# See Mun Lee, Kong Mun Lo and Edward R.T. Tiekink\*

# Crystal structure of chlorido(2-methylquinolin-8olato-κ<sup>2</sup>N,O)-bis(4-tolyl-κC)tin(IV), C<sub>24</sub>H<sub>22</sub>ClNOSn



https://doi.org/10.1515/ncrs-2020-0379 Received July 21, 2020; accepted August 13, 2020; available online August 27, 2020

# Abstract

 $C_{24}H_{22}CINOSn$ , monoclinic,  $P2_1/c$  (no. 14), a = 13.7584(1) Å, b = 13.5542(1) Å, c = 13.0912(1) Å,  $\beta = 115.778(1)^{\circ}$ , V = 2198.36(3) Å<sup>3</sup>, Z = 4,  $R_{\rm gt}(F) = 0.0170$ ,  $wR_{\rm ref}(F^2) = 0.0448$ , T = 100(2) K.

CCDC no.: 2023118

See Mun Lee and Kong Mun Lo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Open Access. © 2020 See Mun Lee et al., published by De Gruyter. 😳 BY This work is licensed under the Creative Commons Attribution 4.0 International License.

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

| Crystal:                                                                   | Colourless prism                                              |
|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Size:                                                                      | $0.17 \times 0.08 \times 0.05~\text{mm}$                      |
| Wavelength:                                                                | Cu <i>Kα</i> radiation (1.54184 Å)                            |
| μ:                                                                         | $10.5 \text{ mm}^{-1}$                                        |
| Diffractometer, scan mode:                                                 | XtaLAB Synergy, $\omega$                                      |
| $	heta_{\max}$ , completeness:                                             | 67.1°, >99%                                                   |
| N(hkl) <sub>measured</sub> , N(hkl) <sub>unique</sub> , R <sub>int</sub> : | 28037, 3934, 0.031                                            |
| Criterion for I <sub>obs</sub> , N(hkl) <sub>gt</sub> :                    | $I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$ , 3844               |
| N(param) <sub>refined</sub> :                                              | 256                                                           |
| Programs:                                                                  | CrysAlis <sup>PRO</sup> [1], SHELX [2, 3],<br>WinGX/ORTEP [4] |
|                                                                            |                                                               |

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å<sup>2</sup>).

| Atom | X           | у           | Z           | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|-------------|------------------------------------|
| Sn   | 0.72920(2)  | 0.64037(2)  | 0.63444(2)  | 0.01363(5)                         |
| 01   | 0.86273(10) | 0.63982(8)  | 0.60400(10) | 0.0197(3)                          |
| N1   | 0.82987(11) | 0.77392(10) | 0.73685(11) | 0.0187(3)                          |
| C1   | 0.75311(13) | 0.56365(12) | 0.78542(13) | 0.0167(3)                          |
| C2   | 0.68405(14) | 0.48701(13) | 0.78162(14) | 0.0190(3)                          |
| H2   | 0.621472    | 0.473996    | 0.713299    | 0.023*                             |
| С3   | 0.70618(15) | 0.42933(14) | 0.87740(15) | 0.0234(4)                          |
| H3   | 0.657938    | 0.377950    | 0.874106    | 0.028*                             |
| C4   | 0.79841(16) | 0.44632(14) | 0.97795(15) | 0.0249(4)                          |
| C5   | 0.86533(15) | 0.52438(14) | 0.98207(14) | 0.0251(4)                          |
| H5   | 0.927191    | 0.538126    | 1.050795    | 0.030*                             |
| C6   | 0.84329(14) | 0.58265(13) | 0.88735(14) | 0.0211(3)                          |
| H6   | 0.889960    | 0.635862    | 0.891953    | 0.025*                             |
| C7   | 0.8280(2)   | 0.37843(18) | 1.07858(19) | 0.0394(5)                          |
| H7A  | 0.882347    | 0.330887    | 1.080160    | 0.059*                             |
| H7B  | 0.763560    | 0.343017    | 1.072220    | 0.059*                             |
| H7C  | 0.857471    | 0.417349    | 1.148638    | 0.059*                             |
| C8   | 0.60402(13) | 0.73425(13) | 0.52452(13) | 0.0168(3)                          |
| С9   | 0.50077(14) | 0.69628(13) | 0.46387(15) | 0.0225(4)                          |
| H9   | 0.486346    | 0.629564    | 0.474845    | 0.027*                             |
| C10  | 0.41852(15) | 0.75483(14) | 0.38742(15) | 0.0269(4)                          |
| H10  | 0.348295    | 0.727760    | 0.347320    | 0.032*                             |
| C11  | 0.43723(16) | 0.85235(13) | 0.36861(16) | 0.0239(4)                          |
| C12  | 0.54024(15) | 0.89055(14) | 0.43056(16) | 0.0242(4)                          |

<sup>\*</sup>Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

| Table 2 ( | continue | ed) |
|-----------|----------|-----|
|-----------|----------|-----|

| Atom | X           | у           | Z           | U <sub>iso</sub> */U <sub>eq</sub> |
|------|-------------|-------------|-------------|------------------------------------|
| H12  | 0.554276    | 0.957488    | 0.420034    | 0.029*                             |
| C13  | 0.62299(14) | 0.83262(13) | 0.50754(15) | 0.0205(3)                          |
| H13  | 0.692821    | 0.860127    | 0.548804    | 0.025*                             |
| C14  | 0.34981(17) | 0.91637(17) | 0.28329(18) | 0.0370(5)                          |
| H14A | 0.282656    | 0.878462    | 0.247722    | 0.056*                             |
| H14B | 0.371713    | 0.938123    | 0.224987    | 0.056*                             |
| H14C | 0.338319    | 0.974098    | 0.321785    | 0.056*                             |
| C15  | 0.93604(13) | 0.71141(13) | 0.64949(13) | 0.0192(3)                          |
| C16  | 1.02651(14) | 0.71859(15) | 0.63003(15) | 0.0247(4)                          |
| H16  | 1.037420    | 0.672488    | 0.581341    | 0.030*                             |
| C17  | 1.10267(15) | 0.79356(16) | 0.68166(16) | 0.0302(4)                          |
| H17  | 1.164393    | 0.797085    | 0.666969    | 0.036*                             |
| C18  | 1.09071(16) | 0.86170(14) | 0.75250(17) | 0.0312(5)                          |
| H18  | 1.144271    | 0.910796    | 0.787588    | 0.037*                             |
| C19  | 0.99817(16) | 0.85846(13) | 0.77302(15) | 0.0253(4)                          |
| C20  | 0.97390(16) | 0.92612(14) | 0.84113(15) | 0.0308(4)                          |
| H20  | 1.022204    | 0.978787    | 0.877451    | 0.037*                             |
| C21  | 0.88156(17) | 0.91619(14) | 0.85498(15) | 0.0290(4)                          |
| H21  | 0.866043    | 0.962195    | 0.900629    | 0.035*                             |
| C22  | 0.80859(15) | 0.83784(13) | 0.80183(14) | 0.0225(4)                          |
| C23  | 0.92151(13) | 0.78269(13) | 0.72143(13) | 0.0195(3)                          |
| C24  | 0.70778(17) | 0.82378(15) | 0.81613(16) | 0.0291(4)                          |
| H24A | 0.646068    | 0.818612    | 0.741396    | 0.044*                             |
| H24B | 0.697444    | 0.880267    | 0.857099    | 0.044*                             |
| H24C | 0.713527    | 0.763223    | 0.859287    | 0.044*                             |
| Cl1  | 0.67328(3)  | 0.49396(3)  | 0.51290(3)  | 0.01955(9)                         |
|      |             |             |             |                                    |

## Source of material

4-Methylphenylmagnesium bromide was prepared from the Grignard reaction of magnesium (Merck) and 4-bromotoluene (Fluka) in tetrahydrofuran. Tetra(4-methylphenyl)tin was synthesised from the reaction of stannic chloride (Fluka) with 4-methylphenylmagnesium bromide in a 1:4 molar ratio. Subsequently, di(4-methylphenyl)tin dichloride was synthesized from the comproportionation reaction of tetra(4methylphenyl)tin with stannic chloride (Fluka) in a 1:1 molar ratio to obtain a white precipitate. Di(4-methylphenyl)tin dichloride (0.37 g, 1.0 mmol) and 2-methyl 8-quinolinol (Sigma-Aldrich, 0.16 g, 1.0 mmol) were heated in 95% ethanol (30 mL) for 1 h. After filtration, the yellow filtrate was evaporated slowly until colourless crystalline compound was formed. Yield: 0.35 g (70.8%). M. pt (Stuart SMP30 digital melting point apparatus; uncorrected): 466-468 K. IR (Bruker Vertex 70v FTIR Spectrometer;  $cm^{-1}$ ): 1505 (m) ν(C=C), 1457 (m) ν(C=N), 1109 (m) ν(C-O). <sup>1</sup>H NMR (Bruker Ascend 400 MHz NMR spectrometer; CDCl<sub>3</sub>; ppm relative to Me<sub>4</sub>Si): δ 2.21 (s, 3H, quin-CH<sub>3</sub>), 2.30 (s, 6H, CH<sub>3</sub>), 7.13–7.59 (m, 12H, Ph-H), 8.35 (d, 1H, Ph-H). <sup>13</sup>C{<sup>1</sup>H} NMR (as for <sup>1</sup>H NMR): 21.4 (CH<sub>3</sub>), 23.5 (quin-CH<sub>3</sub>), 115.3, 115.9, 123.7, 127.5, 129.3, 129.7, 130.2, 137.5, 139.3, 140.1, 140.5, 155.5, 156.2 (Ph-C).

#### **Experimental details**

The C-bound H atoms were geometrically placed (C–H = 0.95-0.98 Å) and refined as riding with  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ .

### Comment

8-Hydroxyquinolinato (oxine) compounds of diorganotin chlorides, i.e. molecules of the general formula R<sub>2</sub>Sn(oxine)Cl, adopt three distinct structural motifs in their crystals, despite their being only four examples. Two examples, i.e. with R = Et [5] and 2-ClC<sub>6</sub>H<sub>4</sub>CH<sub>2</sub> [6], feature an N,O-chelated oxine anion and a penta-coordinate cis-C<sub>2</sub>ClNO donor set. In the case when  $R = MeOC(=0)CH_2CH_2$  [7], i.e. where there is additional coordination potential in the Snbound R groups, indeed, one of the carbonyl-O forms a bond with the Sn atom to increase the coordination number to six. The resultant C<sub>2</sub>ClNO<sub>2</sub> donor set defines a skew-trapezoidal bipyramidal geometry with the Sn-bound C atoms lying over the Sn-N and Sn-O(R) bonds [7]. Finally, when the R groups are no longer equivalent, i.e. R = Me and R' = Ph, dimerisation occurs as the phenoxide-O atom bridges two Sn atoms [8]. In this case, the resultant C<sub>2</sub>ClNO<sub>2</sub> donor set defines a distorted octahedral geometry. There appears to be a sole example of related compound with a 2-methyl substituent in the oxine ligand, namely that of Me(Ph)Sn(Meoxine)Cl [9]. Unlike the aforementioned dimeric structure, this is mononuclear and resembles the penta-coordinated, cis-C<sub>2</sub>ClNO species above. The present report describes the synthesis and crystal structure determination of a second derivative in the R<sub>2</sub>Sn(Meoxine)Cl series, i.e. (4-tolyl)<sub>2</sub>Sn(Meoxine)Cl, (I), in continuation of related structural studies [10].

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids) and reveals the Sn atom to be penta-coordinated within a cis-C2ClNO donor set defined by *ipso*-C [Sn-C1 = 2.1285(15) Å and Sn-C8 = 2.1214(16) Å], pyridyl-N [Sn-N1 = 2.3189(14) Å], phenoxide-O [Sn-N1 = 2.3189(14) Å]O1 = 2.0424(12) Å] and Cl [Sn-Cl1 = 2.4489(4) Å] atoms. The coordination geometry is highly distorted with the widest angle of 132.45(6)° corresponding to the C1-Sn-C8 angle and the narrowest angle being the chelate angle, i.e. O1-Sn-N1=75.75(5)°. A quantitative assessment of the five-coordinate geometry can be made by calculating the value of  $\tau$ , which computes to 0.0 for an ideal squarepyramidal geometry and 1.0 for trigonal-bipyramidal [11]. For (I),  $\tau = 0.48$ , i.e. almost exactly intermediate between the two ideal geometries. Equivalent calculations were performed for Me(Ph)Sn(Meoxine)Cl [9], for which two molecules comprise the asymmetric unit, resulting in  $\tau = 0.38$  and 0.56, indicating a tendency to square- and trigonal-bipyramidal geometries, respectively. For completeness, the mononuclear species with oxine, i.e. R = Et [5] and 2-ClC<sub>6</sub>H<sub>4</sub> [6] were evaluated, giving  $\tau = 0.36$  and 0.33, respectively, i.e. indicating distortions towards a square-pyramidal geometry.

In the crystal, the chlorido ligand accepts C–H interactions from a 4-tolyl ring and oxine-methyl  $[C9-H9\cdots Cl1^i: H9\cdots Cl1^i = 2.82 \text{ Å}, C9\cdots Cl1^i = 3.621(2) \text{ Å}$  with angle at  $H9 = 142^{\circ}$  and  $C24-H24b\cdots Cl1^{ii}: H24b\cdots Cl1^{ii} = 2.79 \text{ Å}, C24\cdots Cl1^{ii} = 3.745(2) \text{ Å}$  with angle at  $H24b = 166^{\circ}$  for symmetry operations (i) 1 - x, 1 - y, 1 - z and (ii) x, 3/2 - y, 1/2 + z] to generate a supramolecular layer in the *bc*-plane. Layers stack along the *a*-axis without directional interactions between them.

A complimentary analysis of the supramolecular aggregation was conducted by calculating the Hirshfeld surface along with the full and decomposed two-dimensional fingerprint plots, with the use of the program Crystal Explorer 17 [12] and guided by literature protocols [13]. The major contribution to the calculated Hirshfeld surface comes from H···· H contacts, at 51.7%. This is followed by H····C/C····H contacts at 30.6% with smaller contributions from H····Cl/Cl····H [12.2%] and H···O/O····H [5.3%].

**Acknowledgements:** Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

### References

- Rigaku Oxford Diffraction: CrysAlis<sup>PRO</sup>. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.

- 4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. **45** (2012) 849–854.
- Shi, D.; Hu, S.: Structural studies of chloro(quinoline-8olato)diethyltin(IV), [SnEt<sub>2</sub>Cl(C<sub>8</sub>H<sub>6</sub>NO)]. Chin. J. Struct. Chem. 6 (1987) 193–197.
- Keng, T. C.; Lo, K. M.; Ng, S. W.: Chloridobis(2-chlorobenzyl) (quinolin-8-olato-κ<sup>2</sup>N,O)tin(IV). Acta Crystallogr. E67 (2011) m663.
- Ng, S. W.; Chen Wei, C.; Kumar Das, V. G.; Charland, J.-P.; Smith, F. E.: Six-coordinate tin in a dialkylchlorooxinatotin(IV) complex: skew-trapezoidal bipyramidal bis (2-carbomethoxyethyl)chloro(quinolin-8-olato)tin(IV). J. Organomet. Chem. **364** (1989) 343–351.
- Vafaee, M., Amini, M. M.; Ng, S. W.: Bis(μ-quinolin-8-olato)κ<sup>3</sup>N,O:O;κ<sup>3</sup>O:N,O-bis[chloridomethylphenyltin(IV)]. Acta Crystallogr. E66 (2010) m964.
- Vafaee, M., Amini, M. M.; Ng, S. W.: Chloridomethyl(2methylquinolin-8-olato-κ<sup>2</sup>N,O)phenyltin(IV). Acta Crystallogr. E66 (2010) m965.
- Lee, S.; Lo, K.; Tiekink, E. R. T.: Crystal structure of chlorido-4-fluorobenzyl-bis(2-methylquinolin-8-olato-κ<sup>2</sup>N,O)tin(IV), C<sub>27</sub>H<sub>22</sub>ClFN<sub>2</sub>O<sub>2</sub>Sn, Z. Kristallogr. NCS 234 (2019) 823–825.
- Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua [1,7-bis(*N*-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalton Trans. (1984) 1349–1356.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.