Chien Ing Yeo and Edward R.T. Tiekink* Crystal structure of tetrakis (N-(2-hydroxyethyl)-N-isopropylcarbamodithioato- $\kappa S, S'$)-($\mu_2(2$ -(pyridin-4-yl)vinyl)pyridine- $\kappa N, N'$) dicadmium(II), $C_{36}H_{58}Cd_2N_6O_4S_8$

https://doi.org/10.1515/ncrs-2020-0355 Received July 14, 2020; accepted August 2, 2020; available online August 13, 2020

Abstract

 $C_{36}H_{58}Cd_2N_6O_4S_8$, monoclinic, $P2_1/c$ (no. 14), a =7.82927(4) Å, b = 11.64209(5) Å, c = 26.2493(1) Å, $\beta = 95.6985(4)^{\circ}$, V = 2380.775(18) Å³, Z = 2, $R_{gt}(F) = 0.0158$, $wR_{\rm ref}(F^2) = 0.0411, T = 100(2)$ K.

CCDC no.: 2020556

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.09 \times 0.07 \times 0.06~\text{mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	10.8 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	54794, 4261, 0.035
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 4150
N(param) _{refined} :	263
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
Cd	0.71091(2)	0.62352(2)	0.37053(2)	0.01250(4)
S 1	0.93273(5)	0.46304(3)	0.36641(2)	0.01989(9)
S 2	0.66387(5)	0.51256(3)	0.28132(2)	0.01588(8)
S 3	0.59248(5)	0.82372(3)	0.34060(2)	0.01447(8)
S 4	0.83252(5)	0.78543(3)	0.43382(2)	0.01618(8)
01	1.38063(14)	0.32142(10)	0.30949(5)	0.0246(3)
H10	1.463(2)	0.3618(17)	0.3023(9)	0.037*
02	0.39500(17)	1.18190(11)	0.39613(5)	0.0288(3)
H20	0.387(3)	1.2296(17)	0.3722(7)	0.043*
N1	0.91388(16)	0.35621(11)	0.27654(5)	0.0129(2)
N2	0.72959(16)	0.99297(11)	0.39879(5)	0.0148(3)
N3	0.49446(16)	0.56317(11)	0.41659(5)	0.0141(3)
C1	0.84387(18)	0.43496(12)	0.30488(5)	0.0122(3)
C2	1.07853(19)	0.30102(13)	0.29495(6)	0.0146(3)
H2A	1.092294	0.229538	0.275341	0.018*
H2B	1.077394	0.280154	0.331474	0.018*
С3	1.2294(2)	0.38057(13)	0.28892(6)	0.0184(3)
H3A	1.236134	0.398740	0.252325	0.022*
H3B	1.216146	0.453264	0.307692	0.022*
C4	0.8292(2)	0.31936(14)	0.22592(6)	0.0188(3)
H4	0.720516	0.364455	0.219564	0.023*
C5	0.9371(3)	0.3474(3)	0.18334(8)	0.0648(9)
H5A	0.966824	0.429224	0.184699	0.097*
H5B	0.872450	0.330009	0.150343	0.097*
H5C	1.042384	0.301402	0.187192	0.097*
C6	0.7792(4)	0.19359(18)	0.22774(10)	0.0610(8)
H6A	0.883024	0.146345	0.233226	0.091*
H6B	0.714490	0.171961	0.195282	0.091*
H6C	0.707881	0.181253	0.255881	0.091*
C7	0.71972(19)	0.87986(12)	0.39222(6)	0.0122(3)

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 2 (cont	inued)
---------------	--------

Atom	x	у	Z	U _{iso} */U _{eq}
C8	0.6260(2)	1.06950(13)	0.36309(6)	0.0190(3)
H8A	0.633780	1.042043	0.327697	0.023*
H8B	0.676229	1.147570	0.365770	0.023*
C9	0.4359(2)	1.07717(14)	0.37244(7)	0.0228(3)
H9A	0.364495	1.069806	0.339305	0.027*
H9B	0.407500	1.012232	0.394437	0.027*
C10	0.8360(2)	1.04509(13)	0.44299(6)	0.0181(3)
H10	0.910508	0.982526	0.459073	0.022*
C11	0.7238(3)	1.0859(2)	0.48308(7)	0.0358(5)
H11A	0.647280	1.146812	0.468641	0.054*
H11B	0.796295	1.115835	0.512705	0.054*
H11C	0.655231	1.021539	0.493863	0.054*
C12	0.9551(3)	1.1375(2)	0.42606(8)	0.0454(6)
H12A	1.013971	1.108793	0.397360	0.068*
H12B	1.040098	1.157349	0.454640	0.068*
H12C	0.888032	1.205840	0.415244	0.068*
C13	0.4663(2)	0.45336(13)	0.42853(6)	0.0147(3)
H13	0.544779	0.396618	0.419317	0.018*
C14	0.3275(2)	0.41893(13)	0.45375(6)	0.0149(3)
H14	0.312198	0.340184	0.461621	0.018*
C15	0.21064(18)	0.50104(13)	0.46745(5)	0.0121(3)
C16	0.2430(2)	0.61562(13)	0.45590(6)	0.0154(3)
H16	0.168084	0.674494	0.465227	0.019*
C17	0.3841(2)	0.64267(13)	0.43092(6)	0.0163(3)
H17	0.404434	0.721045	0.423460	0.020*
C18	0.05861(19)	0.46486(13)	0.49150(5)	0.0130(3)
H18	0.041645	0.384654	0.495370	0.016*

of the atoms including atomic coordinates and displacement parameters.

Source of material

Cd[S₂CN(iPr)CH₂CH₂OH]₂ [5] (0.235 g, 0.5 mmol) in acetonitrile (3 mL) and 1,2-di(4-pyridyl)ethylene (Sigma Aldrich; 0.091 g, 0.5 mmol) in acetonitrile (3 mL) were added to a wide neck 10 mL vial equipped with a magnetic stirring bar, and subject to microwave heating on an Anton Paar Monowave 450 with the following parameters: spinning rate = 1000 rpm, ramp from room temperature to 70 °C in 30 mins, holding for 2 h, followed by cooling to 60 °C and left for slow evaporation at room temperature; crystals formed after 3 weeks.

Yield: 0.171 g (61%, based on Cd). **M. pt** (Stuart melting point apparatus SMP30): 466–467 K. ¹**H NMR** (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane in CDCl₃ solution at 298 K, ppm): δ 8.70 (dd, 4H, aryl-NCH, ²*J*_{HH} = 6.20 Hz, ⁴*J*_{HH} = 3.00 Hz), 7.44 (dd, 4H, aryl-CCH, ²*J*_{HH} = 6.24 Hz, ⁴*J*_{HH} = 3.04 Hz), 7.24 (s, 2H, = CH), 8.70 (sept, 4H, NCH, *J*_{HH} = 6.20 Hz), 4.02–3.95 (m, br, 16H, CH₂), 2.44 (s, br, 4H, OH), 1.28 (d, 24H, CH₃, *J*_{HH} = 6.70 Hz). ¹³C{¹H} NMR (as for ¹H NMR): δ 204.9 (S₂C),

150.4 (aryl-Cq), 143.7 (aryl-CNC), 130.7 (=CH), 121.4 (aryl-CCC), 60.9 (OCH₂), 58.0 (NCH₂), 51.0 (NCH), 20.3 (CH₃).

Experimental details

The carbon-bound H-atoms were placed in calculated positions (C–H = 0.95–1.00 Å) and were included in the refinement in the riding model approximation, with $U_{\rm iso}$ (H) set to 1.2–1.5 $U_{\rm eq}$ (C). The O-bound H atoms were refined with O–H = 0.84 ± 0.01 Å and with $U_{\rm iso}$ (H) = 1.5 $U_{\rm eq}$ (O).

Comment

In common with most cadmium dithiocarbamate. $Cd(S_2CNRR')_2$, structures [6], the species with R = isopropyland $R' = CH_2CH_2OH$ is known to associate into a dimer formulated as $[Cd(S_2CN(iPr)CH_2CH_2OH)_2]_2$ as a result of equal numbers of tridentate-µ2- and chelating-dithiocarbamate ligands leading to five-coordinate Cd centres [5, 7]. However, a kinetic form has also been characterised for this compound [5, 7] which is a rare example of a one-dimensional coordination polymer for cadmium dithiocarbamates [5-8]. Experiments show the polymers to convert to the dimeric form with the egress of time. It is now well established [9] that the addition of potentially bridging bi-pyridyl type molecules (NN) will disrupt the above self-association to form onedimensional coordination polymers in the case of 1:1 adducts, i.e. $\{Cd(S_2CNRR')_2(NN)\}_n$ or zero-dimensional adducts when 2:1 species are formed, i.e. $\{Cd(S_2CNRR')_2\}_2(NN)$; NN is μ_2 -bridging in each case. However, when NN is added to [Cd(S₂CN(iPr)CH₂CH₂OH)₂]₂, unpredictable crystallisation outcomes occur, possibly owing to the intervention of hydrogen bonding. Thus, for example, with the classic example of NN, namely 4,4'-bipyridyl, a [Cd(S₂CN(iPr)CH₂CH₂OH)₂]₂(4,4'bipyridyl). (4,4'-bipyridyl) species is isolated, i.e. with monodentate and non-coordinating 4,4'-bipyridyl [10]. Monodentate coordination is also found for NN in {[Cd(S₂CN(iPr)CH₂CH₂OH)₂]₂}₂(3-pyridinealdazine)₂ where the dimeric core of {[Cd(S₂CN(iPr)CH₂CH₂OH)₂]₂} is retained but, capped by two NN molecules [11]. In a structure closely related to the title compound, formulated as $\{ [Cd(S_2CN(iPr)CH_2CH_2OH)_2]_2 \}_2 [1,2-di(4-pyridyl)ethylene]_3, \}$ one of the NN ligands is bidentate bridging while the others are terminal, monodentate [12]. In continuation of these studies, the crystal structure determination of the title compound, $\{ [Cd(S_2CN(iPr)CH_2CH_2OH)_2]_2 \}_2 [1,2-di(4-pyridyl)ethylene], (I), \}$ is described which was isolated from the 1:1 reaction of Cd[S₂CN(iPr)CH₂CH₂OH]₂ and 1,2-di(4-pyridyl)ethylene.

The crystallographic asymmetric unit of (I) contains half a molecule as the binuclear molecule/complex is located around a centre of inversion. As shown in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) -x, 1 - y, 1 - z], the Cd atom is chelated by two dithiocarbamate ligands with the fifth position in the five-coordinate geometry completed by a N atom [Cd-N3 = 2.2879(13) Å] of the μ_2 -bridging 1.2-di(4-pyridyl) ethylene ligand. The dithiocarbamate ligands are coordinating in a symmetric mode [Cd—S1, S2 = 2.5603(4), 2.6676(4) Å and Cd-S3, S4 = 2.6009(4), 2.6280(4) Å] with the differences in the Cd–S bond lengths being small at 0.11 and 0.02 Å, respectively. This equivalence is reflected in the very narrow range in the associated C1-S1, S2 [1.7252(14), 1.7354(15) Å] and C7–S3, S4 [1.7284(15), 1.7291(15) Å] bond lengths. The angles subtended at the Cd atom range from a narrow 69.150(11)° for the S3-Cd-S4 chelate angle to a wide 155.796(12)° for S2-Cd-S4, i.e. subtended by the S atoms forming the weaker of the Cd-S bonds for each ligand. A measure of a fivecoordination geometry is the value of τ [13], which has values of 0.0 and 1.0 for ideal square-pyramidal and trigonalpyramidal geometries, respectively. In (I), $\tau = 0.10$, being indicative of a square-pyramidal geometry. In this description, the Cd atom lies 0.5982(2) Å out of the S1–S4 plane [r.m.s. deviation = 0.0610 Å] in the direction of the N3 atom.

The crystal of (I) features conventional hydroxyl-O−H····O(hydroxyl) hydrogen bonding [O2−H2o···O1ⁱⁱ: $H_{20} \cdots O_{1}^{ii} = 1.959(19) \text{ Å}, O_{2} \cdots O_{1}^{ii} = 2.7879(18) \text{ Å with angle}$ at H20 = $170.9(18)^{\circ}$ for (ii) -1 + x, 1 + y, z] as well as hydroxyl- $O-H\cdots S(\text{thiolate})$ hydrogen bonds $[O1-H10\cdots S2^{iii}]$: H10··· S2ⁱⁱⁱ = 2.455(18) Å, O1··· S2ⁱⁱⁱ = 3.2775(12) Å with angle at H10 = 168.5(17)° for (iii) 1 + x, 1 + y, z, consistent with the notion that O-H···O hydrogen bonding is not allpervasive and can be readily subjugated in hydroxyethylsubstituted dithiocarbamates [14]. In the present case, the aforementioned hydrogen bonding gives rise to a supramolecular layer in the *ab*-plane. The isopropyl substituents project to either side of the layers which stack along the c-axis direction. The directional interactions between layers appear to be methine- $C-H \cdots S(\text{thiolate})$ [C4-H4···S3^{iv}: H4···S3^{iv} = 2.82 Å, C4···S3^{iv} = 3.5786(16) Å, with angle at H4 = 133° for (iv) 1 - x, -1/2 + y, 1/2 - z] and methyl-C–H··· π (chelate ring) [C5–H5c···Cg(Cd,S3,S4,C7)^v: $H5c \cdots Cg(Cd, S3, S4, C7)^{v} = 2.82$ Å with angle at $H5c = 127^{\circ}$ for (v) 2 - x, -1/2 + y, 1/2 - z] interactions, the latter increasingly being recognised as important in the supramolecular chemistry of metal dithiocarbamates [15].

Finally, the Hirshfeld surfaces and two-dimensional fingerprint plots were calculated for (I) employing Crystal Explorer 17 [16] and literature methods [17]. The most prominent feature of the fingerprint plot is the appearance of sharp spikes ascribed to the $O-H\cdots O$ hydrogen bonding. Nevertheless, the total contribution to the overall Hirshfeld surface from $H\cdots O/O\cdots H$ contacts is only 5.9%. Reflecting the significant role of $S\cdots H$ contacts in the molecular packing, in both the intra- and inter-layer regions, $H\cdots S/S\cdots H$ contacts amount to nearly a quarter of all contacts, i.e. 22.1%. The most significant contribution to the surface is due to $H \cdots H$ contacts, at 53.6%, with other notable contributions from $H \cdots C/C \cdots C$ [8.5%] and $S \cdots C/C \cdots S$ [3.5%] contacts.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- 1. Agilent Technologies. CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, USA (2014).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Tan, Y. S.; Sudlow, A. L.; Molloy, K. C.; Morishima, Y.; Fujisawa, K.; Jackson, W. J.; Henderson, W.; Halim, S. N. Bt. A.; Ng, S. W.; Tiekink, E. R. T.: Supramolecular isomerism in a cadmium bis (N-hydroxyethyl, N-isopropyldithiocarbamate) compound: physiochemical characterization of ball (n = 2) and chain (n = ∞) forms of {Cd[S₂CN(iPr)CH₂CH₂OH]2·solvent}_n. Cryst. Growth Des. **13** (2013) 3046–3056.
- Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 8 (2018) article no. 292 (34 pages).
- Tan, Y. S.; Halim, S. N. A.; Tiekink, E. R. T.: Exploring the crystallization landscape of cadmium bis(*N*-hydroxyethyl, *N*-isopropyl-dithiocarbamate), Cd[S₂CN(iPr)CH₂CH₂OH]₂.
 Z. Kristallogr. Cryst. Mater. **231** (2016) 113–126.
- Ahmad, J.; How, F. N.-F.; Halim, S. N. A.; Jotani, M. M.; Lee, S. M.; Tiekink, E. R. T.: A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z. Kristallogr. Cryst. Mater. 234 (2019) 341–349.
- Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) article no. 18 (29 pages).
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of (4,4'-bipyridylκN)bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ²S, S']zinc(II)-4,4'-bipyridyl (2/1) and its isostructural cadmium(II) analogue. Acta Crystallogr. **E73** (2017) 1642–1646.
- Arman, H. D.; Poplaukhin, P.; Tiekink, E. R. T.: An unprecedented binuclear cadmium dithiocarbamate adduct: bis[μ₂-*N*-(2-hydroxyethyl)-*N*-isopropylcarbamodithioato-κ³*S*:*S*,*S'*]-bis {[*N*-(2-hydroxyethyl)-*N*-isopropylcarbamodithioato-κ²*S*,*S'*]-(3-{(1*E*)-[(*E*)-2-(pyridin-3-ylmethylidene)hydrazin-1-ylidene] methyl}-pyridine-κ*N*)cadmium]} dihydrate. Acta Crystallogr. *E72* (2016) 1234–1238.
- Jotani, M. M.; Poplaukhin, P.; Arman, H. D.; Tiekink, E. R. T.: [μ₂-trans-1,2-Bis(pyridin-4-yl)ethene-κ²N:N']-bis{[1,2-bis(pyridin-4-yl)ethene-κN]bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ²S,S']cadmium} acetonitrile

tetrasolvate: crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E72** (2016) 1085–1092.

- Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis (*N*-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]-copper(II) perchlorate. J. Chem. Soc. Dalton Trans. (1984) 1349–1356.
- Jamaludin, N. S.; Halim, S. N. A.; Khoo, C.-H.; Chen, B.-J.; See, T.-H.; Sim, J.-H.; Cheah, T.-K.; Hoi-Ling Seng, H.-L.; Tiekink, E. R. T.: Bis(phosphane)copper(I) and silver(I) dithiocarbamates: crystallography and anti-microbial assay.
 Z. Kristallogr. Cryst. Mater. 231 (2016) 341–349.
- Tiekink, E. R. T.: The remarkable propensity for the formation of C-H···π(chelate ring) interactions in the crystals of the firstrow transition metal dithiocarbamates and the supramolecular architectures they sustain. CrystEngComm 22 (2020) in press https://doi.org/10.1039/D0CE00289E.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- 17. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.