See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink*

Crystal structure of dichlorido-bis(tri-4tolylphosphane oxide- κO)-di(4-chlorophenyl- κC) tin(IV), C₅₄H₅₀Cl₄O₂P₂Sn

https://doi.org/10.1515/ncrs-2020-0377 Received July 21, 2020; accepted August 13, 2020; available online August 21, 2020

Abstract

 $C_{54}H_{50}Cl_4O_2P_2Sn$, triclinic, $P\bar{1}$ (no. 2), a = 10.6360(2) Å, b = 10.8406(2) Å, c = 12.5727(2) Å, $\alpha = 94.152(1)^{\circ}$ $\beta = 107.195(2)^{\circ}$, $\gamma = 112.549(2)^{\circ}$, $V = 1250.31(4) \text{ Å}^3$, Z = 1, $R_{\rm gt}(F) = 0.0194$, $wR_{\rm ref}(F^2) = 0.0529$, T = 100(2) K.

CCDC no.: 2023119

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.16 \times 0.09 \times 0.07~\text{mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	6.94 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	29831, 4456, 0.031
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \sigma(I_{\rm obs})$, 4442
N(param) _{refined} :	289
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
Sn	0.5	0.5	0.5	0.01135(6)
Cl1	0.48213(4)	0.28146(4)	0.39601(3)	0.02058(9)
Cl2	-0.10294(5)	0.14634(6)	0.60456(5)	0.04445(14)
P1	0.72827(4)	0.49620(4)	0.77255(3)	0.01281(9)
01	0.60867(12)	0.45710(11)	0.65899(9)	0.0167(2)
C1	0.30138(16)	0.38557(17)	0.52719(13)	0.0152(3)
C2	0.27049(18)	0.25421(18)	0.54681(15)	0.0208(3)
H2	0.335669	0.214778	0.544315	0.025*
С3	0.1460(2)	0.1796(2)	0.57000(16)	0.0260(4)
H3	0.126456	0.090463	0.584241	0.031*
C4	0.05127(19)	0.2377(2)	0.57192(15)	0.0257(4)
C5	0.07686(19)	0.36607(19)	0.55054(15)	0.0238(4)
H5	0.009405	0.403466	0.550625	0.029*
C6	0.20254(18)	0.44062(18)	0.52878(14)	0.0189(3)
H6	0.221385	0.529821	0.514866	0.023*
C7	0.90243(17)	0.60417(16)	0.76815(13)	0.0147(3)
C8	1.00713(17)	0.55561(17)	0.76938(14)	0.0177(3)
H8	0.991071	0.465798	0.780436	0.021*
C9	1.13457(18)	0.63917(18)	0.75439(15)	0.0215(4)
H9	1.205633	0.605861	0.756214	0.026*
C10	1.16047(18)	0.77025(18)	0.73682(15)	0.0215(4)
C11	1.05491(18)	0.81763(17)	0.73533(14)	0.0199(3)
H11	1.070937	0.907234	0.723679	0.024*
C12	0.92714(17)	0.73581(17)	0.75062(14)	0.0171(3)
H12	0.856420	0.769460	0.749156	0.020*
C13	1.2985(2)	0.8581(2)	0.7189(2)	0.0342(5)
H13A	1.375140	0.907273	0.792849	0.051*

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Open Access. © 2020 See Mun Lee et al., published by De Gruyter. 😳 BY This work is licensed under the Creative Commons Attribution 4.0 International License.

Tabl	e 2 (continu	ed)
iusi	~ ~ (continu	cuj

Atom	X	у	Z	U _{iso} */U _{eq}
H13B	1.281534	0.924005	0.673803	0.051*
H13C	1.328611	0.800314	0.678271	0.051*
C14	0.69504(17)	0.58366(16)	0.88010(14)	0.0151(3)
C15	0.80447(17)	0.65539(17)	0.98559(14)	0.0186(3)
H15	0.899399	0.660442	1.000256	0.022*
C16	0.77508(18)	0.71882(17)	1.06839(15)	0.0200(3)
H16	0.849930	0.766306	1.139898	0.024*
C17	0.63699(19)	0.71408(16)	1.04843(15)	0.0195(3)
C18	0.52886(18)	0.64266(17)	0.94330(15)	0.0196(3)
H18	0.434222	0.638382	0.928598	0.024*
C19	0.55643(17)	0.57766(16)	0.85961(14)	0.0173(3)
H19	0.481088	0.529183	0.788529	0.021*
C20	0.6072(2)	0.7870(2)	1.13763(17)	0.0288(4)
H20A	0.516807	0.796357	1.102680	0.043*
H20B	0.687805	0.877764	1.171161	0.043*
H20C	0.597698	0.734312	1.197247	0.043*
C21	0.73420(16)	0.34161(16)	0.81115(13)	0.0147(3)
C22	0.67015(17)	0.22399(17)	0.72528(14)	0.0174(3)
H22	0.624531	0.226779	0.648705	0.021*
C23	0.67350(18)	0.10320(17)	0.75236(15)	0.0205(3)
H23	0.629173	0.023360	0.693830	0.025*
C24	0.74065(18)	0.09702(17)	0.86372(15)	0.0214(4)
C25	0.80076(18)	0.21415(18)	0.94902(15)	0.0208(3)
H25	0.844146	0.210667	1.025852	0.025*
C26	0.79813(17)	0.33527(17)	0.92337(14)	0.0183(3)
H26	0.839986	0.414269	0.982389	0.022*
C27	0.7512(3)	-0.0317(2)	0.89280(19)	0.0399(5)
H27A	0.675880	-0.110302	0.833045	0.060*
H27B	0.737259	-0.042571	0.965779	0.060*
H27C	0.847232	-0.025965	0.898517	0.060*

Source of material

4-Chlorophenylmagnesium bromide was prepared from the Grignard reaction of magnesium (Merck) and 4-bromochlorobenzene (Fluka) in tetrahydrofuran. Tetra (4-chlorophenyl)tin was synthesised from the reaction of stannic chloride (Fluka) with 4-chlorophenylmagnesium bromide in a 1:4 molar ratio. Subsequently, di(4-chlorophenyl) tin dichloride was synthesised from the comproportionation reaction of tetra(4-chlorophenyl)tin with stannic chloride (Fluka) in a 1:1 molar ratio to obtain a white precipitate. Tri (4-tolyl)phosphine oxide was prepared by the oxidation of tri(4-tolyl)phosphine (Merck) with 30% hydrogen peroxide (Merck) in ethanol. Di(4-chlorophenyl)tin dichloride (0.41 g, 1.0 mmol) and tri(4-tolyl)phosphine oxide (0.64 g, 2.0 mmol) were heated in 95% ethanol (50 mL) for 1 h. After filtration, the filtrate was evaporated slowly until a white crystalline compound was formed. Yield: 0.49 g (46.5%). M. pt (Stuart SMP30 digital melting point apparatus; uncorrected): 468–470 K. **IR** (Bruker Vertex 70v FTIR Spectrometer; cm^{-1}): 1599 (m) ν (C=C), 1475 (m) ν (C=C), 1149 (s) ν (P=O), 1089 (s)

ν(P–Ar), 810 (s) ν(C–Cl). ¹**H** NMR (Bruker Ascend 400 MHz NMR spectrometer; CDCl₃; ppm relative to Me₄Si): δ 2.39 (s, 18H, CH₃), 7.20–7.26 (m, 16H, Ph-H), 7.36–7.42 (m, 12H, Ph-H), 7.82 (d, J = 8.53 Hz, 4H, Ph-H). ¹³C{¹H} NMR (as for ¹H NMR): 21.6 (CH₃), 126.9, 128.5, 129.3, 131.9, 132.2, 135.9, 136.7, 143.0 (Ph-C).

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95-0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Comment

While recent attention has been devoted to evaluating the molecular structures of bis(sulphoxide) [5] and bis(triorganoarsane) [6] adducts of R₂SnCl₂ molecules, reflecting a long-term interest [7], investigations now turn to bis(triorganophosphane) adducts of R₂SnCl₂. Despite their rather simple preparation and structures, there are only relatively few mononuclear structures available for these compounds, namely $Me_2SnCl_2[O=P(4-tolyl)_3]_2$ [8], $Et_2SnCl_2[O=PPh_3]_2$ [9], $Ph_2SnCl_2[O=PPh_3]_2$ [10], $Ph_2SnCl_2[O=P(tBu)_2Me]_2$ [11] and $Ph_2SnCl_2[O=P(Cy)_2C(=S)N(H)Ph]_2[7]$. The common feature of the crystallographically determined structures is an all-trans C₂Cl₂O₂ coordination geometry for Sn. Herein, the crystal and molecular structures of $(4-ClC_6H_4)_2SnCl_2[O=P(4-tolvl)_3]_2$, (I), are described, as an extension of these studies.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) 1 - x, 1 - y, 1 - z). The Sn atom is located on a centre of inversion and, as anticipated, is octahedrally coordinated by ipso-C [2.1441(15) Å], Cl [2.5333(4) Å] and oxide-O [2.1746(11) Å] atoms. The Sn–O1–P1 angle is 152.99(7)° indicating a significant deviation from linearity. By virtue of the Sn atom being located on a centre of inversion, when the molecule is viewed down the O1–Sn–O1ⁱ axis, the phenyl rings have a staggered arrangement. Finally, a pair of Sn- and P-bound rings face each other in the molecule, being indicative of an intramolecular $\pi \cdots \pi$ stacking interaction; the inter-centroid separation is 3.7847(10) Å with an angle of inclination = 3.73(8)°.

The most closely related structure in the literature is of the analogue where the 4-chlorophenyl substituents of (I) are replaced by methyl groups [8]. In this case, the Sn–C [2.1168(15) Å], Sn–Cl [2.5735(4) Å] and Sn–O [2.2387(11) Å] bond lengths have contracted, elongated and elongated, respectively, consistent with the relatively electropositive nature of the methyl substituents compared to the electronegative 4-chlorophenyl groups in (I).

Non-covalent interactions dominate the packing with the only apparent directional interactions being of the type methyl-C-H··· π (phenyl-P) [C20-H20a···Cg(C21-C26)ⁱⁱ: H20a···Cg(C21-C26)ⁱⁱ = 2.95 Å with angle at H20a = 138° for (ii) 1 - x, 1 - y, 2 - z] and P-phenyl-C-H··· π (chlorophenyl) [C25-H25···Cg(C7-C12)ⁱⁱⁱ: $H25 \cdots Cg(C7-C12)^{iii} = 2.65 \text{ Å with angle at } H25 = 154^{\circ} \text{ for (iii)}$ 2 - x, 1 - y, 2 - z]. These contacts lead to a supramolecular layer in the ac-plane. The layers stack along the b-axis without directional interactions between them. To probe the supramolecular association further, the Hirshfeld surface as well as the full and delineated two-dimensional fingerprint plots were calculated using Crystal Explorer 17 [12] and standard protocols [13].

The analysis reveals the $H \cdots H$ contacts, at 59.6%, to be the most prominent with a sizeable contribution from $H \cdots C/C \cdots H$, i.e. 22.4%, reflecting to a certain extent, the $C-H \cdots \pi$ contacts mentioned above. The $H \cdots Cl/Cl \cdots H$ contacts amount to 15.6% but, at separations greater than the sum of their van der Waals radii; the only other contacts making more than a 1% contribution to the calculated Hirshfeld surface are $Cl \cdots C/C \cdots Cl$ contacts, at 1.4%.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- 1. Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.

- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Amin, N. A. B. M.; Hussen, R. S. D.; Lee, S. M.; Halcovitch, N. R.; Jotani, M. M.; Tiekink, E. R. T.: *trans*-Dichloridobis(dimethyl sulfoxide-κ*O*)bis(4-fluorobenzyl-κ*C*¹)tin(IV): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E73** (2017) 667–672.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of dichlorido-bis(4-methylphenyl-κ*C*)-bis(triphenylarsine oxideκ*O*)tin(IV), C₅₀H₄₄As₂Cl₂O₂Sn. Z. Kristallogr. NCS **235** (2020) 183–185.
- Tiekink, E. R. T.: The crystal structure of the 1:2 adduct formed between dichlorodiphenyltin(IV) and *P*,*P*-dicyclohexyl-*N*phenylphosphinylthioformamide. Main Group Met. Chem. 23 (2000) 551–552.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T. Crystal structure of dichloridodimethylbis(tri-4-tolylphosphane oxide-κ*O*)-tin(IV), C₄₄H₄₈Cl₂O₂P₂Sn. Z. Kristallogr. NCS 235 NCRS_2020_0378 accepted.
- Tursina, A. I.; Aslanov, L. A.; Chernyshev, V. V.; Medvedev, S. V.; Yatsenko, A. V.: *Cis* and *trans* isomers in the structure of dichlorodiethylbis(triphenylphosphine oxide)tin. Koord. Khim. 11 (1985) 1420–1425.
- Cunningham, D.; Landers, E. M.; McArdle, P.; Chonchubhair, N. N.: Triphenylphosphine oxide adducts of diphenylantimony(V) and diorganotin(IV) Lewis acids: structures of SnPh₂Cl₂·OPPh₃, SnPh₂Cl₂·2OPPh₃, SnPh₂Br₂·OPPh₃ and SbPh₂Cl₃·OPPh₃. J. Organomet. Chem. **612** (2000) 53–60.
- Müller, M.; Lerner, H.-W.; Bolte, M.: Dichloridobis(di-*tert*butylmethylphosphine oxide-κ*O*)diphenyltin(IV). Acta Crystallogr. **E64** (2008) m803.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.