Ignez Caracelli*, Julio Zukerman-Schpector, Ariel L. Llanes Garcia, Carlos Rogue D. Correia and Edward R.T. Tiekink*

Crystal structure of tert-butyl (1S,2R,5R)-2-(hydroxymethyl)-4-(4-methoxyphenyl)-6-oxa-3azabicyclo[3.1.0]hexane-3-carboxylate, C₁₇H₂₃NO₅

https://doi.org/10.1515/ncrs-2020-0349 Received July 9, 2020; accepted August 2, 2020; available online August 12, 2020

Abstract

 $C_{17}H_{23}NO_5$, monoclinic, $P2_1$ (no. 4), a = 6.0479(9) Å, c = 14.711(2) Å, b = 9.7032(10) Å, $\beta = 94.174(9)^{\circ}$, V =861.0(2) Å³, Z = 2, $R_{\rm gt}(F) = 0.0440$, $wR_{\rm ref}(F^2) = 0.1436$, T = 293(2) K.

CCDC no.: 2020522

*Corresponding authors: Ignez Caracelli, BioMat, Departamento de Física, Universidade Federal de São Carlos, C.P. 676, São Carlos, SP, 13565-905, Brazil, e-mail: ignez@df.ufscar.br; and Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Julio Zukerman-Schpector: Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, C.P. 676, São Carlos, SP, 13565-905. Brazil

Ariel L. Llanes Garcia and Carlos Roque D. Correia: Instituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, CEP 13084-917 Campinas, Brazil

a Open Access. © 2020 Ignez Caracelli et al., published by De Gruyter. 💿 📴 This work is licensed under the Creative Commons Attribution 4.0 International License.

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Colourless irregular
$0.13 \times 0.11 \times 0.08~\text{mm}$
Mo Kα radiation (0.71073 Å)
0.09 mm^{-1}
Enraf Nonius TurboCAD4, ω
28.0°, >99%
2373, 2177
$I_{\rm obs} > 2 \; \sigma(I_{\rm obs}), 959$
215
CAD4 [1, 2], SIR2014 [3],
SHELX [4], WinGX/ORTEP [5]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	X	У	Z	U _{iso} */U _{eq}
01	1.0955(5)	0.6239(4)	0.0462(2)	0.0737(10)
02	0.5436(4)	0.6809(3)	0.26247(18)	0.0562(8)
03	0.8850(4)	0.7300(3)	0.32798(15)	0.0470(7)
04	1.0024(6)	1.3511(4)	0.2627(3)	0.0834(11)
05	0.5175(6)	0.4999(4)	0.0060(3)	0.0825(11)
H50	0.386(4)	0.520(9)	-0.005(5)	0.124*
N1	0.8400(5)	0.7118(4)	0.1783(2)	0.0453(8)
C1	1.0518(6)	0.7865(4)	0.1710(3)	0.0454(9)
H1	1.170684	0.742274	0.209306	0.055*
C2	1.0881(7)	0.7658(5)	0.0721(3)	0.0617(12)
H2	1.174220	0.833775	0.040294	0.074*
C3	0.8958(7)	0.7032(6)	0.0251(3)	0.0631(13)
H3	0.852173	0.728652	-0.038120	0.076*
C4	0.7210(7)	0.6772(5)	0.0911(2)	0.0525(11)
H4	0.595957	0.740386	0.078668	0.063*
C5	0.7387(6)	0.7058(4)	0.2575(2)	0.0430(9)
C6	0.8162(7)	0.7445(5)	0.4208(2)	0.0542(11)
C7	0.6751(11)	0.8712(7)	0.4258(4)	0.098(2)
H7A	0.748015	0.947657	0.399407	0.147*
H7B	0.652611	0.891178	0.488413	0.147*
H7C	0.534339	0.855684	0.392915	0.147*

Table 2 (continued)

Atom	X	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C8	0.6988(11)	0.6165(7)	0.4494(4)	0.095(2)
H8A	0.554585	0.611799	0.417677	0.142*
H8B	0.683596	0.619360	0.513913	0.142*
H8C	0.783320	0.536737	0.434955	0.142*
C9	1.0359(8)	0.7616(8)	0.4745(3)	0.0879(19)
H9A	1.123476	0.679990	0.468595	0.132*
H9B	1.011915	0.776331	0.537546	0.132*
H9C	1.112638	0.839414	0.451570	0.132*
C10	1.0365(7)	0.9373(4)	0.1948(3)	0.0455(10)
C11	0.8468(7)	1.0142(5)	0.1799(3)	0.0547(11)
H11	0.719007	0.971968	0.154278	0.066*
C12	0.8402(8)	1.1503(5)	0.2015(3)	0.0634(13)
H12	0.709571	1.199820	0.189666	0.076*
C13	1.0254(7)	1.2152(5)	0.2406(3)	0.0545(11)
C14	1.2181(8)	1.1414(6)	0.2567(3)	0.0659(13)
H14	1.345316	1.183853	0.282606	0.079*
C15	1.2205(7)	1.0023(5)	0.2336(3)	0.0566(11)
H15	1.350808	0.952274	0.244859	0.068*
C16	1.1937(11)	1.4287(6)	0.2830(5)	0.0895(18)
H16A	1.277934	1.388420	0.334169	0.134*
H16B	1.153392	1.521280	0.297749	0.134*
H16C	1.281566	1.429701	0.231259	0.134*
C17	0.6391(8)	0.5282(5)	0.0889(3)	0.0656(13)
H17A	0.764869	0.466211	0.096364	0.079*
H17B	0.546265	0.512817	0.138970	0.079*

Source of material

A 77% solution of *m*-chloroperbenzoic acid (CPBA; 3.67 g, 16.374 mmol) was dissolved in CH₂Cl₂ (30 mL). The water contained in the CPBA solution was separated with the aid of a separation funnel. The organic phase was added over a solution of tert-butyl (2S,5S)-2-(hydroxymethyl)-5-(4-methoxyphenyl)-2,5-dihydro-1*H*-pyrrole-1-carboxylate (1.0 g, 3.275 mmol) in CH₂Cl₂ (10 mL), containing anhydrous NaHCO₃ (1.65 g, 19.648 mmol) as a buffer. The suspension was stirred for 24 h at room temperature. The reaction was stopped by adding a saturated NaHSO₃ (15 mL) solution and the mixture was extracted with EtOAc. The phases were separated and the organic phase was washed with saturated NaHCO₃ solution (2 \times 15 mL) and NaCl (15 mL). The organic phase was dried with anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by flash column chromatography on silica gel, using an EtOAc/nhexane elution gradient (1:2, 1:1 and 2:1). The title epoxide (I) was obtained as a white solid in 73% yield (765 mg), with a diastereoselectivity of 100% [6]. M.pt: 380-382 K. Crystals of (I) were obtained by slow evaporation of its CHCl₃ solution. The ¹H and ¹³C NMR spectra reflect the presence of conformational rotamers in solution. ¹H NMR (300 MHz, CDCl₃) r.t.): $\delta = 7.08$ (d, J = 8.8 Hz, 2H); 6.88 (d, J = 8.8 Hz, 2H); 4.91 (s, 1H); 4.20 (dt, J = 6.6 and 2.2 Hz, 1H); 4.08 (dd, J = 12.4

and 2.2 Hz, 1H); 3.96 (dd, J = 12.4 and 6.6 Hz, 1H); 3.84 (m, 1H); 3.83–3.77 (overlapped signal, 1H); 3.80 (s, 3H); 3.43 (d, J = 2.9 Hz, 1H); 1.40 (s, 0.5H); 1.18 (s, 8.5H). ¹³C[¹H] NMR (75 MHz, CDCl₃, r.t.): $\delta = 159.2$; 156.3; 130.9; 127.6 ; 114.0; 80.9; 64.1; 63.7; 62.6; 58.1; 57.6; 55.2; 28.2; 28.0. HRMS Calc for C₁₇H₂₃NO₅: 321.15762; found 321.15708.

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O-bound H atom was refined with $O-H = 0.82 \pm 0.01$ Å, and with $1.5U_{eq}(O)$. The absolute structure was not determined in the X-ray experiment but, the assignment of stereochemistry at the four chiral centres is based on the chirality of the synthetic precursor employed in the synthesis.

Comment

The title β -epoxypyrrolidine derivative, (I), is a key precursor for the formation of a salt, 3'-deoxy-radicamine-A hydrochloride [6]. In [6], compound (I) was prepared by the epoxidation reaction of tert-butyl (2S)-2-(hydroxymethyl)-5-(4-methoxyphenyl)-2,5-dihydro-1H-pyrrole-1-carboxylate with *m*-chloroperbenzoicacid (CPBA). Subsequently, the opening of (I) in a dioxane/water/H₂SO₄ mixture (3:2:0.2), at reflux temperature, was totally regioselective. After purification using Dowex-H⁺, followed by treatment with a 2.5N HCl solution, the desired 3'-deoxy-radicamine-A hydrochloride was obtained in 80% yield. This product is a crucial precursor for the preparation of the (natural product) pyrrolidine alkaloids Radicamines A and B [7] which are of interest as inhibitors of α -glucosidase. The inhibition of α -glucosidase is key for the treatment of type 2 diabetes mellitus but, also for other disease such as cancer [8]. Herein, the crystal and molecular structures of precursor (I) are described.

The molecular structure of (I) is illustrated in the figure (25% displacement ellipsoids) and is constructed about a β -epoxypyrrolidine core. The conformation of the fivemembered ring is an envelope with the N1 atom being the flap atom. The r.m.s. deviation of the four constituent carbon atoms is 0.003 Å and the N1 atom lies 0.195(6) Å out of the plane. The dihedral angle between the least-squares plane of the four carbon atoms and the plane through the epoxy ring is 74.4(3)°. The N1 is bound by a *tert*-butyloxycarbonyl group with the N1–C5–O2–C6 torsion angle of 173.3(3)° indicative of a co-planar system. A close to trigonal geometry about the N1 atom is indicated by the sum of the angles subtended at the N1 atom of 358.2°. The five-membered ring is pentasubstituted with the C1 and C4 atoms flanking the N1 atom bearing 4-methoxyphenyl and hydroxymethyl substituents, respectively. The configurations at the C1–C4 atoms are *R*, *R*, *S* and *R*.

There is a single literature precedent for (I) which was described only recently [9]. Here, the difference arises as the N1-bound group is ethyloxycarbonyl and the hydroxymethyl group of (I) is no longer present. The five-membered ring is an envelope, as in (I), and the dihedral angle between the rings comprising the β -epoxypyrrolidine core is 78.53(10)° [9].

In the crystal, a linear supramolecular chain along the *a*-axis is formed through hydroxyl-O–H···O(epoxy) hydrogen bonding $[05-H50\cdots01^i: H50\cdots01^i = 2.21(5)$ Å, $05\cdots01^i = 2.921(5)$ Å with angle at H50 = 145(7)° for symmetry operation (i): -1 + x, *y*, *z*]. The chains thus formed, are connected into a supramolecular layer in the *ab*-plane by methylene-C–H···O(carbonyl, hydroxyl) interactions [C1– H1···O2ⁱⁱ: H1···O2ⁱⁱ = 2.41 Å, C1···O2ⁱⁱ = 3.335(5) Å with angle at H1 = 158° and C2–H2···O5ⁱⁱⁱ: H2···O5ⁱⁱⁱ = 2.59 Å, C2···O5ⁱⁱⁱ = 3.545(6) Å with angle at H2 = 164° for (ii) 1 + *x*, *y*, *z* and (iii) 2 – *x*, 1/2 + *y*, –*z*]. The layers inter-digitate along the *c*-axis direction so the *tert*-butyl groups are off-set and occupy the space in the inter-layer region.

Further insight into the molecular packing was accomplished by calculating the Hirshfeld surface as well as the full and decomposed two-dimensional fingerprint plots using Crystal Explorer 17 [10] and literature procedures [11]. The most distinctive feature of the overall fingerprint plot were sharp spikes ascribed to the $O-H\cdots O$ hydrogen bonding. Indeed, $H\cdots O/O\cdots H$ contacts contributed 22.4% to the overall surface but, by far, the major contributions come from $H\cdots H$ contacts at 70.9%, the large number reflecting to a great extent the occupancy of the inter-layer region by *tert*-butyl groups. The only other significant contribution to the surface comes from $H\cdots C/C\cdots H$ contacts at 5.9%.

Acknowledgements: The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001 and the National Council for Scientific and Technological Development (CNPq) are acknowledged for grants (312210/2019–1, 433957/2018–2 and 406273/2015–4) to IC and for a fellowship (303207/2017–5) to JZS. Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

- 1. CAD4 Express Software. Enraf-Nonius, Delft, The Netherlands (1994).
- Harms, K.; Wocadlo, S.: XCAD4 CAD4 Data Reduction. Program for Processing CAD-4 Diffractometer Data. University of Marburg, Germany, 1995.
- Burla, M. C.; Caliandro, R.; Carrozzini, B.; Cascarano, G. L.; Cuocci, C.; Giacovazzo, C.; Mallamo, M.; Mazzone, A.; Polidori, G.: Crystal structure determination and refinement via SIR2014. J. Appl. Cryst. 48 (2015) 306–309.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- 6. Garcia, A. L. L.: PhD thesis, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil, 2008.
- Shibano, M.; Tsukamato, D.; Masuda, A.; Tanaka, Y.; Kusano, G.: Two new pyrrolidine alkaloids, Radicamines A and B, as inhibitors of α-glucosidase from Lobelia chinensis LOUR. Chem. Pharm. Bull. 49 (2001) 1362–1365
- Dhameja, M.; Gupta, P.: Synthetic heterocyclic candidates as promising α-glucosidase inhibitors: an overview. Eur. J. Med. Chem. 176 (2019) 343–377.
- Zukerman-Schpector, J.; Sugiyama, F. H.; Garcia, A. L. L.; Correia, C. R. D.; Jotani, M. M.; Tiekink, E. R. T.: Ethyl 2-(4-methoxyphenyl)-6-oxa-3-azabicyclo[3.1.0]hexane-3carboxylate: crystal structure and Hirshfeld analysis. Acta Crystallogr. **E73** (2017) 1218–1222.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.