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Abstract 

Nitrophenols are amongst the widely used industrial chemicals worldwide; however, their 

hazardous effects on environment are a major concern nowadays. Therefore, the conversion of 

environmentally detrimental p-nitrophenol (PNP) to industrially valuable p-aminophenol (PAP), 

a prototype reaction, is an important organic transformation reaction. However, the traditional 

conversion of PNP to PAP is an expensive and environment unfriendly process. Here, we report 

a honeycomb-like porous network with zeolite-like channels formed by  the self-organization of 

copper, 1,10-phenanthroline, 4,4ʹ-bipyridine and water. This porous network effectively 

catalyzed the transformation of hazardous PNP to pharmaceutically valued PAP. In the presence 

of complex, PNP to PAP conversion occurred in a few minutes, which is otherwise a very 

sluggish process. To assess the kinetics, the catalytic conversion of PNP to PAP was studied at 

five different temperatures. The linearity of lnCt/Co vs temperature plot indicated pseudo-first-

order kinetics. The copper complex with zeolite like channels may find applications as a 

reduction catalyst both on laboratory and industrial scales, and in green chemistry for the 

remediation of pollutants.  

Keywords: Porous network; Zeolite-like channels; Copper complex; Catalyst
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1. Introduction

Nitrophenols are amongst the most widely used industrial chemicals worldwide due to their 

applications in explosives, pesticides, dyes, and rubber materials [1]. However, owing to 

their carcinogenic and hazardous nature, the US Environmental Protection Agency (EPA) 

has enlisted them amongst the top organic pollutants [2]. Once internalized in the 

bloodstream, nitrophenols can cause variety of problems including methemoglobinemia, 

decrease ATP production, lungs damage, effect the nervous system, dermatitis, hormonal 

disorders, renal failure, skin damages, and eyes irritations [3]. 

To remove this stable, water-soluble, and environmentally hazardous [4] material several 

strategies have been employed, including adsorption [5], microbial degradation [6], 

photocatalytic degradation [7], the electro-Fenton method [8], electrocoagulation [9] and 

electrochemical treatment [10]. The conversion of environmentally detrimental p-

nitrophenol (PNP) to industrially valuable p-aminophenol (PAP) is a very important 

organic transformation reaction. The latter being used in various antipyretic and analgesic 

drugs such as paracetamol, corrosion inhibitor, lubricant, and dyeing agent [11]. However, 

the traditional conversion of PNP to PAP is carried out in organic solvent under high 

pressure making this an expensive and environmentally non-friendly process [12].

To ensure the foregoing conversion in an inexpensive and environment-friendly manner, a 

smart strategy is usually adopted, that is, via a catalytic reduction in aqueous media. In this 

context, various metal-based nanocatalysts including those of Au [12-13], Ag [14], Pd [15], 

Cu [16], Zn, and Ni [17] have been used. To further enhance the stability and catalytic 

efficacy, these materials can be supported on polymers, oxides, resins, TiO2, SiO2, and 

carbon. Furthermore, some of these metals (e.g., Au, Pd, and Pt) are too expensive for 
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practical applications on a large scale. Literature studies reveal that photocatalytic 

reduction of PNP are mostly carried out by heterogeneous catalysis using various metal 

based nanostructures [18-20]. However, no homogenous catalyst has been reported so far 

to reduce PNP to PAP. 

Sparked by the challenge that coordination chemistry could be exploited to mimic 

naturally occurring three-dimensional materials [21], crystal engineers have responded 

with a literal plethora of metal-organic framework (MOF) sustained by a combination of 

covalent/dative bonding interactions between practically all available metals and a huge 

diversity in ligands [22]. The opportunities for tuning/fine tuning synthetic outcomes by 

combining metal centers, e.g., choice of metal, oxidation state and coordination geometry 

preference, with ligands, e.g., charged or neutral, variable donor atoms and denticity, are 

enormous.  Conversely, this variety of options coupled with the observation that reaction 

outcomes are sometimes dependent on the solvent, temperature, concentration of reagents, 

etc. [23], means there is practically an unlimited number of MOFs that can be generated. 

All this, of course, ignores two-dimensional coordination polymers, the focus of the present 

report, let alone one-dimensional chains. Links between lower-dimensional architectures 

can be anyone or a combination of noncovalent interactions [24], with hydrogen bonding 

obviously being prominent [25] but halogen bonding [26] and interactions involving 

“metalloligands” [27] also being important.

Recently copper based catalysts, owing to their impressive advantages over other transition metal 

catalysts, have received a significant attention. Their lower cost, readily availability, insensitivity 

to air, easy handling and generation of less waste make them versatile catalysts in various 

organic reaction like synthesis of enzymes [28], oxidative polymerization of aniline [29], 
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rearrangement reactions of aldoxime [30], reductions of nitroarenes [20] etc.  Furthermore, 

copper is the second abundant transition metal inside human body, and can be easily metabolized 

by the body metabolic system [31]. Its antimicrobial nature and biocompatible features make it a 

suitable  catalyst for biological applications [32].

Among the myriad of practical applications of MOF materials, owing to their zeolite-like pores, 

subsequent high surface area, and stability, relates to their high catalytic potential [21, 22], which 

indeed has inspired a large number of recent reviews on the utility of both transition metal- and 

lanthanide-based coordination polymers for catalytic applications [33]. Literature survey shows 

that the incorporation of PNP and BH4
- into the pores of a porous structure have also been 

observed in case of certain porous zeolites [34] and MOFs supported photocatalyst [35].

During our on-going studies in copper chemistry [36], a zero-dimensional copper diimine 

complex, whereby the dimer is connected into a three-dimensional architecture via 

conventional hydrogen bonding interactions to generate a honeycomb-like porous network, 

has been synthesized, characterized, and investigated as a catalyst for PNP reduction to 

PAN.

2. Materials and methods

Analytical grade chemicals were purchased from Merck (copper(II) chloride dihydrate) 

Sigma-Aldrich (1,10-phenanthroline, 4,4ʹ-bipyridine, sodium borohydride, silver nitrate, 

and ethanol) and Fluka (p-nitrophenol) companies.

2.1. Synthesis of the copper diimine complex

An ethanolic solution (25 mL) of 1,10-phenanthroline (0.58 g, 2.9 mmol) was added 

dropwise to a CuCl2.2H2O (0.50 g, 2.9 mmol) solution (25 mL) in the same solvent, and the 
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mixture was stirred for 30 min at room temperature. The light blue precipitates thus 

obtained were filtered off and dried in the open air. The precipitates (0.714 g, 2.27 mmol) 

were re-dissolved in distilled water in a two-necked flask and treated with AgNO3 (0.77 g, 

4.51 mmol) in the dark and stirred for 24 h. To remove AgCl, the solution was filtered and 

to this, an ethanolic solution of 4,4ʹ-bipyridine (0.35 g, 2.27 mmol) was added dropwise 

followed by reflux at 110 °C till the turbidity cleared (Scheme 1).  Blue crystals were 

obtained from the slow evaporation of the final filtered solution. Yield 78% (0.54 g); m.p. 

270-272 °C; FT-IR (cm-1): 3441 ν (O-H), 3040 ν (C-H)aromatic; 1659 ν (C=N); 1612 ν 

(C=C)aromatic; 1522 ν (ring vibration; 1494) ν (N-O)asym; 1305 ν (N-O)sym.

2.2. Characterization

Gallenkamp (UK) electrothermal melting point apparatus, UV-Visible spectrophotometer 

(Model TCC-240A, CAT. No. 204-05557) Shimadzu 1800 double beam (Japan) and Perkin 

Elmer Spectrum 1000 (USA) instruments were used for recording melting point, time-

dependent UV-Vis and FT-IR spectra, respectively.

2.3. Single crystal study

Intensity data for a blue block (0.08 x 0.20 x 30 mm) were measured at 100 K on a Bruker 

Venture Metal jet diffractometer using Ga K radiation ( = 1.34139 Å) so that 2max = 

54.9°. A total of 69840 absorptions corrected [37] data were collected of which 11307 were 

unique (Rint = 0.051) and of these, 9908 satisfied the I ≥ 2 (I) criterion. The structure was 

solved by SHELXT [38] and refined on F2 with SHELXL-2014/7 [39] integrated within 

Olex [40]. Non-hydrogen atoms were refined anisotropically and non-acidic H atoms were 

included in the model in their calculated positions. The water-H atoms were located and 
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refined without restraint. At this stage of the refinement, the presence of heavily disordered 

solvent molecules, i.e., ethanol and water were indicated. These were modeled employing 

the SQUEEZE routine [41] with full details given in the deposited CIF. The final 

refinement (701 parameters) had a weighting scheme of the form w = 1/[s2(Fo2) + 0.052P2 

+ 13.335P] where P = (Fo
2 + 2Fc

2)/3) on F2 and converged with R = 0.065 and wR2 = 0.171. 

The molecular structure diagram was generated with ORTEP for Windows [42] at the 

35% probability level and the packing diagrams were drawn with DIAMOND [43].

Crystal data for C54H44Cu2N12O8 (1); exclusive of unresolved solvent) M = 1116.09, 

monoclinic space group P21/c, a = 7.3006(2), b = 43.8747(10), c = 18.6593(4) Å,  = 

94.4600(10)°, V = 5958.7(2) Å3, Z = 4, Dx = 1.244 g cm-3,  = 4.166 mm-1.  CCDC deposition 

number: 1580602.

3. RESULTS AND DISCUSSIONS

3.1. Crystal and molecular structures

The molecular structure along with crystallographic numbering scheme for the binuclear 

copper complex is shown in Figure 1.  While the structure is devoid of crystallographic 

symmetry, it has pseudo two-fold symmetry with the axis bisecting the central C–C bond of 

the bridging 4,4ꞌ-bipyridyl (bipy) ligand and lying in the plane of defined by Cu1, Cu3, N1, 

and N31 atoms. The coordination geometry for the Cu1 atom is defined by N atoms of the 

chelating 1,10-phenanthroline (phen) ligand, an N atom of one end of the bridging bipy 

ligand, an N atom of a terminally bound bipy ligand, an aqua-O atom and one O atom of 

the nitrate anion. The immediate environment of the Cu1 atom is defined by the N4O2 

donor set and is best described as 5+1 as the Cu–O63 bond length is significantly longer 
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than the other bonds as seen from the data collated in Table 1; an analogous coordination 

geometry is seen for the Cu3 atom. Nevertheless, the coordination geometry is based on an 

octahedron. There is a small number of literature precedents for the aforementioned 

structure. Thus, the Cu2(phen)2(bipy)3 fragment has been observed in the structure of the 

copper(II) complex [(L-valinato-N,O)(bipy)(H2O) Cu(bipy)Cu(L-valinato-

N,O)(bipy)(OH2)](NO3)2.2H2O [44] but where the terminal bipy ligands have an anti-

disposition as opposed to syn in 1; the Cu atoms have square pyramidal geometries with 

aqua ligands in the apical positions. An anti-disposition is also found in the structure of 

[(phen)(bipyH)(H2O)Cu(bipy)Cu(phen)(bipyH)(OH2)][Mo12O40P]2.2H2O [45], i.e., with 

protonated terminally bound bipy ligands, where the bulky counter ions cannot approach 

the copper centers resulting in square pyramidal geometries again with the aqua ligands in 

the apical positions. Of particular interest in the structure of 1 is the mode of 

supramolecular aggregation occurring in the crystal.

As anticipated, conventional hydrogen bonding plays a significant role in the molecular 

packing of 1, (Table S1).  Thus, aqua-O–H⋯O(nitrate) hydrogen bonds, involving both 

pairs of independent aqua molecules and nitrate anions, leads to the formation of 

supramolecular chains along the a-axis. As viewed from Figure 2a, the chain is linear and 

as both terminal bipy molecules are oriented to the same side, the topology is of a U-tube. 

The remaining aqua-H atoms form hydrogen bonds to the non-coordinating pyridyl-N 

atoms derived from two symmetry-related U-tubes, of opposite orientation, to generate 

layers in the ac-plane and, crucially, approximately square channels parallel to a-axis 

direction (Figure 2b). The channels have disparate edge lengths and the maximum 

dimensions of the face, based on the Cu⋯Cu separations, are 8.8 x 11.0 x 12.0 x 13.1 Å. The 
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layers stack along the b-axis with the primary connections between them being of the type 

phen-C–H⋯O(nitrate) (Table S1).  In this way, additional channels are formed which is 

more symmetrical with each edge, again based on Cu⋯Cu separations, being 10.7 Å 

(Figure 2c).

3.2. Catalytic activity

The catalytic ability of 1 was evaluated for the PNP’s reduction into PAP using NaBH4, a 

prototype reaction. The reduction was followed readily by UV-visible spectroscopy as both 

reactant (PNP) and product (PAP) absorb in the UV-visible region at different λmax values 

[46]. Without a catalyst, the only obvious change noted was deepening of the yellow 

appearance of PNP upon the addition of NaBH4 accompanied by a redshift (317 nm to 400 

nm), signifying the formation of PNP ions (Figure S1). The absence of a peak pertinent to 

PAP, even after keeping the solution for several days, indicated that the reaction required a 

catalyst to proceed [47]. However, in the presence of 1, PNP to PAP conversion occurred 

after a few minutes as signified by the diminishing of the peak of PNP (400 nm) and the 

emergence of a new peak for PAP at 290 nm [48] (Figure 3a-e). In the induction period, the 

time required for the diffusion of reagents and catalyst, lnCt/Co value remains unchanged. 

Excess NaBH4 was used, and the linearity of lnCt/Co vs temperature relationship indicated 

pseudo first-order kinetics [49]. Afterward, the catalytic conversion of PNP to PAP was 

studied at five different temperatures (Figure 3a-e). The induction time decreases as does 

the reaction time, i.e. from 22 min (25 °C) to 5 min (45 °C).  Furthermore, a threefold 

increase in the apparent rate constant was witnessed as the temperature rose from 25 to 45 

°C (Figure 4). This correlated with an increase in the average kinetic energy of molecules at 

elevated temperature which in turn increases the diffusion rate of the reactants. Hence, an 
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increase in collision frequency and a fast diffusion rate triggered the conversion of 

reactants into products [50]. The Arrhenius equation i.e., lnk = ln A – Ea/RT, was used to 

calculate Ea by plotting lnk vs 1/T gives a slope Ea/RT that corresponds Ea value of 40.65 

kJmol-1 [51]. The kinetic parameters such as activation entropy (∆S#) and enthalpy (∆H#) 

were calculated using the Erying equation i.e., lnk/T = ln(kb/h) + ΔS#/R - ΔH#/R (1/T) [52], 

where T is the absolute temperature, kb is the Boltzmann constant, h is the Planck constant, 

and R is the ideal gas constant. The plot of lnkapp/T vs 1/T gives a straight line with slope -

ΔH#/R (Figure 5) and intercept (ln(kb/h) + ΔS#/R) from which -ΔH# (38.09 kJmol-1) and ΔS# 

(-197.51 Jmol-1 K-1) can be calculated (Table 2). The positive ΔH# value reflects the 

endothermic nature of the reduction process.

4. CONCLUSIONS

Crystallography established 1 to contain well-defined channels which, when evacuated can 

accommodate guest species to facilitate the conversion of environmentally detrimental PNP to 

pharmaceutically useful PAP. It can be envisaged that the cationic form of the complex 1, after 

ionization of NO3
-, has a high affinity for PNP and BH4¯ anions which are encapsulated in the 

pores to undergo the redox reaction. PNP to PAP conversion, which otherwise not possible in the 

absence of a suitable catalyst, completed within a few minutes in the presence of 1. This study 

demonstrated that 1 with zeolite like channels can find applications as a reduction catalyst both 

on laboratory and industrial scales, and catalyze reactions of environmental significance.  

 

ASSOCIATED CONTENT 

Supporting Information

Page 10 of 46

John Wiley & Sons

Applied Organometallic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Copper diimine-based honeycomb-like porous network

11

Supporting information contains details of the specified intermolecular interactions (Table S1) 

and UV-visible spectra of p-nitrophenol and p-nitrophenolate ion (Figure S1). The Supporting 

Information is available free of charge on the WileyPublications website.
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Abstract 

Nitrophenols are amongst the widely used industrial chemicals worldwide; however, their 

hazardous effects on environment are a major concern nowadays. Therefore, the conversion of 

environmentally detrimental p-nitrophenol (PNP) to industrially valuable p-aminophenol (PAP), 

a prototype reaction, is an important organic transformation reaction. However, the traditional 

conversion of PNP to PAP is an expensive and environment unfriendly process. Here, we report 

a honeycomb-like porous network with zeolite-like channels formed by  the self-organization of 

copper, 1,10-phenanthroline, 4,4ʹ-bipyridine and water. This porous network effectively 

catalyzed the transformation of hazardous PNP to pharmaceutically valued PAP. In the presence 

of complex, PNP to PAP conversion occurred in a few minutes, which is otherwise a very 

sluggish process. To assess the kinetics, the catalytic conversion of PNP to PAP was studied at 

five different temperatures. The linearity of lnCt/Co vs temperature plot indicated pseudo-first-

order kinetics. The copper complex with zeolite like channels may find applications as a 

reduction catalyst both on laboratory and industrial scales, and in green chemistry for the 

remediation of pollutants.  

Keywords: Porous network; Zeolite-like channels; Copper complex; Catalyst
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1. Introduction

Nitrophenols are amongst the most widely used industrial chemicals worldwide due to their 

applications in explosives, pesticides, dyes, and rubber materials [1]. However, owing to their 

carcinogenic and hazardous nature, the US Environmental Protection Agency (EPA) has enlisted 

them amongst the top organic pollutants [2]. Once internalized in the bloodstream, nitrophenols 

can cause variety of problems including methemoglobinemia, decrease ATP production, lungs 

damage, effect the nervous system, dermatitis, hormonal disorders, renal failure, skin damages, 

and eyes irritations [3]. 

To remove this stable, water-soluble, and environmentally hazardous [4] material several 

strategies have been employed, including adsorption [5], microbial degradation [6], 

photocatalytic degradation [7], the electro-Fenton method [8], electrocoagulation [9] and 

electrochemical treatment [10]. The conversion of environmentally detrimental p-nitrophenol 

(PNP) to industrially valuable p-aminophenol (PAP) is a very important organic transformation 

reaction. The latter being used in various antipyretic and analgesic drugs such as paracetamol, 

corrosion inhibitor, lubricant, and dyeing agent [11]. However, the traditional conversion of PNP 

to PAP is carried out in organic solvent under high pressure making this an expensive and 

environmentally non-friendly process [12].

To ensure the foregoing conversion in an inexpensive and environment-friendly manner, a smart 

strategy is usually adopted, that is, via a catalytic reduction in aqueous media. In this context, 

various metal-based nanocatalysts including those of Au [12-13], Ag [14], Pd [15], Cu [16], Zn, 

and Ni [17] have been used. To further enhance the stability and catalytic efficacy, these 

materials can be supported on polymers, oxides, resins, TiO2, SiO2, and carbon. Furthermore, 

some of these metals (e.g., Au, Pd, and Pt) are too expensive for practical applications on a large 
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scale. Literature studies reveal that photocatalytic reduction of PNP are mostly carried out by 

heterogeneous catalysis using various metal based nanostructures [18-20] . However, no 

homogenous catalyst has been reported so far to reduce PNP to PAP. 

Sparked by the challenge that coordination chemistry could be exploited to mimic naturally 

occurring three-dimensional materials [21], crystal engineers have responded with a literal 

plethora of metal-organic framework (MOF) sustained by a combination of covalent/dative 

bonding interactions between practically all available metals and a huge diversity in ligands [22]. 

The opportunities for tuning/fine tuning synthetic outcomes by combining metal centers, e.g., 

choice of metal, oxidation state and coordination geometry preference, with ligands, e.g., 

charged or neutral, variable donor atoms and denticity, are enormous.  Conversely, this variety of 

options coupled with the observation that reaction outcomes are sometimes dependent on the 

solvent, temperature, concentration of reagents, etc. [23], means there is practically an unlimited 

number of MOFs that can be generated. All this, of course, ignores two-dimensional 

coordination polymers, the focus of the present report, let alone one-dimensional chains. Links 

between lower-dimensional architectures can be anyone or a combination of noncovalent 

interactions [24], with hydrogen bonding obviously being prominent [25] but halogen bonding 

[26] and interactions involving “metalloligands” [27] also being important.

Recently copper based catalysts, owing to their impressive advantages over other transition metal 

catalysts, have received a significant attention. Their lower cost, readily availability, insensitivity 

to air, easy handling and generation of less waste make them versatile catalysts in various 

organic reaction like synthesis of enzymes [28], oxidative polymerization of aniline [29], 

rearrangement reactions of aldoxime [30] , reductions of nitroarenes [20]  etc.  Furthermore, 

copper is the second abundant transition metal inside human body, and can be easily metabolized 
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by the body metabolic system [31]. Its antimicrobial nature and biocompatible features make it a 

suitable  catalyst for biological applications [32].

Among the myriad of practical applications of MOF materials, owing to their zeolite-like pores, 

subsequent high surface area, and stability, relates to their high catalytic potential [21, 22], which 

indeed has inspired a large number of recent reviews on the utility of both transition metal- and 

lanthanide-based coordination polymers for catalytic applications [33]. Literature survey shows 

that the incorporation of PNP and BH4
- into the pores of a porous structure have also been 

observed in case of certain porous zeolites [34] and MOFs supported photocatalyst [35].

During our on-going studies in copper chemistry [36], a zero-dimensional copper diimine 

complex, whereby the dimer is connected into a three-dimensional architecture via conventional 

hydrogen bonding interactions to generate a honeycomb-like porous network, has been 

synthesized, characterized, and investigated as a catalyst for PNP reduction to PAN.

2. Materials and methods

Analytical grade chemicals were purchased from Merck (copper(II) chloride dihydrate) Sigma-

Aldrich (1,10-phenanthroline, 4,4ʹ-bipyridine, sodium borohydride, silver nitrate, and ethanol) 

and Fluka (p-nitrophenol) companies.

2.1. Synthesis of the copper diimine complex

An ethanolic solution (25 mL) of 1,10-phenanthroline (0.58 g, 2.9 mmol) was added dropwise to 

a CuCl2.2H2O (0.50 g, 2.9 mmol) solution (25 mL) in the same solvent, and the mixture was 

stirred for 30 min at room temperature. The light blue precipitates thus obtained were filtered off 

and dried in the open air. The precipitates (0.714 g, 2.27 mmol) were re-dissolved in distilled 

water in a two-necked flask and treated with AgNO3 (0.77 g, 4.51 mmol) in the dark and stirred 
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for 24 h. To remove AgCl, the solution was filtered and to this, an ethanolic solution of 4,4ʹ-

bipyridine (0.35 g, 2.27 mmol) was added dropwise followed by reflux at 110 °C till the turbidity 

cleared (Scheme 1).  Blue crystals were obtained from the slow evaporation of the final filtered 

solution. Yield 78% (0.54 g); m.p. 270-272 °C;  FT-IR (cm-1): 3441 ν (O-H), 3040 ν (C-

H)aromatic; 1659 ν (C=N); 1612 ν (C=C)aromatic; 1522 ν (ring vibration; 1494) ν (N-O)asym; 

1305 ν (N-O)sym.

2.2. Characterization

Gallenkamp (UK) electrothermal melting point apparatus, UV-Visible spectrophotometer 

(Model TCC-240A, CAT. No. 204-05557) Shimadzu 1800 double beam (Japan) and Perkin 

Elmer Spectrum 1000 (USA) instruments were used for recording melting point, time-dependent 

UV-Vis and FT-IR spectra, respectively.

2.3. Single crystal study

Intensity data for a blue block (0.08 x 0.20 x 30 mm) were measured at 100 K on a Bruker 

Venture Metal jet diffractometer using Ga K radiation ( = 1.34139 Å) so that 2max = 54.9°. A 

total of 69840 absorptions corrected [37] data were collected of which 11307 were unique (Rint = 

0.051) and of these, 9908 satisfied the I ≥ 2 (I) criterion. The structure was solved by 

SHELXT[38] and refined on F2 with SHELXL-2014/7 [39] integrated within Olex [40]. Non-

hydrogen atoms were refined anisotropically and non-acidic H atoms were included in the model 

in their calculated positions. The water-H atoms were located and refined without restraint. At 

this stage of the refinement, the presence of heavily disordered solvent molecules, i.e., ethanol 

and water, were indicated. These were modeled employing the SQUEEZE routine [41] with full 

details given in the deposited CIF. The final refinement (701 parameters) had a weighting 
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scheme of the form w = 1/[s2(Fo2) + 0.052P2 + 13.335P] where P = (Fo
2 + 2Fc

2)/3) on F2 and 

converged with R = 0.065 and wR2 = 0.171. The molecular structure diagram was generated with 

ORTEP for Windows [42] at the 35% probability level and the packing diagrams were drawn 

with DIAMOND [43].

Crystal data for C54H44Cu2N12O8 (1); exclusive of unresolved solvent) M = 1116.09, monoclinic 

space group P21/c, a = 7.3006(2), b = 43.8747(10), c = 18.6593(4) Å,  = 94.4600(10)°, V = 

5958.7(2) Å3, Z = 4, Dx = 1.244 g cm-3,  = 4.166 mm-1.  CCDC deposition number: 1580602.

3. RESULTS AND DISCUSSIONS

3.1. Crystal and molecular structures

The molecular structure along with crystallographic numbering scheme for the binuclear copper 

complex is shown in Figure 1.  While the structure is devoid of crystallographic symmetry, it has 

pseudo two-fold symmetry with the axis bisecting the central C–C bond of the bridging 4,4ꞌ-

bipyridyl (bipy) ligand and lying in the plane of defined by Cu1, Cu3, N1, and N31 atoms. The 

coordination geometry for the Cu1 atom is defined by N atoms of the chelating 1,10-

phenanthroline (phen) ligand, an N atom of one end of the bridging bipy ligand, an N atom of a 

terminally bound bipy ligand, an aqua-O atom and one O atom of the nitrate anion. The 

immediate environment of the Cu1 atom is defined by the N4O2 donor set and is best described 

as 5+1 as the Cu–O63 bond length is significantly longer than the other bonds as seen from the 

data collated in Table 1; an analogous coordination geometry is seen for the Cu3 atom. 

Nevertheless, the coordination geometry is based on an octahedron. There is a small number of 

literature precedents for the aforementioned structure. Thus, the Cu2(phen)2(bipy)3 fragment has 

been observed in the structure of the copper(II) complex [(L-valinato-N,O)(bipy)(H2O) 
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Cu(bipy)Cu(L-valinato-N,O)(bipy)(OH2)](NO3)2.2H2O [44] but where the terminal bipy ligands 

have an anti-disposition as opposed to syn in 1; the Cu atoms have square pyramidal geometries 

with aqua ligands in the apical positions. An anti-disposition is also found in the structure of 

[(phen)(bipyH)(H2O)Cu(bipy)Cu(phen)(bipyH)(OH2)][Mo12O40P]2.2H2O [45], i.e., with 

protonated terminally bound bipy ligands, where the bulky counter ions cannot approach the 

copper centers resulting in square pyramidal geometries again with the aqua ligands in the apical 

positions. Of particular interest in the structure of 1 is the mode of supramolecular aggregation 

occurring in the crystal.

As anticipated, conventional hydrogen bonding plays a significant role in the molecular packing 

of 1, (Table S1).  Thus, aqua-O–H⋯O(nitrate) hydrogen bonds, involving both pairs of 

independent aqua molecules and nitrate anions, leads to the formation of supramolecular chains 

along the a-axis. As viewed from Figure 2a, the chain is linear and as both terminal bipy 

molecules are oriented to the same side, the topology is of a U-tube. The remaining aqua-H 

atoms form hydrogen bonds to the non-coordinating pyridyl-N atoms derived from two 

symmetry-related U-tubes, of opposite orientation, to generate layers in the ac-plane and, 

crucially, approximately square channels parallel to a-axis direction (Figure 2b). The channels 

have disparate edge lengths and the maximum dimensions of the face, based on the Cu⋯Cu 

separations, are 8.8 x 11.0 x 12.0 x 13.1 Å. The layers stack along the b-axis with the primary 

connections between them being of the type phen-C–H⋯O(nitrate) (Table S1).  In this way, 

additional channels are formed which is more symmetrical with each edge, again based on 

Cu⋯Cu separations, being 10.7 Å (Figure 2c).
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3.2. Catalytic activity

The catalytic ability of 1 was evaluated for the PNP’s reduction into PAP using NaBH4, a 

prototype reaction. The reduction was followed readily by UV-visible spectroscopy as both 

reactant (PNP) and product (PAP) absorb in the UV-visible region at different λmax values [46]. 

Without a catalyst, the only obvious change noted was deepening of the yellow appearance of 

PNP upon the addition of NaBH4 accompanied by a red shift (317 nm to 400 nm), signifying the 

formation of PNP ions (Figure S1). The absence of a peak pertinent to PAP, even after keeping 

the solution for several days, indicated that the reaction required a catalyst to proceed [47]. 

However, in the presence of 1, PNP to PAP conversion occurred after a few minutes as signified 

by the diminishing of the peak of PNP (400 nm) and the emergence of a new peak for PAP at 

290 nm [48] (Figure 3a-e). In the induction period, the time required for the diffusion of reagents 

and catalyst, lnCt/Co value remains unchanged. Excess NaBH4 was used, and the linearity of 

lnCt/Co vs temperature relationship indicated pseudo first-order kinetics [49]. Afterward, the 

catalytic conversion of PNP to PAP was studied at five different temperatures (Figure 3a-e). The 

induction time decreases as does the reaction time, i.e. from 22 min (25 °C) to 5 min (45 °C).  

Furthermore, a threefold increase in the apparent rate constant was witnessed as the temperature 

rose from 25 to 45 °C (Figure 4). This correlated with an increase in the average kinetic energy 

of molecules at elevated temperature which in turn increases the diffusion rate of the reactants. 

Hence, an increase in collision frequency and a fast diffusion rate triggered the conversion of 

reactants into products [50]. The Arrhenius equation i.e., lnk = ln A – Ea/RT, was used to 

calculate Ea by plotting lnk vs 1/T gives a slope Ea/RT that corresponds Ea value of 40.65 kJmol-1 

[51]. The kinetic parameters such as activation entropy (∆S#) and enthalpy (∆H#) were calculated 

using the Erying equation i.e., lnk/T = ln(kb/h) + ΔS#/R - ΔH#/R (1/T) [52], where T is the 
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absolute temperature, kb is the Boltzmann constant, h is the Planck constant, and R is the ideal 

gas constant. The plot of lnkapp/T vs 1/T gives a straight line with slope -ΔH#/R (Figure 5) and 

intercept (ln(kb/h) + ΔS#/R) from which -ΔH# (38.09 kJmol-1) and ΔS# (-197.51 Jmol-1 K-1) can 

be calculated (Table 2). The positive ΔH# value reflects the endothermic nature of the reduction 

process.

4. CONCLUSIONS

Crystallography established 1 to contain well-defined channels which, when evacuated can 

accommodate guest species to facilitate the conversion of environmentally detrimental PNP to 

pharmaceutically useful PAP. It can be envisaged that the cationic form of the complex 1, after 

ionization of NO3
-, has a high affinity for PNP and BH4¯ anions which are encapsulated in the 

pores to undergo the redox reaction. PNP to PAP conversion, which otherwise not possible in the 

absence of a suitable catalyst, completed within a few minutes in the presence of 1. This study 

demonstrated that 1 with zeolite like channels can find applications as a reduction catalyst both 

on laboratory and industrial scales, and catalyze reactions of environmental significance.  
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Figure Caption

Figure 1. Molecular structure of the binuclear copper complex, 1.

Figure 2. Molecular packing for 1: (a) a view of the supramolecular chain along the a-axis 

mediated by aqua-O–H⋯O(nitrate) hydrogen bonding, shown as orange dashed lines, (b) a 

view of the supramolecular layer in the ac-plane with aqua-O–H⋯N(pyridyl) hydrogen 

bonds shown as blue dashed lines (non-participating H atoms have been omitted), and (c) a 

view in projection down the a-axis of the unit cell contents highlighting the channels parallel 

to the a-axis.

Figure 3. Time-dependent UV-vis spectra for the reduction of PNP to PAP at five different 

temperatures: (a) 25, (b) 30, (c) 35, (d) 40 and (e) 45 °C.

Figure 4. ln Ct/Co vs time graph for PNP conversion to PAP at different temperatures.

Figure 5. Plots of (a) Kapp vs temperature, (b) Inkapp vs 1/T (c) Inkapp/T vs. 1/T.

Scheme 1. Synthesis of homobimetallic copper complex, 1.

Table 1. Selected geometric parameters (Å, °) for 1.

Table 2. Kinetic parameters for the conversion of PNP to PAP.
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Figure 1

Figure 2
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Figure 3
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Figure 4
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Figure 5
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Table 1

Parameters Cu1 Cu3

Cu-N(bridging bipy) 2.009(3) 1.995(3)

Cu–N(terminal bipy) 2.010(3) 2.019(3)

Cu–N(phen, trans to terminal bipy) 2.018(3) 2.015(3)

Cu–N(phen, trans to bridging bipy) 2.024(3) 2.037(3)

Cu–O(aqua) 2.265(3) 2.280(3)

Cu–O(nitrate) 2.745(3) 2.718(3)

Table 2

Temp 
(˚C)

Kapp

(min-1)

Ea (kJ/mol) ΔH#

(kJ/mol)
ΔS#

(J/mol.K)

TOF

(min-1)

25 0.259 40.65 38.09 -197.51 0.0024

30 0.428 - - - 0.0040

35 0.532 - - - 0.0075

40 0.652 - - - 0.0087

45 0.759 - - - 0.010
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Supplementary Information 

A copper diimine-based honeycomb-like porous network as an 

efficient reduction catalyst

Abrar Ahmada, Syed Niaz Ali Shaha, Mehwish Arshada, Francine Bélanger-Gariepyb, Edward 

R.T. Tiekinkc, Zia-ur-Rehmana*

a Department of Chemistry Quaid-i-Azam University Islamabad-45320, Pakistan. 

b Département de Chimie, Université de Montréal, Montreal, Canada. 

c Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar 

Sunway, Selangor Darul Ehsan, Malaysia

*Corresponding author: Zia-ur-Rehman (zrehman@qau.edu.pk / hafizqau@yahoo.com), Tel: 

92-(051)90642245   Fax: 92-(051)90642241

Table S1.  Details of the specified intermolecular interactions (A–H…B; Å, °).

A H B A‒B A...B A…B A‒B…H Symmetry
O1 H1A N34 0.94(9) 1.95(9) 2.851(5) 162(9) -1+x, 1½-y, -½+z
O1 H1B O61 0.74(7) 2.18(7) 2.802(4) 142(8) -1+x, y, z
O3 H3A N4 0.94(7) 1.90(6) 2.826(5) 168(6) 1+x, 1½-y, ½+z
O3 H3B O71 0.80(6) 1.98(6) 2.773(4) 176(5) 1+x, y, z
C3 H3 O73 0.95 2.56 3.435(6) 154 -x, 1-y, 1-z
C33 H33 O62 0.95 2.42 3.361(5) 169 1-x, 1-y, 1-z
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Method for conversion of PNP into PAP 

First of all, UV-vis spectrum of an aqueous solution of PNP (95µM) was recorded.  0.2 g of 

sodium borohydride was then added to a 25 mL aqueous solution of PNP (95µM) in a beaker 

(stock solution) from which 3 mL was pipetted out in a UV cuvette and UV-Vis spectrum was 

recorded again after an interval of 30 min and 24 h. To this solution, 0.12 mL of catalyst (36µM) 

was added followed by recording UV-vis spectra at different temperatures. 

Figure S1. UV-visible spectra of p-nitrophenol (95 μM) and p-nitrophenolate anion in water at 
room temperature. 
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checkCIF/PLATON report 

Structure factors have been supplied for datablock(s) rehma84

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE
FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED
CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.        CIF dictionary        Interpreting this report

Datablock: rehma84 

Bond precision: C-C = 0.0063 A Wavelength=1.34139

Cell: a=7.3006(2) b=43.8747(10) c=18.6593(4)
alpha=90 beta=94.460(1) gamma=90

Temperature: 100 K

Calculated Reported
Volume 5958.7(2) 5958.7(2)
Space group P 21/c P 1 21/c 1 
Hall group -P 2ybc -P 2ybc 

Moiety formula
C54 H44 Cu2 N12 O8 [+ 
solvent]

C54 H44 Cu2 N12 O8

Sum formula
C54 H44 Cu2 N12 O8 [+ 
solvent]

C54 H44 Cu2 N12 O8

Mr 1116.12 1116.09
Dx,g cm-3 1.244 1.244
Z 4 4
Mu (mm-1) 4.168 4.166
F000 2296.0 2296.0
F000’ 2278.64
h,k,lmax 8,53,22 8,53,22
Nref 11319 11307 
Tmin,Tmax 0.423,0.717 0.418,0.751
Tmin’ 0.249

Correction method= # Reported T Limits: Tmin=0.418 Tmax=0.751
AbsCorr = MULTI-SCAN

Data completeness= 0.999 Theta(max)= 54.916

R(reflections)= 0.0646( 9908) wR2(reflections)= 0.1710( 11307)

S = 1.103 Npar= 701
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The following ALERTS were generated. Each ALERT has the format
       test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

 Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for    C33    --  C34     ..        5.3 s.u.  
PLAT234_ALERT_4_C Large Hirshfeld Difference C5     --  C6      ..       0.17 Ang.  
PLAT341_ALERT_3_C Low Bond Precision on  C-C Bonds ...............    0.00625 Ang.  
PLAT415_ALERT_2_C Short Inter D-H..H-X       H1B    ..  H27     ..       2.11 Ang.  
PLAT906_ALERT_3_C Large K value in the Analysis of Variance ......      3.168 Check 
PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=  0.600          6 Report
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers ....          1 Check 

 Alert level G
ABSMU01_ALERT_1_G  Calculation of _exptl_absorpt_correction_mu
                not performed for this radiation type.
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT  Unusually Large      13.34 Why ? 
PLAT606_ALERT_4_G VERY LARGE Solvent Accessible VOID(S) in Structure        ! Info

Author Response: The crystal contains highly disordered solvent (ETOH, H20)
which was difficult to model. Accordingly, the MASK/OLEX2 method was used to
account for the unmodelled electron density corresponding to the disordered solvent.
The potential solvent volume of 1660.6 Ang^3^ corresponds to 27.9% of the unit cell
volume. The calculations accounted for approximately 581.3 electrons in the unit
cell. Full details are given under "_smtbx_masks_special_details"

PLAT794_ALERT_5_G Tentative Bond Valency for Cu1     (II)    .....       2.16 Info  
PLAT794_ALERT_5_G Tentative Bond Valency for Cu3     (II)    .....       2.15 Info  
PLAT868_ALERT_4_G ALERTS Due to the use of _smtbx_masks Suppressed          ! Info 
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).          1 Note  
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L=  0.600          6 Note  
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF ....          1 Note  
PLAT961_ALERT_5_G Dataset Contains no Negative Intensities .......     Please Check
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.          1 Info  
PLAT984_ALERT_1_G The  C-f’=     0.015 Deviates from the B&C-Value      0.014 Check 
PLAT984_ALERT_1_G The Cu-f’=    -2.917 Deviates from the B&C-Value     -2.797 Check 
PLAT984_ALERT_1_G The  O-f’=     0.041 Deviates from the B&C-Value      0.039 Check 
PLAT985_ALERT_1_G The Cu-f"=     3.694 Deviates from the B&C-Value      3.688 Check 

   0 ALERT level A = Most likely a serious problem - resolve or explain
   0 ALERT level B = A potentially serious problem, consider carefully
   7 ALERT level C = Check. Ensure it is not caused by an omission or oversight
  15 ALERT level G = General information/check it is not something unexpected

   5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
   4 ALERT type 2 Indicator that the structure model may be wrong or deficient
   6 ALERT type 3 Indicator that the structure quality may be low
   4 ALERT type 4 Improvement, methodology, query or suggestion
   3 ALERT type 5 Informative message, check
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http://journals.iucr.org/services/cif/checking/PLAT794.html
http://journals.iucr.org/services/cif/checking/PLAT794.html
http://journals.iucr.org/services/cif/checking/PLAT868.html
http://journals.iucr.org/services/cif/checking/PLAT910.html
http://journals.iucr.org/services/cif/checking/PLAT912.html
http://journals.iucr.org/services/cif/checking/PLAT913.html
http://journals.iucr.org/services/cif/checking/PLAT961.html
http://journals.iucr.org/services/cif/checking/PLAT978.html
http://journals.iucr.org/services/cif/checking/PLAT984.html
http://journals.iucr.org/services/cif/checking/PLAT984.html
http://journals.iucr.org/services/cif/checking/PLAT984.html
http://journals.iucr.org/services/cif/checking/PLAT985.html


For Peer Review

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the
minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement
strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more
serious problems it may be necessary to carry out additional measurements or structure
refinements. However, the purpose of your study may justify the reported deviations and the more
serious of these should normally be commented upon in the discussion or experimental section of a
paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify
outliers and unusual parameters, but every test has its limitations and alerts that are not important
in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no
aspects of the results needing attention. It is up to the individual to critically assess their own
results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals 

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs
submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied 
Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta
Crystallographica Section C or E or IUCrData, you should make sure that full publication checks
are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals 

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to
CIF submission.

PLATON version of 13/08/2017; check.def file version of 27/07/2017 
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Datablock rehma84 - ellipsoid plot
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Data Availability Statement

The authors confirm that the data supporting the findings of this study are available within the 
article and its supplementary materials.
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