Chien Ing Yeo, Yee Seng Tan and Edward R.T. Tiekink*

Crystal structure of (μ_2 -1,1'-bis(diphenylphosphino)ferrocene- $\kappa^2 P, P'$)-bis [(Z)N-(3-fluorophenyl)-O-methylthiocarbamato-S]digold(I) chloroform solvate, C₅₀H₄₂Au₂F₂FeN₂O₂P₂S₂, CHCl₃

https://doi.org/10.1515/ncrs-2020-0386 Received July 22, 2020; accepted August 18, 2020; available online August 27, 2020

Abstract

 $C_{51}H_{43}Au_2Cl_3F_2FeN_2O_2P_2S_2$, triclinic, $P\bar{1}$ (no. 2), a =8.3276(1) Å, b = 13.1116(1) Å, c = 13.5547(1) Å, $\alpha = 110.309(1)^{\circ}$, $\beta = 103.132(1)^{\circ}$, $\gamma = 105.601(1)^{\circ}$, V = 1249.86(2) Å³, Z = 1, $R_{\rm gt}(F) = 0.0153, wR_{\rm ref}(F^2) = 0.0387, T = 100(2)$ K.

CCDC no.: 2023899

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

NaOH (Merck; 0.020 g, 0.50 mmol) in water (5 mL) was added to a suspension of (1,1'-bis(diphenylphosphino) ferrocene)(AuCl)₂ (0.255 g, 0.25 mmol) in acetonitrile (20 mL), followed by the addition of $MeOC(=S)N(H)C_6H_4F$ -3 Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.17 \times 0.05 \times 0.04~\text{mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	16.4 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	75.3°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	123988, 5168, 0.032
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs}$ > 2 $\sigma(I_{\rm obs})$, 5144
N(param) _{refined} :	333
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
Au	0.45643(2)	0.34168(2)	0.77818(2)	0.01626(3)
Fe	1.000000	0.500000	1.000000	0.01450(9)
S1	0.31541(8)	0.37156(5)	0.62939(4)	0.02324(11)
P1	0.57851(7)	0.30475(4)	0.92180(4)	0.01350(9)
01	0.5854(2)	0.33053(16)	0.58040(14)	0.0294(4)
N1	0.3507(3)	0.28430(19)	0.42603(17)	0.0278(4)
C1	0.4183(3)	0.3229(2)	0.53228(19)	0.0233(4)
F1 ^a	-0.2568(3)	0.0653(2)	0.2115(3)	0.0487(10)
C2 ^a	0.1761(3)	0.2779(2)	0.37891(19)	0.0272(5)
C3 ^a	0.1425(4)	0.3784(3)	0.3867(2)	0.0348(6)
H3ª	0.236784	0.453628	0.425506	0.042*
C4 ^a	-0.0305(4)	0.3671(3)	0.3372(2)	0.0420(7)
H4 ^a	-0.053256	0.436184	0.344892	0.050*
C5 ^a	-0.1700(4)	0.2598(3)	0.2775(2)	0.0397(7)
H5 ^a	-0.287719	0.253455	0.243817	0.048*
C6 ^a	-0.1319(4)	0.1622(3)	0.2688(2)	0.0388(6)
C7 ^a	0.0372(3)	0.1682(2)	0.3175(2)	0.0303(5)
H7 ^a	0.058289	0.098518	0.309305	0.036*
F1′ ^b	-0.0843(5)	0.4492(3)	0.3442(3)	0.0363(12)
C2′ ^b	0.1761(3)	0.2779(2)	0.37891(19)	0.0272(5)
C3′ ^b	0.1425(4)	0.3784(3)	0.3867(2)	0.0348(6)
H3′ ^b	0.236784	0.453628	0.425506	0.042*
C4′ ^b	-0.0305(4)	0.3671(3)	0.3372(2)	0.0420(7)
C5′ ^b	-0.1700(4)	0.2598(3)	0.2775(2)	0.0397(7)
H5′ ^b	-0.287719	0.253455	0.243817	0.048*
C6′ ^b	-0.1319(4)	0.1622(3)	0.2688(2)	0.0388(6)
H6′ ^b	-0.226204	0.087084	0.227218	0.047*
C7′ ^b	0.0372(3)	0.1682(2)	0.3175(2)	0.0303(5)
H7′ ^b	0.058289	0.098518	0.309305	0.036*
C8	0.6778(4)	0.2941(3)	0.5045(2)	0.0387(6)
H8A	0.614528	0.210000	0.454137	0.058*

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Chien Ing Yeo and Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia

a Open Access. © 2020 Chien Ing Yeo et al., published by De Gruyter. ඟ BY This work is licensed under the Creative Commons Attribution 4.0 International License.

Table 2 (continued)

Atom	X	у	Z	U _{iso} */U _{eq}
H8B	0.799639	0.308510	0.548048	0.058*
H8C	0.681881	0.339014	0.459848	0.058*
C11	0.7782(3)	0.42193(17)	1.02663(17)	0.0153(4)
C12	0.9308(3)	0.4161(2)	1.09540(18)	0.0196(4)
H12	0.946794	0.346465	1.093458	0.024*
C13	1.0537(3)	0.5332(2)	1.16701(18)	0.0256(5)
H13	1.166715	0.555670	1.221521	0.031*
C14	0.9786(3)	0.6112(2)	1.14312(19)	0.0263(5)
H14	1.033045	0.694599	1.179118	0.032*
C15	0.8096(3)	0.54384(18)	1.05696(18)	0.0201(4)
H15	0.730718	0.573791	1.024820	0.024*
C21	0.4276(3)	0.27759(17)	0.99589(17)	0.0159(4)
C22	0.2548(3)	0.19333(19)	0.93185(19)	0.0201(4)
H22	0.220999	0.151187	0.852737	0.024*
C23	0.1329(3)	0.1714(2)	0.9838(2)	0.0235(4)
H23	0.015681	0.113932	0.940316	0.028*
C24	0.1816(3)	0.2331(2)	1.0993(2)	0.0235(4)
H24	0.097664	0.217616	1.134673	0.028*
C25	0.3520(3)	0.3173(2)	1.16331(19)	0.0225(4)
H25	0.384615	0.359716	1.242283	0.027*
C26	0.4757(3)	0.33958(18)	1.11171(18)	0.0183(4)
H26	0.592789	0.397064	1.155553	0.022*
C31	0.6231(3)	0.17129(17)	0.87648(17)	0.0166(4)
C32	0.6276(3)	0.12053(19)	0.76878(19)	0.0220(4)
H32	0.617237	0.159307	0.721449	0.026*
C33	0.6473(3)	0.0129(2)	0.7303(2)	0.0263(5)
H33	0.651058	-0.021340	0.656980	0.032*
C34	0.6613(3)	-0.04423(19)	0.7986(2)	0.0251(5)
H34	0.672344	-0.118317	0.771493	0.030*
C35	0.6594(3)	0.00602(19)	0.9064(2)	0.0229(4)
H35	0.670834	-0.033015	0.953438	0.028*
C36	0.6408(3)	0.11374(18)	0.94581(19)	0.0191(4)
H36	0.640025	0.148349	1.019900	0.023*
C41 ^c	0.0333(7)	0.0640(5)	0.5186(4)	0.0343(12)
H41 ^c	0.069902	0.128863	0.495681	0.041*
Cl1 ^c	-0.0393(2)	0.11231(13)	0.63193(12)	0.0438(3)
Cl2 ^c	0.2189(2)	0.02762(16)	0.56068(19)	0.0580(4)
Cl3c	-0.1383(3)	-0.05837(18)	0.40422(15)	0.0766(7)

^aOccupancy: 0.592(5), ^bOccupancy: 0.408(5), ^cOccupancy: 0.5.

[5] (0.093 g, 0.50 mmol) in acetonitrile (20 mL) and stirred for 3 h. The resulting mixture was left for slow evaporation at room temperature, yielding crystals after 4 weeks. Yield: 0.240 g (73%). **M. pt**: (Biobase automatic melting point apparatus MP450): 451–452 K. **Elemental Analysis** for C₅₀H₄₂Au₂F₂FeN₂O₂P₂S₂ (Leco TruSpec Micro CHN Elemental Analyser): C, 45.61; H, 3.22; N, 2.13%. Found: C, 45.21; H, 4.23 N, 2.41%. **IR** (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 1435 (s) v(C=N), 1140 (s) v(C–O), 1091 (s) v(C–S). ¹H **NMR** (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to Me₄Si in CDCl₃ solution at 298 K, ppm): δ 7.49–7.43 (m, br, 20H, Ph₂P), 7.07 (dt, 2H, aryl-H5, ⁴J_{HF} = 7.11 Hz, ³J_{HH} = 7.31 Hz), 6.67–6.61 (m, br, 4H, aryl-H2,6), 6.54–6.50 (m, br, 2H, aryl-H4), 4.69 (s, 4H, PC₅H₄), 4.26 (s, 4H, PC₅H₄), 3.89 (s, 6H, OCH₃). ¹³C{¹H} NMR (as for ¹H NMR): δ 165.2 (C_q), 163.1 (d, aryl-C3, ¹*J*_{CF} = 244.29 Hz), 152.5 (d, aryl-C1, ³*J*_{CF} = 10.23 Hz), 133.6 (d, m-PC₅H₅, ³*J*_{CP} = 14.10 Hz), 131.7 (d, p-PC₅H₅, ⁴*J*_{CP} = 2.44 Hz), 130.6 (d, i-PC₅H₅, ¹*J*_{CP} = 58.83 Hz), 129.7 (d, aryl-C5, ³*J*_{CF} = 9.56 Hz), 129.0 (d, o-PC₅H₅, ²*J*_{CP} = 11.51 Hz), 117.8 (d, aryl-C6, ⁴*J*_{CF} = 2.60 Hz), 109.3 (d, aryl-C2, ²*J*_{CF} = 21.13 Hz), 109.2 (d, aryl-C4, ²*J*_{CF} = 22.02 Hz), 75.1 (d, β-PC₅H₄, ²*J*_{CP} = 8.32 Hz), 74.8 (d, γ-PC₅H₄, ³*J*_{CP} = 13.29 Hz), 71.8 (d, α-PC₅H₄, ¹*J*_{CP} = 65.83 Hz), 55.4 (OCH₃). ³¹P{¹H} NMR (as for ¹H NMR but with chemical shift referenced to 85% aqueous H₃PO₄ as the external reference): δ 33.1. Crystals of (I) for the X-ray structure determination were grown from the slow evaporation of chloroform solution of (I) and analysed directly.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95-1.00 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The 3-fluorophenyl ring was disordered over two co-planar orientations so the C atoms were exactly coincident but, two positions were apparent for the F atoms; the latter were refined independently. At the conclusion of the refinement, the major component of the ring had a site occupancy factor of 0.592(5). The solvent chloroform molecule was statistically disordered about a centre of inversion.

Comment

A recent report [6] describing the crystallographic characterisation of dppf{Au[SC(O-iPr)=NC₆H₄Cl-4]}₂ highlighted the structural diversity in these molecules; dppf is 1,1'-bis (diphenylphosphino)ferrocene. This diversity relates to the global conformations of the molecules with the important consequence being the formation or otherwise of intramolecular Au···Au (aurophilic) bonds. Thus, for the formulation dppf{Au[SC(OR)=NC₆H₄Y]}₂, when R=Me and Y=NO₂ [7] and R = iPr and $Y = NO_2[8]$, the molecule has an A-frame conformation which allows for the formation of an intramolecular Au··· Au interaction. This is facilitated by the molecules having crystallographic 2-fold symmetry. By contrast, the other known structures adopt a motif where the Fe atom is located on a centre of inversion indicating the molecule has an open or extended conformation which precludes the formation of intramolecular Au. · · Au interactions. The structures adopting this second motif have R = iPr and Y = 4-Cl [6], R = Et and Y = H [9] and R = iPr and Y = 4-Me [10]. Herein, a new member of the dppf{Au[SC(OR)=NC₆H₄Y]}₂ series is described, namely that with R = Me and Y = 3-F, isolated as a chloroform solvate.

The molecular structure of the binuclear species in (I) is shown in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) 2-x, 1-y, 2-z; minor disorder component and solvent molecule are omitted). The Fe atom is situated on a centre of inversion so the crystallographic asymmetric unit comprises half a binuclear molecule. There is also a solvent chloroform molecule in the asymmetric unit, which is statistically disordered about a centre of inversion, so the overall formulation of (I) is dppf{Au[SC(OMe)=NC₆H₄F-3]}₂·CHCl₃. The gold(I) atom exists in a linear geometry with the P1-Au-S1 angle being 176.615(19)° as this atom is coordinated by phosphane-P [Au–P1=2.2533(5) Å] and thiolate-S [Au– S1 = 2.3065(5) Å] atoms. A common feature of all the reported $dppf{Au[SC(OR)=NC_6H_4Y-4]}_2$ structures is the formation of an intramolecular Au···O interaction as the thiolate ligand is orientated to place the O atom in close proximity to the Au atom. In (I), the Au···O separation amounts to 3.0794(18) Å].

Owing to the disorder in the fluorophenyl residue, a complete description of the molecular packing for (I) is precluded. Indeed, according to an analysis of the packing employing PLATON [11], there are no directional interactions between the constituents of (I). Globally, the binuclear molecules stack into columns parallel to the *a*-axis and define channels in which reside the chloroform molecules.

Acknowledgements: This research was supported by the Trans-disciplinary Research Grant Scheme (TR002-2014A) provided by the Ministry of Education, Malaysia. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- 1. Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Cryst. 45 (2012) 849–854.
- Yeo, C. I.; Tan, S. L.; Kwong, H. C.; Tiekink, E. R. T.: [(*Z*)-*N*-(3-Fluorophenyl)-*O*-methylthiocarbamato-κ*S*]-(triphenylphosphane-κ*P*)gold(l): crystal structure, Hirshfeld surface analysis and computational study. Acta Crystallogr. **E76** (2020) 1284–1290.
- Yeo, C. I.; Tiekink, E. R. T.: Crystal structure of (μ₂-1,1'-bis (diphenylphosphino)ferrocene-*P*,*P*')-bis[(*Z*)-*O*-isopropyl *N*-(4-chlorophenyl)thiocarbamato-*S*]-di-gold(I) acetonitrile di-solvate, C₅₄H₅₀Au₂Cl₂FeN₂O₂P₂S₂·2(C₂H₃N). Z. Kristallogr. NCS **235** (2020) NCRS-2020-0308.
- Ho, S. Y.; Cheng, E. C.-C.; Tiekink, E. R. T.; Yam, V. W.-W.: Luminescent phosphine gold(I) thiolates: correlation between crystal structure and photoluminescent properties in [R₃PAu{SC(OMe)=NC₆H₄NO₂-4}] (R = Et, Cy, Ph) and [(Ph₂P-R-PPh₂){AuSC(OMe)=NC₆H₄NO₂-4}₂] (R = CH₂, (CH₂)₂, (CH₂)₃, (CH₂)₄, Fc). Inorg. Chem. **45** (2006) 8165–8174.
- Ho, S. Y.; Tiekink, E. R. T.: [μ-1,1'-Bis(diphenylphosphino) ferrocene-κ*P*:*P*'-bis{[(*Z*)-*O*-isopropyl *N*-(4-nitrophenyl) thiocarbamato-κ*S*]gold(l)} chloroform disolvate. Acta Crystallogr. **E65** (2009) m1466–m1467.
- Ho, S. Y.; Tiekink, E. R. T.: [1,1-μ-Bis(diphenylphosphino)ferrocene]bis{[(*Z*)-*O*-ethyl *N*-phenylthiocarbamato-]κ*S*] gold(l)} dichloromethane solvate. Acta Crystallogr. **E66** (2010) m608–m609.
- Tadbuppa, P. P.; Tiekink, E. R. T.: [μ-1,1'-Bis(diphenylphosphino) ferrocene-κ²P:P']bis{[(Z)-O-isopropyl-N-(4-methylphenyl) thiocarbamato-κS]gold(l)}. Acta Crystallogr. E65 (2009) m1597.
- 11. Spek, A. L.: CheckCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. **E76** (2020) 1–11.