22b; the topology of the layer is 

flat.  The selenium atom in the first independent molecule forms two Se…O contacts and the 

carbonyl-O atom one, with the second independent molecule following the opposite trend.  This 

flexibility in association via Se…O contacts is reflected in the following observation.  

Compound 198 is of particular interest as three polymorphs have been reported.  Earlier in this 

survey, aggregation patterns were reported for the first two of these, i.e. 172 and 173, Fig. 16h, 

each of which adopts a zig-zag chain in their crystal sustained, on average, by one and two 

Se…O(carbonyl) interactions, respectively.  The selenium atom in 199 [230] is bis-chelated by 

C,O-donors and lies on a two-fold axis of symmetry.  The selenium atom forms two 

Se…O(contacts) to form a flat, two-dimensional array, Fig. 22c.  The only bi-nuclear compound 

in this section is found in 200 [231] where diagonally opposite selenium atoms are incorporated 

within a four-membered ring; the molecule has mirror symmetry with the nitrogen atoms of 

N2Se2 core lying on the plane.  Each of the selenium and carbonyl-oxygen atoms forms a single 

Se…O(carbonyl) contact extending laterally to form a corrugated layer, Fig. 22d. 
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Fig. 22.  Examples of supramolecular association in selenium(IV) compounds leading to two-

dimensional arrays based on Se…O chalcogen bonding interactions: (a) 197 [113; Se…O = 2.82, 

3.13 & 3.18 Å] showing detail of the Se…O interactions as well as a plan view of the layer, (b) 

198 [229; 2.96, 2.97 & 3.16 Å], (c) 199 [230; 3.09 Å] and (d) 200 [231; 3.06 Å]. 

 

6. Three-dimensional assemblies mediated by Se…O chalcogen bonding 

 There are only three examples of selenium compounds comprising one chemical entity 

in the crystal assembling into a three-dimensional architecture based on Se…O chalcogen 

bonding.  The chemical structures for these oxide-rich molecules, i.e. 201–203 [118, 232], are 

shown in Fig. 23. 
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Fig. 23.  Chemical diagrams for the interacting species, 201–203, in selenium(II) and 

selenium(VI) compounds featuring Se…O contacts leading to supramolecular, three-

dimensional arrays. 

 

 Only one selenium(II) molecule assembles to form a three-dimensional architecture in 

its crystal, namely 201 [232].  The bi-nuclear molecule has mirror symmetry containing both 

selenium atoms and relating the two cyclobutadiene residues.  Here, each selenium atom forms 

four Se…O(carbonyl) interactions and each of the carbonyl-oxygen atoms forms two 

interactions to selenium as highlighted in Fig. 24a.  The resulting architecture resembles a 

skewed honeycomb array.  The two remaining molecules feature selenium(VI) centres, i.e. tri-

nuclear 202 [118] and tetra-nuclear 203 [118].  In the former, which lacks symmetry, only the 

oxide-oxygen atoms participate in Se…O interactions with each forming a single contact and 

each selenium atom forming two Se…O(oxide) contacts, Fig. 24b.  Layers with a zig-zag 

topology are discernible in the packing, Fig. 24b, being connected by three distinct 

Se…O(oxide) contacts.  The molecule in 204 is disposed about a four-fold centre of inversion 

(4) with each Se(=O)2 unit involved in two donor and two acceptor Se…O(oxide) contacts, 

Fig. 24c.  The resulting architecture comprises tetra-nuclear molecules assembled into 

columns, with a square appearance, connected orthogonally by the Se…O(oxide) contacts 

which define columns with a rectangular appearance, Fig. 24c. 
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Fig. 24.  Supramolecular association in selenium(II) and selenium(VI) compounds leading to 

three-dimensional arrays based on Se…O chalcogen bonding interactions showing detail of the 

Se…O interactions as well as a perspective of the three-dimensional assembly: (a) 201 [232; 

Se…O = 3.19 & 3.39 Å], (b) 202 [118; 3.03-3.33 Å] and (c) 203 [118; 3.13 & 3.15 Å]. 

 

7. Supramolecular assemblies of multi-component species mediated by Se…O 

chalcogen bonding 

 For completeness, in this section Se…O chalcogen bonding interactions in multi-

component crystals are surveyed.  Firstly, solvates are described followed by co-crystals.  The 

chemical structures of the 20 compounds covered in this section, 204–224 [118, 233-245] are 

shown in Fig. 25. 
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Fig. 25.  Chemical diagrams for the interacting species, 204–224, in selenium(II) and 

selenium(IV) compounds featuring Se…O contacts leading to supramolecular, two-dimensional 

arrays. 

 

7.1 Supramolecular assemblies in solvates of selenium compounds 

 Each of the mono-, bi- and tri-nuclear selenium(II) compounds, i.e. 204 [233], 205 

[234] and 206 [235], illustrated in Figs 26a-c, respectively, feature a single Se…O contact 

between the molecule and solvent, i.e. dimethylformamide in 204 and 206, and methanol in 

205.  In tetra-nuclear 207 [236], which is disposed about a centre of inversion, there are two 
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co-crystallised dimethylformamide molecules and the oxygen atom from each of these 

symmetrically spans two selenium atoms to form a three-molecule aggregate shown in Fig. 

26d. 

 A one-dimensional chain with a zig-zag topology (glide symmetry) is formed in the 

crystal of 208 [236] whereby the dimethylsulphoxide-oxygen atom symmetrically bridges two 

selenium atoms to form the arrangement shown in Fig. 26e. 

 The focus now turns towards selenium(IV) species.  A three-molecule aggregate is 

formed in 209 [237] where the dioxane molecule, situated about a centre of inversion, bridges 

two molecules as shown in Fig. 26f.  A hydrated, linear supramolecular chain is formed in the 

crystal of 210 [238].  The water molecule is connected to the selenium atom, being separated 

by 2.92 Å, and the resultant two molecule aggregates assemble into a chain via 

Se…O(hydroxyl) chalcogen bonds (3.03 Å) as shown in Fig. 26g. 
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Fig. 26.  Supramolecular association in selenium(II) and selenium(IV) compounds leading to 

zero- and one-dimensional assemblies based on Se…O chalcogen bonding interactions: (a) 204 

[233; Se…O = 2.64 Å], (b) 205 [234; 3.06 Å], (c) 206 [235; 3.28 Å], (d) 207 [235; 2.94 & 2.95 

Å], (e) 208 [236; 2.89 & 2.90 Å], (f) 209 [237; 2.83 Å] and (g) 210 [238; 2.92 & 3.03 Å]. 

 

 In the mono-selenium(IV) compound 211 [239], linear chains are sustained by 

Se…O(oxide) contacts and these are connected into a three-dimensional array by links provided 
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by bridging dioxane molecules, Fig. 27a.  Thus, each selenium forms three Se…O interaction 

with the shorter of the separations involving Se…O(ether) contacts. 

 There are two mixed selenium(IV)/(VI) compounds in this category, i.e. 212 [118] and 

213 [118], and a pivotal role for the co-crystallised dioxane molecules is evident in each.  The 

tetra-nuclear molecule in 212 is disposed about a centre of inversion.  There are two molecules 

of solvent for each tetra-nuclear molecule and it is the selenium(IV) centres that associate with 

two symmetry dioxane molecules to form a two-dimensional grid, Fig. 27b.  In the second 

mixed valence compound, 213 [118], two tri-nuclear molecules and four dioxane molecules 

comprise the asymmetric unit.  As shown in the left-hand image of Fig. 27c, molecules are 

assembled into a two-dimensional array with an undulating topology via Se…O(ether) 

interactions as each dioxane molecule is bridging and each selenium(IV) centre forms two 

contacts of this type.  The links between layers to form a three-dimensional architecture are of 

the type Se…O(oxide), where the oxide-donors are bounds to the selenium(VI) centres.  The 

Se…O(oxide) interactions form separations systematically longer than the Se…O(ether) 

contacts. 

 A three-dimensional architecture is also found in the crystals of the selenium(VI) 

compound, 214 [118], a 1:1 dioxane solvate, with the bi-nuclear molecule bisected by two-fold 

axis of symmetry and with the dioxane molecule disposed about a centre of inversion.  As seen 

in Fig. 24d, molecules are assembled into rows via Se…O(oxide) interactions and rows are 

connected by Se…O(ether) interactions derived from the bridging dioxane molecules.  A 

systematic trend is noted in Se…O distances as for 213 in that the separations involving the 

Se…O(ether) contacts are shorter than the Se…O(oxide) contacts. 
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Fig. 27.  Supramolecular association in selenium(IV), mixed selenium(IV)/(VI) and 

selenium(VI) compounds leading to two- and three-dimensional assemblies based on Se…O 

chalcogen bonding interactions: (a) 211 [239; Se…O = 2.61, 2.72 & 2.90 Å], (b) 212 [118; 2.40 

& 2.44 Å], (c) 213 [118; Se…O(ether) 2.44-2.62 Å and Se…O(oxide) 2.82 & 3.07 Å] and (d) 

214 [118; 2.83 & 3.13 Å]. 
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7.2 Supramolecular assemblies in selenium(II) co-crystals 

 In this final section, a number of selenium(II) and selenium(IV) aggregates are 

described, with all but one example being zero-dimensional in consideration of Se…O 

interactions alone.  The selenium(II) atom in mono-nuclear 215 [240] forms four Se…O(ether) 

contacts to sustain a two-molecule aggregate, Fig. 28a.  The asymmetric unit of 216 [241] 

comprises two selenium(II) molecules and the organic co-former, i.e. is a 2:1 co-crystal, one 

of the selenium(II) molecules makes a single Se…O(hydroxyl) interaction to form the two-

molecule aggregate shown in Fig. 28b.  In the 1:2 co-crystal 217 [242], each of the selenium 

atoms in the bi-nuclear molecule forms a Se…O(carbonyl) interaction to form a three-molecule 

aggregate, Fig. 28c.  Another bi-nuclear molecule where the selenium atoms are connected to 

each other within a five-membered ring, 218 [243], forms a 2:1 co-crystal with a nitrogen-oxo-

containing molecule; both species are radicals.  The oxo atoms atom accepts four Se…O(oxo) 

interactions, one each from each of the selenium atoms of the two co-formers, Fig. 28d.  The 

tri-nuclear molecules in each of 219 and 220 [244] featured earlier in 206, i.e. forming a two-

molecule aggregate with a solvent molecule, Fig. 26c.  In 219 and 220, Fig. 28e, this molecule 

is also a co-former in 2:1 co-crystals with potentially bridging molecules, at least via Se…O 

interactions; the organic co-former is disposed about a centre of inversion in both co-crystals.  

Indeed, one selenium(II) atom in each molecule is connected by Se…O(carbonyl) and 

Se…O(nitro) interactions in 219 and 220, respectively, to form a three-molecule aggregate in 

each case. 
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Fig. 28.  Supramolecular association in selenium(II) and selenium(IV) co-crystals leading to 

zero- and one-dimensional assemblies based on Se…O chalcogen bonding interactions: (a) 215 

[240; Se…O = 2.87-3.40 Å], (b) 216 [241; 3.18 Å], (c) 217 [242; 2.83 Å], (d) 218 [243; 2.90-

3.35 Å], (e) 220 [244; 3.23 Å], (f) 221 [241; 3.14 & 3.28 Å] and (g) 222 [240; 2.66-2.85 Å]. 

 

 The only one-dimensional chain in this section is formed in the 2:1 co-crystal 221 [241]; 

the selenium(II) molecule also formed a solvate via a Se…O(hydroxyl) interaction in 216 [241], 

Fig. 28b.  In 221, the benzene-1,4-diol molecule is situated about a centre of inversion and the 

association between molecules is also through Se…O(hydroxyl) interactions.  Centrosymmetric 

{…Se–O}2 synthons are formed in the crystal leading to a linear, supramolecular chain, Fig. 

28f. 
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7.3 Supramolecular assemblies in selenium(IV) co-crystals 

 There are four selenium(IV) molecules forming co-crystals based on Se…O chalcogen 

bonding, i.e. 222, 223 and 224 [240].  In 222, Fig. 28g, the selenium(IV) atom forms three 

Se…O(ether) contacts to form a zero-dimensional adduct.  Similar, two molecule aggregates 

are formed in 223 and 224 where each selenium atom forms four Se…O(ether) contacts, 

resembling the situation illustrated for 215 [240] in Fig. 28a. 

 

8. Overview 

 Allowing for multiple molecules in the asymmetric unit and the occurrence of several 

polymorphs, 224 distinct supramolecular aggregation patterns based on Se…O chalcogen 

bonding interaction are noted in the crystals of nearly 220 selenium compounds.  The 

overwhelming majority of the compounds were homogeneous but examples of solvate and co-

crystals are evident.  By far the most predominant oxidation state is +II, with 163 examples 

(72%), followed by +IV (51) with a small number of compounds with selenium in the +VI (8) 

oxidation state; two mixed valent selenium(IV)/(VI) compounds are also included in the 

survey.  Over two-thirds of molecules are mono-nuclear (161), with decreasing numbers of bi-

, tri- and tetra-molecules, i.e. 43, 11 and nine, respectively.  A full range of zero-, one-, two- 

and three-dimensional patterns are noted with the majority, i.e. over 55% (128 examples), being 

one-dimensional with the next most significant being, zero-dimensional, with 69 examples.  

There are 22 examples of molecules assembled into two-dimensional arrays and five forming 

three-dimensional architectures.  The average number of Se…O interactions per participating 

species varies from 0.5, i.e. for zero-dimensional aggregates sustained by a single interaction 

to four in several architectures.  Of the nearly 300 different Se…O contacts in the 

supramolecular aggregates described herein, over three-quarters (78%) involve a single Se…O 

interaction and 18% involve two Se…O interactions.  There are six examples each of molecules 
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where the selenium forms three or four contacts, always in higher-dimensional aggregates.  Of 

the zero-dimensional aggregates, the majority comprise two like-molecules sustained by one 

(9) or two (41) Se…O interactions but, examples of four- and six-molecule aggregates are also 

observed.  A variety of topologies are noted among the 125 zero-dimensional chains, including 

linear (38), zig-zag (52), helical (30) and twisted (5). 

 The large range of supramolecular aggregation patterns is complimented by the 

diversity in the oxygen donors participating in Se…O interactions.  When aggregates featuring 

one type of Se…O interaction only, 41% involve carbonyl donors.  The next most prevalent are 

ether (including methoxy) and Se=O donors, each at 12%, followed by nitro-, sulphoxide- and 

hydroxyl-donors at 9, 8 and 6%, respectively. 

 Attention is now directed on the propensity of molecules to form Se…O chalcogen 

bonding in their crystals.  Herein, 224 examples of aggregates sustained by Se…O chalcogen 

bonding interactions were identified.  Put into perspective, after a search of the CSD [65] 

following the protocols outlined in section 2, there are 1722 “hits” for crystals containing both 

selenium and oxygen.  This implies the percentage adoption of Se…O chalcogen bonding 

approximates 13% of all possible structures where these interactions can occur.  This 

percentage is an underestimate as in the present survey as crystals where Se…O interactions 

were acting in concert with other identifiable intermolecular forces, the notable example being 

hydrogen bonding, were omitted.  This percentage compares favourably to the 6% of 

selenium(lone-pair)…π(arene) interactions in crystals where these interactions can potentially 

form [248,249].  Over and above different chemical composition, as alluded to above, 

secondary bonding interactions, including chalcogen bonding interactions, are notoriously 

subject to steric effects in that these interactions are mitigated when bulky metal-bound and/or 

ligand-bound substituents are present [54, 56-63].  To probe further the likely adoption of 
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Se…O interactions in crystals, the likelihood of specific classes of compounds to form Se…O 

chalcogen bonds was ascertained. 

 As noted above, Se…O(carbonyl) interactions featured in 41% of the crystals in the 

present survey.  Hence, the CSD was searched for “selenium” and “carbonyl-oxygen” using 

the established protocols.  This indicated that almost 50% of all crystals having these two 

components actually formed Se…O(carbonyl) interactions.  An analogous search for residues 

containing Se=O, often observed in the selenium(IV) compounds included herein, was 

conducted.  This analysis indicated a smaller percentage adoption of about 25%.  Throughout 

this survey, the 5-selanylidene-1H-pyrrol-2-one core, as found in Ebselen™, has been 

mentioned a good number of times.  This core has a three-bond separation between the 

selenium and carbonyl-oxygen atoms, and with these acceptor and donor atoms largely 

constrained to a fixed disposition owing to their relationship through the five-membered ring.  

A search of the CSD revealed this core features in 52 crystals.  With Se…O(carbonyl) 

interactions forming in 25 examples, the percentage adoption is over 48%.  Interestingly, five 

others of these structures formed Se…O interactions in their crystals but, with selenide- (1), 

nitro- (1) and hydroxyl-oxygen (3) donors.  With this relatively high adoption rate, the 

propensity of selenium molecules with selenium incorporated within a five-membered ring 

comprising four unspecified atoms and unspecified bonds between them was then evaluated.  

The CSD has about 945 “hits” for this fragment and with 102 examples having unassisted 

Se…O chalcogen bonding interactions, the percentage adoption is at least 10%, indicating this 

fragment alone does not promote Se…O interactions. 

 Consideration is now directed towards the geometric parameters characterising the 

observed Se…O secondary bonding interactions.  The Se…O separations span a wide range, i.e. 

from a short 2.40 Å, indicative of some covalent character, right out to the van der Waals limit 

of 3.42 Å; the average distance of a Se...O interaction computes to 3.11 Å and the median value 
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is 3.17 Å.  It is noted that while many of the shorter interactions were in the dioxane adducts, 

such as 212 which exhibited the short contact cited above, short contacts were often noted in 

one-dimensional chains involving molecules incorporating the 5-selanylidene-1H-pyrrol-2-

one core, e.g. the next shortest separation of 2.41 Å is observed in 118.  However, these are 

only generalisations, with each class of molecule, respectively, also having longer contacts, 

e.g. 3.35 Å in 8 and 3.38 Å in 23.  This observation is entirely consistent with the well-known 

axiom in supramolecular chemistry that geometric correlations of weak intermolecular 

interactions are not generally possible unless the molecules/interactions are very closely 

related/isostructural [245-247].  In the present case, the lack of systematic trends is not 

surprising considering the different chemical composition of the interacting species, different 

oxidation states and geometries, and range of oxygen donors engaged in the Se…O interactions. 

 Up to this point, no specific mention of the angles associated with the supramolecular 

Se…O interactions has been made; key angles subtended at oxygen donor atoms and selenium 

acceptor atoms are collated in Appendix A.  Just as distance correlations are not reliable for 

intermolecular interactions [245-247], correlations involving angles are also problematic, as 

commented upon recently for secondary bonding interactions formed between selenium and 

the heavier main group elements [250].  This is because, as for distances, angles are going to 

be moderated by the chemical/electronic environment of the participating atoms.  Based on the 

assumption that for the specified Se…O contacts, the oxygen atom is the Lewis base, providing 

the charge to the σ-hole located on the selenium atom of the Lewis acid, there are several 

variables impacting upon the magnitude of the Se…O interaction and the angles subtended at 

the interacting oxygen atom.  In the case of the oxygen donor, these factors include but, are not 

limited to the steric and electronic profiles of the residues bound to oxygen, the hybridisation 

of the oxygen atom and, when the interacting oxygen atom is part of a nitro group, the partial 

charge on the oxygen atom.  For the selenium acceptor, again the steric and electronic profiles 
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of bound atoms/groups come into play, as does the ligand donor set about the selenium atom 

along with the oxidation state of the selenium atom which, in turn, impacts on the number of 

sterically active lone-pairs of electrons about the selenium atom and therefore, stereochemistry. 

 These points are highlighted in the following observations on the sub-set of structures 

where the donor oxygen and acceptor selenium atoms participate in one contact only.  

Considering the angles subtended at the oxygen donors first, in the surveyed structures 

featuring a single contact between the participating atoms, the minimum angle of 82.4° (the 

Se…O separation is 3.38 Å) was found in 105 where the donor atom is a carbonyl-O to a 

selenium(II) centre, and the maximum angle of 160.2° (Se…O = 2.83 Å) is seen in 217 where 

a carbonyl-O atom is the donor and the acceptor is a selenium(II) atom flanked by nitrogen and 

sulphur atoms within a five-membered ring.  The large range observed overall is also reflected 

in more specific contacts, for example S–O…Se contacts with a range of over 70°, i.e. from 

87.7° in 2 to 159.7° in 78 with a spread of values within this range for the 10 structures having 

the oxygen and selenium atoms forming a single contact only.  The above notwithstanding, the 

following represents an analysis of specific types of Se…O interactions. 

 For the sp3-hybridised hydroxyl-O atom, there are 11 examples and the range of values 

is somewhat reduced compared to the general survey, i.e. 94.1° in 13 to 126.2° in 15 if an 

outlier, i.e. 3 (144.7°), is ignored.  While, generally, these values are in the generally expected 

range for a sp3-hybridised-O(lone-pair)…σ-hole(Se) interaction, the influence of hydrogen 

bonding interactions, for example, might also be expected to cause distortions, as in outlier 3.  

Conversely, if selenium-bound lone-pair of electrons is anticipated in a position diagonally 

opposite to a covalent bond involving selenium and carbon (or nitrogen or phosphorus), a close 

to linear angle at selenium would be anticipated.  In the present series of structures involving 

hydroxyl-donors, these angles range from 148.6° for C–Se…O in 15, where the selenium(II) 
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atom is part of five-membered ring to 175.0° for N–Se…O in 118, where the selenium(II) atoms 

is flanked by carbon and nitrogen donors within a five-membered ring. 

 A number of structures are constructed about a {…Se=O}2 core and present a robust set 

of Se=O…Se and A–Se…O angles, where A = C, N or S.  Only two examples of selenium(II) 

feature this core, i.e. 25 and 26, each resulting in a zero-dimensional aggregation, with pairs of 

Se=O…Se and A–Se…O angles of 108.3 and 156.5°, and 111.2 and 156.1°, respectively.  For 

the 15 selenium(IV) species, the Se=O…Se angles range from 88.0°, for 43, to 121.4° for 44.  

In fact, these are outliers (see below) with the remaining angles lying between 93.2°, for 37, to 

108.4° for 42.  In terms of A–Se…O angles, these are consistently wider than for the 

selenium(II) species, lying between 163.6°, for 37 (A = C), to 177.5° for 39 (A = O).  The two 

exceptional selenium(II) structures in this regard are 42, with C–Se…O = 144.9°, and 44 with 

C–Se…O = 138.9°.  These, along with 43 mentioned above, feature concatenated, strained rings 

which readily account for the observed deviations.  For the five zero-dimensional selenium(VI) 

structures featuring a {…Se=O}2 core, the Se=O…Se angles range from 105.3°, for 55, to 111.5° 

for 53, and the A–Se…O angles range from 167.5°, for 55 (A = O), to 174.1°, for 51 (A = C).  

The {…Se=O}2 core also features in eight one-dimensional aggregation patterns and present 

narrow ranges for both Se=O…Se, i.e. 94.6° (168) to 108.6° (165), and A–Se…O angles, i.e. 

156.2° (165, A = O) to 176.8° (164, A = C). 

 From the A–Se…O data included in Appendix A, it is a generalisation that the angle 

about the selenium atom, regardless of oxidation state, generally lies between 140 and 180°.  

While this observation is consistent with expectation in terms of the s-hole model to explain 

the nature of these interactions [45-47,251].  Taking the sub-set of 29 zero-dimensional 

selenium(II) examples where the selenium atom forms one Se…O interaction only, there are 

two exceptional structures where A–Se…O lies between 127 and 128°, i.e. 8 and 22.  Indeed, 

21 examples have A–Se…O > 160°.  It might be concluded that while to a first approximation, 
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there is a general understanding of the mode of bonding leading to Se…O and related secondary 

bonding interactions, further investigations, such high-level crystallographic, including charge 

density studies and analysis [11,252,253], along with reliable computational chemistry studies 

[254-256] are required in order to gain a more complete picture of Se…O interactions.  Also of 

interest would be the determination, experimental and theoretical, of the energies of 

stabilisation provided by specific Se…O contacts.  Thus far, these are comparatively rare, e.g. 

10-40 kJ/mol for molecules based on the EbselenTM (89 & 90) structure [11], i.e. as noted 

previously [54], an energy in the range observed for conventional hydrogen bonding 

interactions. 

 Finally, while the focus of the present review has been upon the identification of 

intermolecular Se…O interactions in crystals of molecular selenium compounds, the relevance 

of Se…O secondary bonding interactions in the biological context was alluded to in the 

Introduction.  With the present covid-19 pandemic confronting the World, it is not surprising 

that EbselenTM and analogues have already been evaluated as potential inhibitors of the active 

site of the main protease (Mpro) of the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) [257] in a classic case of drug repurposing [258].  On-going crystallographic, 

spectroscopic, e.g. 77Se NMR [258], and computational studies [259,260] should also be alert 

for the potential influence of Se…O interactions in providing stability to poses adopted by 

selenium compounds in relevant active sites. 

9. Conclusions 

 Chalcogen bonding of the type Se…O contribute to the stability of crystals where they 

can form and are shown to sustain a full range of supramolecular aggregates: any complete 

analysis of the molecular packing of relevant compounds should include an analysis of these 

and other secondary bonding interactions.  In the same way, any evaluations of the biological 

mechanisms of action, catalytic processes, rationalisation of chemical reactivity, etc. should be 
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on the alert to the possible role of Se…O secondary bonding.  Most notably by the prevalence 

of linear A–Se…O angles, for A = C, N, S and Se, the concept of the σ-hole provides a key 

impetus for the rationalisation of these interactions for selenium(II)- and selenium(IV)-

containing compounds in the above contexts.  However, further studies are required, both 

experimental and computational, for a more complete understanding of the formation of Se…O 

interactions and the energies of their association. 

 

Conflict of Interest 

The author declares no conflict of interest. 

 

Acknowledgements 

The author gratefully acknowledges Sunway University Sdn Bhd (Grant no. STR-RCTR-

RCCM-001-2019) for support of crystallographic studies. 

 

Appendix A.  Supplementary data 

Supplementary data associated with this article (details of crystals featuring Se…O chalcogen 

bonding interactions: composition, diagram, distance and angle data, citation and commentary) 

can be found, in the online version, at doi:10.1016/j.ccr.20201.xx.xxx. 

 

References 

[1] T.C. Stadtman, Ann. Rev. Biochem. 65 (1996) 83–100; doi: 

org/10.1146/annurev.bi.65.070196.000503 

[2] V.N. Gladyshev, D. L. Hatfield, J. Biomed. Sci. 6 (1999) 151–160; doi: 

org/10.1159/000025383 

https://doi.org/10.1159/000025383


68 
 

[3] IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) and 

Nomenclature Committee of IUBMB (NC-IUBMB), Eur. J. Biochem. 264 (1999) 607–609. 

[4] J. Nordberg, E.S.J. Arnér, Free Radic. Biol. Med. 31 (2001) 1287–1312; doi: 

10.1016/S0891-5849(01)00724-9 

[5] A.C. Bianco, D. Salvatore, B. Gereben, M.J. Berry, P.R. Larsen, Endocr. Rev. 23 (2002) 

38–89; doi: 10.1210/edrv.23.1.0455 

[6] M. Allingstrup, A. Afshari, Cochrane Database Syst. Rev. (2015) CD003703; doi: 

10.1002/14651858.CD003703.pub3 

[7] E.R.T. Tiekink, Dalton Trans. 41 (2012) 6390–6395; doi: 10.1039/c2dt12225a 

[8] H.-L. Seng, E.R.T. Tiekink, Appl. Organomet. Chem. 26 (2012) 655–662; doi: 

10.1002/aoc.2928 

[9] N.V. Barbosa, C.W. Nogueira, P.A. Nogara, A.F. de Bem, M. Aschner, J.B.T. Rocha, 

Metallomics 9 (2017) 1703–1734; doi: 10.1039/c7mt00083a 

[10] Z. Chen, H, Lai, L. Hou, T. Chen, Chem. Commun. 56 (2020) 179–196; doi: 

org/10.1039/C9CC07683B 

[11] S.P. Thomas, K. Satheeshkumar, G. Mugesh, T.N. Guru Row, Chem. Eur. J. 21 (2015) 

6793–6800; doi: org/10.1002/chem.201405998 

[12] H. Wang, J. Liu, W. Wang, Phys. Chem. Chem. Phys. 20 (2018) 5227–5234; doi: 

10.1039/c7cp08215k 

[13] W. Wang, B. Ji, Y. Zhang, J. Phys. Chem. A 113 (2009) 8132–8135; doi: 

org/10.1021/jp904128b 

[14] C.B. Aakeröy, D.L. Bryce, G.R. Desiraju, A. Frontera, A.C. Legon, F. Nicotra, K. 

Rissanen, S. Scheiner, G. Terraneo, P. Metrangolo, G. Resnati, Pure Appl. Chem. 91 (2019) 

1889–1892; doi: org/10.1515/pac-2018-0713 

[15] R.M. Minyaev, V.I. Minkin, Can. J. Chem. 76 (1998) 776–778; doi: 10.1139/v98-080 



69 
 

[16] R.J. Fick, G.M. Kroner, B. Nepal, R. Magnani, S. Horowitz, R.L. Houtz, S. Scheiner, 

R.C. Trievel, ACS Chem. Biol. 11 (2016) 748−754; doi: org/10.1021/acschembio.5b00852 

[17] S. Mondal, G. Mugesh, Chem. Eur. J. 25 (2019) 1773−1780; doi: 

org/10.1002/chem.201805112 

[18] S.P. Thomas, V. Kumar, K. Alhameedi, T.N.G. Guru Row, Chem. Eur. J. 25 (2019) 

3591−3597; doi: org/10.1002/chem.201805131 

[19] N. Biot, D. Bonifazi. Coord. Chem. Rev. 413 (2020) 213243, doi: 

org/10.1016/j.ccr.2020.213243 

[20] S. Scheiner, M. Michalczyk, W. Zierkiewicz, Coord. Chem. Rev. 405 (2020) 213136; 

doi: org/10.1016/j.ccr.2019.213136 

[21] M.S. Taylor, Coord. Chem. Rev. 413 (2020) 213270; doi: 

org/10.1016/j.ccr.2020.213270 

[22] E. Navarro-García, B. Galmés, M.D. Velasco, A. Frontera, A. Caballero, Chem. Eur. J. 

26 (2020) 4706–4713; doi: org/10.1002/chem.201905786 

[23] P. Wonner, T. Steinke, L. Vogel, S.M. Huber, Chem. Eur. J. 26 (2020) 1258−1262; doi: 

org/10.1002/chem.201905057 

[24] C.M. Young, A. Elmi, D.J. Pascoe, R.K. Morris, C. McLaughlin, A.M. Woods, A.B. 

Frost, A. de la Houpliere, K.B. Ling, T.K. Smith, A.M.Z. Slawin, P.H. Willoughby, S.L. 

Cockroft, A.D. Smith, Angew. Chem. Int. Ed. 59 (2020) 3705–3710; doi: 

org/10.1002/anie.201914421 

[25] K.T. Mahmudov, M.N. Kopylovich, M.F.C. Guedes da Silva, A.J.L. Pombeiro, Dalton 

Trans. 46 (2017) 10121−10138; doi: 10.1039/c7dt01685a 

[26] M. Fourmigué, A. Dhaka, Coord. Chem. Rev. 403 (2020) 213084; doi: 

10.1016/j.ccr.2019.213084 

[27] S. Scheiner, Int. J. Quantum Chem. 113 (2013) 1609−1620; doi: 10.1002/qua.24357 



70 
 

[28] R. Gleiter, G. Haberhauer, D.B. Werz, Chem. Rev. 118 (2018) 2010−2041; doi: 

10.1021/acs.chemrev.7b00449 

[29] L. Vogel, P. Wonner, S.M. Huber, Angew. Chem. Int. Ed. 58 (2019) 1880−1891; doi: 

10.1002/anie.201809432 

[30] P. Scilabra, G. Terraneo, G. Resnati, Acc. Chem. Res. 52 (2019) 1313−1324; doi: 

org/10.1021/acs.accounts.9b00037 

[31] A.C. Legon, Phys. Chem. Chem. Phys. 19 (2017) 14884–14896; doi: 

10.1039/c7cp02518a 

[32] M. Juanes, R.T. Saragi, W. Caminati, A. Lesarri, Chem. Eur. J. 25 (2019) 

11402−11411; doi: org/10.1002/chem.201901113 

[33] V. Kumar, Y. Xu, C. Leroy, D.L. Bryce, Phys. Chem. Chem. Phys. 22 (2020) 

3817−3824; doi: org/10.1039/C9CP06267J 

[34] H.A. Bent, Chem. Rev. 68 (1968) 587–648; doi: 10.1021/cr60255a003 

[35] O. Hassel, Science 170 (1970) 497-502; doi: 10.1126/science.170.3957.497 

[36] N.W. Alcock, Adv. Inorg. Chem. Radiochem. 15 (1972) 1−58; doi: 10.1016/S0065-

2792(08)60016-3 

[37] N.W. Alcock, Bonding and Structure: Structural Principles in Inorganic and Organic 

Chemistry, Ellis Horwood, New York, 1990. 

[38] P. Pyykkö, Chem. Rev. 97 (1997) 597−636; doi: org/10.1021/cr940396v 

[39] I. Haiduc, Coord. Chem. Rev. 158 (1997) 325−358; doi: org/10.1016/S0010-

8545(97)90063-1 

[40] I. Haiduc, in: J.L. Attwood, J.W. Steed (Eds.), Encyclopaedia of Supramolecular 

Chemistry, vol. 2, Marcel Dekker, New York, 2004, p. 1215−1224. 

[41] N.W. Alcock, R. Countryman, Acta Crystallogr., Section A 13 (1975) S62. 

https://doi.org/10.1021/cr940396v


71 
 

[42] N.W. Alcock, R.M. Countryman, J. Chem. Soc., Dalton Trans. (1977) 217−219; doi: 

org/10.1039/DT9770000217 

[43] J. Starbuck, N.C. Norman, A.G. Orpen, New. J. Chem. 23 (1999) 969–972; doi: 

org/10.1039/A906352H. 

[44] G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, 

Chem. Rev. 116 (2016) 2478−2601; doi: org/10.1021/acs.chemrev.5b00484 

[45] J.S. Murray, P. Lane, T. Clark, P. Politzer, J. Mol. Model. 13 (2007) 1033−1038; doi: 

10.1007/s00894-007-0225-4 

[46] P. Politzer, J.S. Murray, Crystals 7 (2017) 212; doi: org/10.3390/cryst7070212 

[47] M.H. Kolář, P. Hobza, Chem. Rev. 116 (2016) 5155−5187; doi: 

10.1021/acs.chemrev.5b00560 

[48] D.J. Pascoe, K.B. Ling, S.L. Cockroft, J. Am. Chem. Soc. 139 (2017) 15160−15167; 

doi: 10.1021/jacs.7b08511 

[49] S. Scheiner, J. Phys. Chem. A 121 (2017) 5561−5568; doi: 10.1021/acs.jpca.7b05300 

[50] W. Dong, Q. Li, S. Scheiner, Molecules 23 (2018) 1681; doi: 

10.3390/molecules23071681 

[51] J.D. Velásquez, G. Mahmoudi, E. Zangrando, A.V. Gurbanov, F.I. Zubkov, Y. Zorlu, 

A. Masoudias, J. Echeverría, CrystEngComm 21 (2019) 6018−6025; doi: 

org/10.1039/C9CE00959K 

[52] J.S. Murray, P. Politzer, Crystals 10 (2020) 76; doi: 10.3390/cryst10020076 

[53] B. Galmés, A. Juan-Bals, A. Frontera, G. Resnati, Chem. Eur. J. 26 (2020) 4599–

4606; doi: org/10.1002/chem.201905498 

[54] E.R.T. Tiekink, Coord. Chem. Rev. 345 (2017) 219–228; doi: 

org/10.1016/j.ccr.2017.01.009 

https://doi.org/10.1021/acs.jpca.7b05300
https://doi.org/10.1016/j.ccr.2017.01.009


72 
 

[55] D.P. Malenov, G.V. Janjiae, V.B. Medakoviae, M.B. Hall, S.D. Zarić, Coord. Chem. 

Rev. 345 (2017) 318–341; doi: org/10.1016/j.ccr.2016.12.020 

[56] E.R.T. Tiekink, CrystEngComm 5 (2003) 101–113; doi: org/10.1039/B301318A 

[57] M.A. Buntine, F.J. Kosovel, E.R.T. Tiekink, CrystEngComm 5 (2003) 331–336; doi: 

org/10.1039/B308922C 

[58] Y. Liu, E.R.T. Tiekink, CrystEngComm 7 (2005) 20–27; doi: org/10.1039/B416493H 

[59] E.R.T. Tiekink, CrystEngComm 8 (2006) 104–118; doi: org/10.1039/B517339F 

[60] C.S. Lai, E.R.T. Tiekink, Z. Kristallogr. Cryst. Mater. 222 (2007) 532–538; doi: 

10.1524/ zkri.2007.222.10.532 

[61] E.R.T. Tiekink, Appl. Organomet. Chem. 22 (2008) 533–550; doi: 

org/10.1002/aoc.1441 

[62] E.R.T. Tiekink, J. Zukerman-Schpector, Coord. Chem. Rev. 254 (2010) 46–76; doi: 

org/10.1016/j.ccr.2009.09.007 

[63] E.R.T. Tiekink, Crystals 8 (2018) 292; doi: org/10.3390/cryst8070292 

[64] S.M. Lee, P.J. Heard, E.R.T. Tiekink, Coord. Chem. Rev. 375 (2018) 410–423; doi: 

org/10.1016/j.ccr.2018.03.001 

[65] R. Taylor, P.A. Wood, Chem. Rev. 119 (2019) 9427–9477; doi: 

org/10.1021/acs.chemrev.9b00155 

[66] I.J. Bruno, J.C. Cole, P.R. Edgington, M. Kessler, C.F. Macrae, P. McCabe, J. Pearson, 

R. Taylor, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 58 (2002) 389–397; doi: 

org/10.1107/S0108768102003324 

[67] A. Spek, Acta Crystallogr., Sect. E: Cryst. Commun. 76 (2020) 1–11; doi: 

org/10.1107/S2056989019016244 

https://doi.org/10.1016/j.ccr.2016.12.020
https://doi.org/10.1039/B301318A
https://doi.org/10.1039/B308922C
https://doi.org/10.1039/B416493H
https://doi.org/10.1039/B517339F
https://doi.org/10.1002/aoc.1441
https://doi.org/10.1016/j.ccr.2009.09.007
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink%2C%20E%2ER%2ET%2E
https://doi.org/10.3390/cryst8070292
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tiekink%2C%20E%2ER%2ET%2E
https://doi.org/10.1016/j.ccr.2018.03.001
https://doi.org/10.1021/acs.chemrev.9b00155


73 
 

[68] C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M.l 

Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, J. Appl. Crystallogr. 2020, 

53, 226–235; doi: 10.1107/S1600576719014092 

[69] K. Brandenburg, DIAMOND. Visual Crystal Structure Information System, version 

3.1, Crystal Impact, Bonn, Germany, 2006. 

[70] F. Wang, P.L. Polavarapu, J. Drabowicz, P. Kiełbasinski, M.J. Potrzebowski, M. 

Mikołajczyk, M.W. Wieczorek, W.W. Majzner, I. Łażewska, J. Phys. Chem. A 108 (2004) 

2072–2079; doi: 10.1021/jp031270h 

[71] P.P. Phadnis, A. Kunwar, M. Kumar, R. Mishra, A. Wadawale, K.I. Priyadarsini, 

V.K. Jain, J. Organomet. Chem. 852 (2017) 1–7; doi: 10.1016/j.jorganchem.2017.09.029 

[72] S. Goswami, A. Hazra, R. Chakrabarty, H.-K. Fun, Org. Lett. 11 (2009) 4350–4353; 

doi: 10.1021/ol901737s 

[73] M. Ruamps, N. Lugan, V. Cesar, Eur. J. Inorg. Chem. (2017) 4167–4173; doi: 

10.1002/ejic.201700883 

[74] E. Block, E.V. Dikarev, R.S. Glass, J. Jin, B. Li, X. Li, S.-Z. Zhang, J. Am. Chem. 

Soc. 128 (2006) 14949–14961; doi: 10.1021/ja065037j 

[75] J.Y. See, H. Yang, Y. Zhao, M.W. Wong, Z. Ke, Y.-Y. Yeung, ACS Catalysis 8 (2018) 

850–858; doi: 10.1021/acscatal.7b03510 

[76] G. Hua, J. Du, A.M.Z. Slawin, J.D. Woollins, J. Org. Chem. 79 (2014) 3876–3886; 

doi: 10.1021/jo500316v 

[77] A.M. Toma, A. Nicoară, A. Silvestru, T. Rüffer, H. Lang, M. Mehring, J. Organomet. 

Chem. 810 (2016) 33–39; doi: 10.1016/j.jorganchem.2016.03.002 

[78] C. Allen, J.C.A. Boeyens, A.G. Briggs, L. Denner, A.J. Markwell, D.H. Reid, B.G. 

Rose, J. Chem. Soc. Chem. Comm. (1987) 967–968; doi: org/10.1039/C39870000967 

https://doi.org/10.1107/S1600576719014092


74 
 

[79] M. Iyoda, R. Watanabe, Y. Miyake, Chem. Lett. 33 (2004) 570–571; doi: 

10.1246/cl.2004.570 

[80] P. Bhattacharyya, A.M.Z. Slawin, J.D. Woollins, Chem. Eur. J. 8 (2002) 2705–2711; 

doi: 10.1002/1521-3765(20020617)8:12<2705::AID-CHEM2705>3.0.CO;2-2 

[81] G. Karabanovich, J. Roh, . Padělková, Z. Novák, K. Vávrová, ZA. Hrabálek, 

Tetrahedron 69 (2013) 8798–8808; doi: 10.1016/j.tet.2013.07.103 

[82] B. M. Laloo, H. Mecadon, Md. R. Rohman, I. Kharbangar, I. Kharkongor, M. 

Rajbangshi, R. Nongkhlaw, B. Myrboh, J. Org. Chem. 77 (2012) 707–712; doi: 

10.1021/jo201985n 

[83] C. Gicquel-Mayer, G. Perez, P. Lerouge, C. Paulmier, Acta Crystallogr., Sect. C: 

Cryst. Struct. Commun. 43 (1987) 284–287; doi: 10.1107/S0108270187096112 

[84] V. Kubát, M. Babiak, Z. Trávníček, J. Novosad, Polyhedron 124 (2017) 62–67; doi: 

10.1016/j.poly.2016.12.034 

[85] P. Arsenyan, E. Paegle, S. Belyakov, Chem. Heterocycl. Compd. 49 (2013) 791–796; 

doi: 10.1007/s10593-013-1310-5 

[86] P. Arsenyan, E. Vasiljeva, S. Belyakov, Chem. Heterocycl. Compd. 47 (2011) 237–

241; doi: 10.1007/s10593-011-0746-8 

[87] K.M. Aumann, P.J. Scammells, J.M. White, C.H. Schiesser, Org. Biomol. Chem. 5 

(2007) 1276–1281; doi: 10.1039/b700812k 

[88] X. Chen, K.-H. Baek, Y. Kim, S.-J. Kim, I. Shin, J. Yoon, Tetrahedron 66 (2010) 

4016–4021; doi: 10.1016/j.tet.2010.04.042 

[89] K. Matoba, T. Yamazaki, Chem. Pharm. Bull. 35 (1987) 4967–4971; doi: 

10.1248/cpb.35.4967 

[90] J. Zhou, J.-M. Huang, Y. Tang and R.-Y. Chen, Chin. J. Struct. Chem. 18 (1999) 103–

106. 



75 
 

[91] K. Satheeshkumar, G. Mugesh, Chem. Eur. J. 17 (2011) 4849–4857; doi: 

10.1002/chem.201003417 

[92] K. Shimada, A. Moro-oka, A. Maruyama, H. Fujisawa, T. Saito, R. Kawamura, H. 

Kogawa, M. Sakuraba, Y. Takata, S. Aoyagi, Y. Takikawa, C. Kabuto, Bull. Chem. Soc. Jpn. 

80 (2007) 567–577; doi: org/10.1246/bcsj.80.567 

[93] V.P. Singh, H.B. Singh, R.J. Butcher, Chem. Commun. 47 (2011) 7221–7223; doi: 

10.1039/c1cc12152a 

[94] L. Dupont, M. Messali, L. Christiaens, Acta Crystallogr., Sect. E: Struct. Rep. Online 

59 (2003) o547–o549; doi: 10.1107/S1600536803006433 

[95] V.P. Singh, H.B. Singh, R.J. Butcher, Chem. Asian J. 6 (2011) 1431–1442; doi: 

10.1002/asia.201000858 

[96] F.-Y. Meng, Y.-A. Chen, C.-L. Chen, P.-T. Chou, ChemPhotoChem 2 (2018) 475–

480; doi: 10.1002/cptc.201800066 

[97] V. Kumar, Y. Xu, D.L. Bryce, Chem. Eur. J. 2020, 26, 3275–3286; doi: 

org/10.1002/chem.201904795 

[98] G.M. Arvanitis, M.E. Berardini, D. Allardice, P.E. Dumas, J. Chem. Cryst. 24 (1994) 

421–423; doi: 10.1007/BF01666088 

[99] A.S. Hodage, P.P. Phadnis, A. Wadawale, K.I. Priyadarsini, V.K. Jain, Phosphorus, 

Sulfur, Silicon, Relat. Elem. 189 (2014) 700–710; doi: 10.1080/10426507.2013.844144 

[100] K.P. Bhabak, G. Mugesh, Chem. Asian J. 4 (2009) 974–983; doi: 

10.1002/asia.200800483 

[101] P. Arsenyan, E. Paegle, S. Belyakov, I. Shestakova, E. Jaschenko, I. Domracheva, J. 

Popelis, Eur. J. Med. Chem. 46 (2011) 3434–3443; doi: 10.1016/j.ejmech.2011.05.008 

[102] S. Braverman, M. Cherkinsky, Y. Kalendar, R. Jana, M. Sprecher, I. Goldberg, 

Synthesis 46 (2014) 119–125; doi: 10.1055/s-0033-1338555 

https://doi.org/10.1246/bcsj.80.567
https://doi.org/10.1002/chem.201904795


76 
 

[103] Y. Kim, T. Jun, S.V. Mulay, S.T. Manjare, J. Kwak, Y. Lee, D.G. Churchill, Dalton 

Trans. 46 (2017) 4111–4117; doi: 10.1039/C7DT00555E 

[104] S. Hayashi, H. Wada, T. Ueno, W. Nakanishi, J. Org. Chem. 71 (2006) 5574–5585; 

doi: 10.1021/jo060527f 

[105] S.-C. Yu, H. Kuhn, C.-G. Daniliuc, I. Ivanov, P.G. Jones, W.-W. du Mont, Org. 

Biomol. Chem. 8 (2010) 828–834; doi: 10.1039/b918778b 

[106] T.M. Klapötke, B. Krumm, M. Scherr, Z. Anorg. Allg. Chem. 636 (2010) 1955–1961 

[107] T. Annaka, N. Nakata, A. Ishii, New J. Chem. 43 (2019) 11643–11652; doi: 

10.1039/C9NJ02813G 

[108] T. Kawashima, F. Ohno, R. Okazaki, J. Am. Chem. Soc. 115 (1993) 10434–10435 

[109] T. Kataoka, S. Watanabe, K. Yamamoto, M. Yoshimatsu, G. Tanabe, O. Muraoka, J. 

Org. Chem. 63 (1998) 6382–6386; doi: 10.1021/jo980999x 

[110] E.C. Llaguno, I.C. Paul, J. Chem. Soc., Perkin Trans. 2 (1972) 2001–2006; doi: 

10.1039/p29720002001 

[111] R. Betz, M. Pfister, M.M. Reichvilser, P. Klüfers, Z. Anorg. Allg. Chem. 634 (2008) 

1393–1396; doi: 10.1002/zaac.200800097 

[112] T. Maaninen, T. Chivers, R. Laitinen, G. Schatte, M. Nissinen, Inorg. Chem. 39 

(2000) 5341–5347; doi: 10.1021/ic000598b 

[113] P. Klüfers, M.M. Reichvilser, Eur. J. Inorg. Chem. (2008) 384–396; doi: 

10.1002/ejic.200700837 

[114] T.M. Klapötke, B. Krumm, P. Mayer, H. Piotrowski, O.P. Ruscitti, Z. Naturforsch., 

B: Chem. Sci. 57 (2002) 145–150. 

[115] A.G. Makarov, A.Yu. Makarov, I.Yu. Bagryanskaya, M.M. Shakirov, A.V. Zibarev, 

J. Fluorine Chem. 144 (2012) 118–123; doi: 10.1016/j.jfluchem.2012.08.002 



77 
 

[116] M. Budesinsky, V. Vanek, M. Dracinsky, R. Pohl, L. Postova-Slavetinska, V. 

Sychrovsky, . Picha, I. Cisarova, Tetrahedron 70 (2014) 3871–3886; doi: 

10.1016/j.tet.2014.04.047 

[117] Z. Žák, J. Marek, L. Keznikl, Z. Anorg. Allg. Chem. 622 (1996) 1101–1105; doi: 

10.1002/zaac.19966220628 

[118] L. Richtera, V. Jancik, D. Martínez-Otero, A. Pokluda, Z. Zak, J. Taraba, J. Touzin, 

Inorg. Chem. 53 (2014) 6569–6577; doi: 10.1021/ic500137z 

[119] L. Richtera, J. Taraba, J. Toužín, Z. Anorg. Allg. Chem. 629 (2003) 716–721; doi: 

10.1002/zaac.200390121 

[120] C. Ghiazza, L. Khrouz, C. Monnereau, T. Billard, A. Tlili, Chem. Commun. 54 (2018) 

9909–9912; doi: 10.1039/C8CC05256E 

[121] P.G. Jones, A. Chrapkowski, Private Communication to the Cambridge Structural 

Database (2004) Refcode YADVOP 

[122] H.-Q. Wu, S.-H. Luo, L. Cao, H.-N. Shi, B.-W. Wang, Z. Wang, Private 

Communication to the Cambridge Structural Database (2019) Refcode VIWNAT 

[123] H.J. Traesel, P.R. Olivato, J. Valenca, D.N.S. Rodrigues, J. Zukerman-Schpector, 

M.D. Colle, J. Mol. Struct. 1157 (2018) 29–39; doi: 10.1016/j.molstruc.2017.12.040 

[124] S. Kumar, N. Sharma, I.K. Maurya, A. Verma, S. Kumar, K.K. Bhasin, R.K. Sharma, 

New J. Chem. 41 (2017) 2919–2926; doi: 10.1039/C7NJ00338B 

[125] P.S. Engl, R. Senn, E. Otth, A. Togni, Organometallics 34 (2015) 1384–1395; doi: 

10.1021/acs.organomet.5b00137 

[126] D. Das, G. Roy, G. Mugesh, J. Med. Chem. 58 (2008) 7313–7317; doi: 

10.1021/jm800894m 

[127] W.-J. Chang and C.-M. Sun, Private Communication to the Cambridge Structural 

Database (2012) Refcode GOHPEA 



78 
 

[128] M.S. Afzal, J.-P. Pitteloud, D. Buccella, Chem. Commun. 50 (2014) 11358–11361; 

doi: 10.1039/C4CC04460F 

[129] G.A. Brown, K.M. Anderson, M. Murray, T. Gallagher, N.J. Hales, Tetrahedron 56 

(2000) 5579–5586; doi: 10.1016/S0040-4020(00)00408-7 

[130] G. Hua, J. Du, A.M.Z. Slawin, J.D. Woollins, Synlett 25 (2014) 2189–2195; doi: 

10.1055/s-0034-1378525 

[131] T. Laitalainen, T. Simonen, R. Kivekas, M. Klinga, J. Chem. Soc., Perkin Trans. 1 

(1983) 333–340; doi: 10.1039/p19830000333 

[132] K. Okuma, Y. Mori, T. Shigetomi, M. Tabuchi, K. Shioji, Y. Yokomori, Tetrahedron 

Lett. 48 (2007) 8311–8313; doi: 10.1016/j.tetlet.2007.09.120 

[133] S.J. Balkrishna, A.S. Hodage, S. Kumar, P. Panini, S. Kumar, RSC Adv. 4 (2015) 

11535–11538; doi: 10.1039/C4RA00381K 

[134] M. Iwasaki, N. Miki, Y. Tsuchiya, K. Nakajima, Y. Nishihara, Org. Lett. 19 (2017) 

1092–1095; doi: 10.1021/acs.orglett.7b00116 

[135] Y. S. Peng, H. S. Xu, P. Naumov, S.S.S. Raj, H.-K. Fun, I.A. Razak, S.W. Ng, Acta 

Crystallogr., Sect. C: Cryst. Struct. Commun. 56 (2000) 1386–1388; doi: 

10.1107/S0108270100011276 

[136] S. Sankari, P. Sugumar, P. Manisankar, S. Muthusubramanian, M.N. Ponnuswamy, 

Acta Crystallogr., Sect. E: Struct. Rep. Online 68 (2012) o871; doi: 

10.1107/S1600536812007027 

[137] K. Doudin, K.W. Tornrös, J. Mol. Struct. 1134 (2017) 611–616; doi: 

10.1016/j.molstruc.2016.12.067 

[138] C.J. Narangoda, T.R. Lex, M.A. Moore, C.D. McMillen, A. Kitaygorodskiy, J.E. 

Jackson, D.C. Whitehead, Org. Lett. 20 (2018) 8009–8013; doi: 10.1021/acs.orglett.8b03590 

https://doi.org/10.1039/C4CC04460F


79 
 

[139] S.S. Zade, S. Panda, H.B. Singh, R.B. Sunoj, R.J. Butcher, J. Org. Chem. 70 (2005) 

3693–3704; doi: 10.1021/jo0478656 

[140] U. Flörke; Private Communication to the Cambridge Structural Database (2019) 

Refcode KIXTUJ 

[141] A. Blaschette, M. Naveke, P.G. Jones, Chem. Zeit. 114 (1990) 384–386. 

[142] Q. Glenadel, C. Ghiazza, A. Tlili, T. Billard, Adv. Synth. Catal. 359 (2017) 3414–

3420; doi: 10.1002/adsc.201700904 

[143] G.M. Li, R.A. Zingaro, M. Segi, J.H. Reibenspies, T. Nakajima, Organometallics 16 

(1997) 756–762; doi: 10.1021/om960883w 

[144] M. Yamamura, T. Nabeshima, Bull. Chem. Soc. Jpn. 89 (2016) 42–49; doi: 

10.1246/bcsj.20150288 

[145] G. Hua, J. Du, A.M.Z. Slawin, J.D. Woollins, Chem. Sel. 1 (2016) 6810–6817; doi: 

10.1002/slct.201601577 

[146] G. Hua, J. Du, A.M.Z. Slawin, J.D. Woollins, Molecules 22 (2017) 46; doi: 

10.3390/molecules22010046 

[147] J.-B. Shen, X. Lv, J.-F. Chen, Y.-F. Zhou, G.-L. Zhao, Acta Crystallogr., Sect. E: 

Struct. Rep. Online 67 (2011) o803; doi: 10.1107/S1600536811007185 

[148] G.L. Sommen, A. Linden, H. Heimgartner, Tetrahedron 62 (2006) 3344–3354; doi: 

10.1016/j.tet.2006.01.077 

[149] T. Fellowes and J. M. White, CrystEngComm 21 (2019) 1539–1542; doi: 

10.1039/C8CE01853G 

[150] L. Dupont, O. Dideberg, P. Jacquemin, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 46 (1990) 484–486; doi: 10.1107/S0108270189007894 

[151] S.-X. Feng, C.-M. Yang, J.-L. Wang, J.-Y. Ma, Chem. Res. Appln. 30 (2018) 840–

845; doi: 10.3969/j.issn.1004-1656.2018.05.030 



80 
 

[152] K. P. Bhabak, G. Mugesh, Chem. Eur. J. 13 (2007) 4594–4601; doi: 

10.1002/chem.200601584 

[153] M. Piatek, B. Oleksyn, J. Sliwinski, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 51 (1995) 298–301; doi: 10.1107/S0108270193012983 

[154] R. Shukla, N. Claiser, M. Souhassou, C. Lecomte, S.J. Balkrishna, S. Kumar, D. 

Chopra, IUCrJ 5 (2018) 647–653; doi: 10.1107/S2052252518011041 

[155] L. Wang, Y. Xu, Z. Guo, X. Wei, IUCrData 2 (2017) x170532; doi: 

10.1107/S2414314617005326 

[156] X. Zhu, Y. Xu, H. Han, Z. Guo, X. Wei, Acta Crystallogr., Sect. E: Struct. Rep. 

Online 69 (2013) o1538; doi: 10.1107/S1600536813024744 

[157] H. Ungati, V. Govindaraj, M. Narayanan, G. Mugesh, Angew. Chem., Int. Ed. 58 

(2019) 8156–8160; doi: 10.1002/anie.201903958 

[158] S.J. Balkrishna, B.S. Bhakuni, D. Chopra, S. Kumar, Org. Lett. 12 (2010) 5394–5397; 

doi: 10.1021/ol102027j 

[159] M.J. Laws, C.H. Schiesser, J.M. White, S.-L. Zheng, Aust. J. Chem. 53 (2000) 277–

283; doi: 10.1071/CH99127 

[160] S.J. Balkrishna, B.S. Bhakuni, S. Kumar, Tetrahedron 67 (2011) 9565–9575; doi: 

10.1016/j.tet.2011.09.141 

[161] L. Dupont, P. Jacquemin, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 50 

(1994) 1801–1802; doi: 10.1107/S0108270194001691 

[162] V.A. Potapov, E.O. Kurkutov, M.V. Musalov, S.V. Amosova, Tetrahedron Lett. 51 

(2010) 5258–5261; doi: 10.1016/j.tetlet.2010.07.133 

[163] R.A. Bragg, J. Clayden, M. Bladon, O. Ichihara, Tetrahedron Lett. 42 (2001) 3411–

3414; doi: 10.1016/S0040-4039(01)00502-0 



81 
 

[164] S.E. Brantley, B. Gerlach, M.M. Olmstead, K.M. Smith, Tetrahedron Lett. 38 (1997) 

937–940; doi: 10.1016/S0040-4039(97)00002-6 

[165] I.V. Svistunova, G.O. Tretyakova, K.A. Gayvoronskaya, Phosphorus, Sulfur, Silicon, 

Relat. Elem. 192 (2017) 1177–1187; doi: 10.1080/10426507.2017.1354210 

[166] M.B. Hursthouse, D.S. Hughes, A.L. Redfern, D.W. Knight, Private Communication 

to the Cambridge Structural Database (2013) Refcode TELLIH 

[167] G. Roy, P.N. Jayaram, G. Mugesh, Chem. Asian J. 8 (2013) 1910–1921; doi 

10.1002/asia.201300274 

[168] O.R. Shangpliang, B. Kshiar, K. Wanniang, I.D. Marpna, T.M. Lipon, B.M. Laloo, B. 

Myrboh, J. Org. Chem. 83 (2018) 5829–5835; doi: 10.1021/acs.joc.8b00558 

[169] J. Yu, J.-H. Kim, H.W. Lee, V. Alexander, H.-C. Ahn, W.J. Choi, J. Choi, L.S. Jeong, 

Chem. Eur. J. 19 (2013) 5528–5532; doi: 10.1002/chem.201300741 

[170] G. Adiwidjaja, O. Schulze, J. Voss, J. Wirsching, Carbohydr. Res. 325 (2000) 107–

119; doi: 10.1016/S0008-6215(99)00321-3 

[171] Z. Majeed, W.R. McWhinnie, K. Paxton, T.A. Hamor, J. Organomet. Chem. 577 

(1999) 15–18; doi: 10.1016/S0022-328X(98)01019-5 

[172] Y.A. Getmanenko, T.G. Allen, H. Kim, J.M. Hales, B. Sandhu, M.S. Fonari, K.Yu. 

Suponitsky, Y. Zhang, V.N. Khrustalev, J.D. Matichaz, T.V. Timofeeva, S. Barlow, S.-H. 

Chi, J.W. Perry, S.R. Marder, Adv. Funct. Mater. 28 (2018) 1804073; doi: 

10.1002/adfm.201804073 

[173] P.C. Ho, J. Rafique, J. Lee, L.M. Lee, H.A. Jenkins, J.F. Britten, A.L. Braga, I. 

Vargas-Baca, Dalton Trans. 46 (2017) 6570–6579; doi: 10.1039/C7DT00612H 

[174] Y.-X. Xiao, X.-F. Liu, H.-S. Xu, J. Zhu Jun, Y.-Q. Huang, S.-Z. Hu, Chin. J. Struct. 

Chem. 16 (1997) 42–47. 



82 
 

[175] S.J. Balkrishna, S. Kumar, G.K. Azad, B.S. Bhakuni, P. Panini, N. Ahalawat, R.S. 

Tomar, M.R. Detty, S. Kumar, Org. Biomol. Chem. 12 (2014) 1215–1219; doi: 

10.1039/C4OB00027G 

[176] A. Gieren, V. Lamm, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 38 

(1982) 2605–2611; doi: 10.1107/S0567740882009443 

[177] M. Sbit, L. Dupont, O. Dideberg, C. Lambert, Acta Crystallogr., Sect. C: Cryst. 

Struct. Commun. 44 (1988) 340–342; doi: 10.1107/S0108270187010837 

[178] S.J. Balkrishna, Ch.D. Prasad, P. Panini, M.R. Detty, D. Chopra, S. Kumar, J. Org. 

Chem. 77 (2012) 9541–9552; doi: 10.1021/jo301486c 

[179] Z.-L. Zuo, Acta Crystallogr., Sect. E: Struct. Rep. Online 69 (2013) o636; doi: 

10.1107/S1600536813007526 

[180] I. Trentin, C. Schindler, C. Schulzke, Acta Crystallogr., Sect. E: Cryst. Commun. 74 

(2018) 840–845; doi: 10.1107/S2056989018007454 

[181] K. Sivapriya, P. Suguna, S. Shubashree, P.R. Sridhar, S. Chandrasekaran, Carbohydr. 

Res. 342 (2007) 1151–1158; doi: 10.1016/j.carres.2007.02.035 

[182] D. Sureshkumar, S. Koutha, S. Chandrasekaran, Eur. J. Org. Chem. (2007) 4543–

4551; doi: 10.1002/ejoc.200700357 

[183] P. Kuronen, T. Laitalainen, O. Orama, J. Heterocycl. Chem. 30 (1993) 961–965; doi: 

10.1002/jhet.5570300420 

[184] J.T. Lowe, A. Chandrasekaran, R.O. Day, W. Rosen, Chem. Commun. (2001) 1390–

1391; doi: 10.1039/b103499p 

[185] R.J. Adrien, R.W. Gable, B.F. Hoskins, D. Dakternieks, J. Organomet. Chem. 359 

(1989) 33–39; doi: 10.1016/0022-328X(89)85248-9 

[186] O. Foss, F. Kvammen, K. Marøy, J. Chem. Soc., Dalton Trans. (1985) 231–237; doi: 

10.1039/dt9850000231 



83 
 

[187] E.A. Meyers, R.A. Zingaro, N.L.M. Dereu, Z. Kristallogr. Cryst. Mater. 210 (1995) 

305; doi: 10.1524/zkri.1995.210.4.305 

[188] S. Kumar, S. Panda, H.B. Singh, G. Wolmershäuser, R.J. Butcher, Struct. Chem. 18 

(2007) 127–132; doi: 10.1007/s11224-006-9082-5 

[189] A.S. Hodage, P.P. Phadnis, A. Wadawale, K.I. Priyadarsini, V.K. Jain, Anal. Sci.: X-

Ray Struct. Anal. Online 25 (2009) 101–102; doi: 10.2116/xraystruct.25.101 

[190] D. Sureshkumar, V. Ganesh, S. Chandrasekaran, J. Org. Chem. 72 (2007) 5313–5319; 

doi: 10.1021/jo070705k 

[191] D.R. Garud, M. Koketsu, M. Ebihara, H. Ishihara, Acta Crystallogr., Sect. E: Struct. 

Rep. Online 62 (2006) o2133–o2134; doi: 10.1107/S1600536806015212 

[192] A. Chesney, M.R. Bryce, M.A. Chalton, A.S. Batsanov, J.A.K. Howard, J.-M. Fabre, 

L. Binet, S. Chakroune, J. Org. Chem. 61 (1996) 2877–2881; doi: 10.1021/jo951979n 

[193] D.M. Freudendahl, M. Iwaoka, T. Wirth, Eur. J. Org. Chem. (2010) 3934–3944; doi: 

10.1002/ejoc.201000514 

[194] M.J. Potrzebowski, M. Michalska, J. Blaszczyk, M.W. Wieczorek, W. Ciesielski, S. 

Kazmierski, J. Pluskowski, J. Org. Chem. 60 (1995) 3139–3148; doi: 10.1021/jo00115a033 

[195] J. Hildebrandt, T. Niksch, R. Trautwein, N. Hăfner, H. Görls, M.-C. Barth, M. Dürst, 

I.B. Runnebaum, W. Weigand, Phosphorus, Sulfur, Silicon, Relat. Elem. 192 (2017) 182–

186; doi: 10.1080/10426507.2016.1250760 

[196] A. Linden, Y. Zhou, H. Heimgartner, Acta Crystallogr., Sect. C: Cryst. Struct. Chem. 

70 (2014) 482–487; doi: 10.1107/S2053229614008237 

[197] M.W. Carland, C.H. Schiesser, J.M. White, Aust. J. Chem. 57 (2004) 97–100; doi: 

10.1071/CH03210 

[198] C.P. Prabhu, P.P. Phadnis, A.P. Wadawale, K.I. Priyadarsini, V.K. Jain, J. 

Organomet. Chem. 713 (2012) 42–50; doi: 10.1016/j.jorganchem.2012.04.014 



84 
 

[199] G.D. Morris, F.W.B. Einstein, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 42 

(1986) 1433–1435; doi: 10.1107/S0108270186092004 

[200] P. Maity, D. Kundu, R. Roy, B.C. Ranu, Org. Lett. 16 (2014) 4122–4125; doi: 

10.1021/ol501820e 

[201] G. Cooke, M.R. Bryce, M.C. Petty, D.J. Ando, M.B. Hursthouse, Synthesis (1993) 

465–467; doi: 10.1055/s-1993-25881  

[202] P. Kumar, V.S. Kashid, J.T. Mague, M.S. Balakrishna, Tetrahedron Lett. 55 (2014) 

5232–5235; doi: 10.1016/j.tetlet.2014.08.005 

[203] T. Shirahata, M. Kibune, H. Yoshino, T. Imakubo, Chem. Eur. J. 13 (2007) 7619–

7630; doi: 10.1002/chem.200700314 

[204] T. Imakubo, T. Shirahata, M. Kibune, Chem. Commun. (2004) 1590–1591; doi: 

10.1039/b403559c 

[205] K. Sivapriya, P. Suguna, S. Chandrasekaran, Tetrahedron Lett. 48 (2007) 2091–2095; 

doi: 10.1016/j.tetlet.2007.01.128 

[206] J. Beckmann, A. Duthie, Z. Anorg. Allg. Chem. 631 (2005) 1849–1855; doi: 

10.1002/zaac.200500167 

[207] A.S. Filatov, E. Block, M.A. Petrukhina, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 61 (2005) o596–o598; doi: 10.1107/S0108270105027587 

[208] V.P. Singh, J.-F. Poon, R.J. Butcher, L. Engman, Chem. Eur. J. 20 (2014) 12563–

12571; doi: 10.1002/chem.201403229 

[209] H. Ge, Q. Shen, Org. Chem. Front. 6 (2019) 2205–2209; doi: 10.1039/C8QO01249K 

[210] D. Dakternieks, R.W. Gable, B.F. Hoskins, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 45 (1989) 206–208; doi: 10.1107/S0108270188011126 

[211] J. Toužín, K. Neplechová, Z. Žák, M. Černík, Collect. Czech. Chem. Commun. 67 

(2002) 577–586; doi: 10.1135/cccc20020577 



85 
 

[212] B. Dahlén, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 30 (1974) 

647-651; doi: 10.1107/S0567740874003463 

[213] P.R. Prasad, H.B. Singh, R.J. Butcher, Molecules 20 (2015) 12670–12685; doi: 

10.3390/molecules200712670 

[214] N. Kamigata, Y. Nakamura, K. Kikuchi, I. Ikemoto, T. Shimizu, H. Matsuyama, J. 

Chem. Soc., Perkin Trans. 1 (1992) 1721–1728; doi: 10.1039/p19920001721 

[215] T. Takahashi, N. Nakao, T. Koizumi, Tetrahedron: Asymm. 8 (1997) 3293–3308; doi: 

10.1016/S0957-4166(97)00423-0 

[216] Y. Nakahima, T. Shimizu, K. Hirabayashi, N. Kamigata, M. Yasui, M. Nakazato, F. 

Iwasaki, Tetrahedron Lett. 45 (2004) 2301–2303; doi: 10.1016/j.tetlet.2004.01.107 

[217] D.S. Lamani, D. Bhowmick, G. Mugesh, Org. Biomol. Chem. 10 (2012) 7933–7943; 

doi: 10.1039/c2ob26156a 

[218] K. Maartmann-Moe, K.A. Sanderud, J. Songstad, Acta Chem. Scand. 38 (1984) 187–

200; doi: 10.3891/acta.chem.scand.38a-0187 

[219] M.R. Detty, H.R. Luss, Organometallics 11 (1992) 2157–2162; doi: 

10.1021/om00042a032 

[220] T.G. Back, B.P. Dyck, S. Nan, M. Parvez, Acta Crystallogr., Sect. C: Cryst. Struct. 

Commun. 54 (1998) 425–427; doi: 10.1107/S0108270197015916 

[221] X. Yan, R. Long, F. Luo, L. Yang, X. Zhou, Tetrahedron Lett. 58 (2017) 54–58; doi: 

10.1016/j.tetlet.2016.11.098 

[222] D.B. Werz, R. Gleiter, F. Rominger, Eur. J. Org. Chem. (2003) 151–154; doi: 

https://doi.org/10.1002/1099-0690(200301)2003:1<151::AID-EJOC151>3.0.CO;2-7 

[223] R. Kivekas, T. Laitalainen, T. Simonen, Acta Chem. Scand. 40 (1986) 98–100; doi: 

10.3891/acta.chem.scand.40b-0098 

https://doi.org/10.1002/1099-0690(200301)2003:1%3c151::AID-EJOC151%3e3.0.CO;2-7


86 
 

[224] L. Boudiba, L. Ouahab, A. Gouasmia, Tetrahedron Lett. 47 (2006) 3123–3125; doi: 

10.1016/j.tetlet.2006.02.145 

[225] C. Schindler, C. Schulzke, Inorg. Chem. Commun. 77 (2017) 80–82; doi: 

10.1016/j.inoche.2017.02.005 

[226] G. Hua, A.L. Fuller, A.M.Z. Slawin, J.D. Woollins, Eur. J. Org. Chem. (2010) 2607–

2615; doi: 10.1002/ejoc.201000075 

[227] R. Kapoor, P. Wadhawan, P. Kapooor, J.F. Sawyer, Can. J. Chem. 66 (1988) 2367–

2374; doi: 10.1139/v88-374 

[228] S.K. Tripathi, U. Patel, D. Roy, R.B. Sunoj, H.B. Singh, G. Wolmershäuser, R.J. 

Butcher, J. Org. Chem. 70 (2005) 9237–9247; doi: 10.1021/jo051309+ 

[229] S. Claeson, V. Langer, S. Allenmark, Chirality 12 (2000) 71–75; doi: 

10.1002/(SICI)1520-636X(2000)12:2<71::AID-CHIR3>3.0.CO;2-S 

[230] B. Dahlen, B. Lindgren, Acta Chem. Scand. 33 (1979) 403–405; doi: 

10.3891/acta.chem.scand.33a-0403 

[231] T. Maaninen, R. Laitinen, T. Chivers, Chem. Commun. (2002) 1812–1813; doi: 

10.1039/b205011k 

[232] J. Beck, P. Krieger-Beck, K. Kelm, Z. Naturforsch., B: Chem. Sci. 61 (2006) 123–

132. 

[233] H.-Y. Li, H.-F. Han, W.-J. Li, X.-H. Wei, Chin. J. Struct. Chem. 31 (2012) 910–914. 

[234] G. L. Sommen, A. Linden, H. Heimgartner, Helv. Chim. Acta 90 (2007) 641–651; 

doi: 10.1002/hlca.200790067 

[235] O. Jeannin, H.-T. Huynh, A.M.S. Riel, M. Fourmigué, New J. Chem. 42 (2018) 

10502–10509; doi: 10.1039/C8NJ00554K 

[236] S. Aboulkacem, D. Naumann, W. Tyrra, I. Pantenburg, Organometallics 31 (2012) 

1559–1565; doi: 10.1021/om201195j 



87 
 

[237] P. Arsenyan, J. Vasiljeva, S. Belyakov, E. Liepinsh, M. Petrova, Eur. J. Org. Chem. 

(2015) 5842–5855; doi: 10.1002/ejoc.201500582 

[238] T.M. Klapötke, B. Krumm, K. Polborn, Eur. J. Inorg. Chem. (1999) 1359–1366; doi: 

10.1002/(SICI)1099-0682(199908)1999:8<1359::AID-EJIC1359>3.3.CO;2-3 

[239] N. W. Alcock, J. F. Sawyer, Dalton Trans. (1980) 115–120; doi: 

10.1039/dt9800000115 

[240] S. Fritz, C. Ehm, D. Lentz, Inorg. Chem. 54 (2015) 5220–5231; doi: 

10.1021/acs.inorgchem.5b00107 

[241] K. Eichstaedt, A. Wasilewska, B. Wicher, M. Gdaniec, T. Polonski, Cryst. Growth 

Des. 16 (2016) 1282–1293; doi: 10.1021/acs.cgd.5b01356 

[242] K. Lekin, A.A. Leitch, A. Assoud, W. Yong, J. Desmarais, J.S. Tse, S. Desgreniers, 

R.A. Secco, R.T. Oakley, Inorg. Chem. 57 (2018) 4757–4770; doi: 

10.1021/acs.inorgchem.8b00485 

[243] M.A. Nascimento, E. Heyer, J.J. Clarke, H.J. Cowley, A. Alberola, N. Stephaniuk, 

J.M. Rawson, Angew. Chem., Int. Ed. 58 (2018) 1371–1375; doi: 10.1002/anie.201812132 

[244] A.M.S. Riel, O. Jeannin, O.B. Berryman, M. Fourmigué, Acta Crystallogr., Sect. B: 

Struct. Sci., Cryst. Eng. Mat. 75 (2019) 34–38; doi: 10.1107/S2052520618017778 

[245] J.D. Dunitz, R. Taylor, Chem. Eur. J. 3 (1997) 89–98; doi: 

org/10.1002/chem.19970030115 

[246] E.R.T. Tiekink, J. Zukerman-Schpector, CrystEngComm 11(2009) 2701–2711; doi: 

org/10.1039/B910209D 

[247] I. Caracelli, I. Haiduc, J. Zukerman-Schpector, E.R.T. Tiekink, Coord. Chem. Rev. 

257 (2013) 2863–2879; doi: org/10.1016/j.ccr.2013.05.022 

[248] I. Caracelli, J. Zukerman-Schpector, E.R.T. Tiekink, Coord. Chem. Rev. 256 (2012) 

412–438; doi: 10.1016/j.ccr.2011.10.021 

https://doi.org/10.1002/chem.19970030115
https://doi.org/10.1039/B910209D
https://doi.org/10.1016/j.ccr.2013.05.022


88 
 

[249] I.S. Đorđević, M. Popadić, M. Sarvan, M. Petković-Benazzouz, G.V. Janjić, Acta 

Crystallogr., Sect. B, Struct. Sci., Cryst. Eng. Mater. 76 (2020)122–136; doi: 

10.1107/S2052520619016287 

[250] E.R.T. Tiekink, Crystals 10 (2020) article no. 503; doi: 

https://doi.org/10.3390/cryst10060503 

[251] T. Clark, M. Hennemann, J.S. Murray, P. Politzer, P. J. Mol. Model. 13 (2007) 291–

296; doi: org/10.1007/s00894-006-0130-2 

[252] M.E. Brezgunova, J. Lieffrig, E. Aubert, S. Dahaoui, P. Fertey, S. Lebègue, J.G. 

Ángyán, M. Fourmigué, E. Espinosa, Cryst. Growth Des. 13 (2013) 3283–3289; doi: 

org/10.1021/cg400683u 

[253] K. Alhameedi, A. Karton, D. Jayatilaka, S. P. Thomas, IUCrJ 5 (2018) 635–646; doi: 

org/10.1107/S2052252518010758 

[254] X. Guo, X. An, Q. Li, Q. J. Phys. Chem. A 119 (2015) 3518–3527; doi: 

org/10.1021/acs.jpca.5b00783 

[255] P. Politzer, J. S. Murray, T. Clark, G. Resnati, Phys. Chem. Chem. Phys. 19 (2017) 

32166–32178; doi: org/10.1039/C7CP06793C 

[256] R. Wysokiński, M. Michalczyk, W. Zierkiewicz, S. Scheiner, Phys. Chem. Chem. 

Phys. 21 (2019) 10336-10346; doi: 10.1039/C9CP01759C 

[257] Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, 

Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, 

H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao, H. Yang, Nature 

582 (2020) 289–293; doi: org/10.1038/s41586-020-2223-y 

[258] H. Sies, M.J. Parnham, Free Radic. Biol. Med. 156 (2020) 107–112; doi: 

org/10.1016/j.freeradbiomed.2020.06.032 

https://doi.org/10.3390/cryst10060503


89 
 

[259] J. Struppe, Y. Zhang, S. Rozovsky, J. Phys. Chemistry B 119 (2015) 3643–3650; doi: 

10.1021/jp510857s 

[260] C.A. Bayse, S. Antony, Main Group Met. Chem. 6 (2007) 185–200, doi: 

10.1080/10241220801994700 

[261] R. Kheirabadi, M. Izadyar, M. J. Phys. Chem. A 120 (2016) 10108–10115; doi: 

10.1021/acs.jpca.6b11437 

 


