Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of *catena*{(μ_2 -1,10-phenanthroline- $\kappa^4 N$,N,N',N')-(μ_2 -1,10-phenanthroline- $\kappa^3 N$,N,N')potassium(I) {[bis(2-hydroxyethyl)iminiumyl] (sulfanidyl)methyl}sulfanide hemi(1,10-phenanthroline)}, {C₂₄H₁₆KN₄, 0.5(C₁₂H₈N₂), C₅H₁₀NO₂S₂}

*Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ο Open Access. © 2020 Kong Mun Lo et al., published by De Gruyter. ඟ вт International License.

https://doi.org/10.1515/ncrs-2020-0333 Received July 6, 2020; accepted July 17, 2020; available online August 1, 2020

Abstract

C₃₅H₃₀KN₆O₂S₂, monoclinic, *C*2/*c* (no. 15), a = 32.8001(4) Å, b = 7.1562(1) Å, c = 26.0400(3) Å, $\beta = 94.385(1)^{\circ}$, V = 6094.32(13) Å³, Z = 8, $R_{gt}(F) = 0.0315$, $wR_{ref}(F^2) = 0.0911$, T = 100(2) K.

CCDC no.: 2017020

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Colourless prism
$0.13 \times 0.10 \times 0.04 \text{ mm}$
Cu <i>Kα</i> radiation (1.54184 Å)
3.17 mm^{-1}
XtaLAB Synergy, ω
67.1°, >99%
68443, 5436, 0.027
$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 5312
421
CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

This work is licensed under the Creative Commons Attribution 4.0

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Table 2 (continued)

Atom	x	у	z	U _{iso} */U _{eq}
K1	0.24739(2)	0.76681(6)	0.23559(2)	0.01307(11)
S 1	0.42721(2)	0.79102(7)	0.47775(2)	0.02119(13)
S 2	0.34084(2)	0.67345(7)	0.44974(2)	0.01543(12)
01	0.46034(5)	0.5084(2)	0.56831(6)	0.0249(3)
H10	0.4555(9)	0.600(3)	0.5486(9)	0.037*
02	0.33745(4)	0.0814(2)	0.40190(6)	0.0219(3)
H20	0.3440(8)	-0.018(2)	0.4173(9)	0.033*
N1	0.40170(5)	0.4369(2)	0.47346(6)	0.0130(3)
C1	0.39106(6)	0.6185(3)	0.46721(7)	0.0141(4)
C2	0.44452(6)	0.3738(3)	0.48204(7)	0.0158(4)
H2A	0.462567	0.468502	0.467832	0.019*
H2B	0.447805	0.255876	0.462907	0.019*
C3	0.45809(6)	0.3421(3)	0.53821(8)	0.0188(4)
НЗА	0.438763	0.254670	0.553029	0.023*
H3B	0.485345	0.281948	0.540525	0.023*
C4	0.37211(6)	0.2836(3)	0.46627(7)	0.0141(4)
H4A	0.344818	0.327875	0.474692	0.017*
H4B	0.380370	0.180066	0.490056	0.017*
C5	0.36966(6)	0.2123(3)	0.41091(7)	0.0168(4)
H5A	0.365144	0.319009	0.386961	0.020*
H5B	0.395910	0.152553	0.404022	0.020*
N2	0.50532(5)	0.1491(2)	0.69801(6)	0.0150(3)
C6	0.51018(6)	0.1454(3)	0.64784(8)	0.0180(4)
H6	0.512114	0.261391	0.630458	0.022*
C7	0.51264(6)	-0.0195(3)	0.61884(7)	0.0194(4)
H7	0.516025	-0.014036	0.582962	0.023*
C8	0.51006(6)	-0.1875(3)	0.64326(8)	0.0170(4)
H8	0.511446	-0.300914	0.624509	0.020*
C9	0.50532(5)	-0.1907(3)	0.69672(7)	0.0130(4)
C10	0.50252(6)	-0.3631(3)	0.72436(8)	0.0151(4)
H10	0.504203	-0.478451	0.706594	0.018*
C11	0.50272(5)	-0.0175(3)	0.72246(7)	0.0120(4)
N3	0.26891(5)	0.9293(2)	0.14466(6)	0.0136(3)
N4	0.31818(5)	1.0166(2)	0.23208(6)	0.0129(3)
C12	0.24521(6)	0.8937(3)	0.10232(7)	0.0155(4)
H12	0.218137	0.851359	0.106007	0.019*
C13	0.25778(6)	0.9149(3)	0.05220(7)	0.0171(4)
H13	0.239283	0.892092	0.022999	0.020*
C14	0.29719(6)	0.9690(3)	0.04629(7)	0.0164(4)
H14	0.306640	0.980893	0.012856	0.020*
C15	0.32366(6)	1.0069(3)	0.09044(7)	0.0137(4)
C16	0.36502(6)	1.0677(3)	0.08658(7)	0.0157(4)
H16	0.375465	1.079126	0.053690	0.019*
C17	0.38925(6)	1.1090(3)	0.12955(8)	0.0159(4)
H17	0.416607	1.148462	0.126466	0.019*
C18	0.37417(6)	1.0939(3)	0.17964(7)	0.0136(4)
C19	0.39851(6)	1.1421(3)	0.22464(8)	0.0157(4)
H19	0.425566	1.186986	0.222363	0.019*
C20	0.38287(6)	1.1237(3)	0.27171(8)	0.0170(4)
H20	0.398974	1.153480	0.302499	0.020*
C21	0.34261(6)	1.0600(3)	0.27339(7)	0.0150(4)
H21	0.332105	1.047055	0.306207	0.018*
C22	0.33386(6)	1.0330(2)	0.18511(7)	0.0115(4)
C23	0.30788(6)	0.9878(3)	0.13905(7)	0.0120(4)
N5	0.22844(5)	0.9509(2)	0.32469(6)	0.0126(3)

Atom	x	у	Z	U _{iso} */U _{eq}
N6	0.18191(5)	1.0397(2)	0.23553(6)	0.0138(3)
C24	0.25027(6)	0.9062(3)	0.36800(7)	0.0154(4)
H24	0.277986	0.870670	0.365833	0.018*
C25	0.23483(6)	0.9085(3)	0.41668(7)	0.0191(4)
H25	0.251693	0.875056	0.446560	0.023*
C26	0.19502(7)	0.9597(3)	0.42030(8)	0.0198(4)
H26	0.183850	0.961794	0.452900	0.024*
C27	0.17062(6)	1.0093(3)	0.37552(8)	0.0169(4)
C28	0.12854(6)	1.0623(3)	0.37680(8)	0.0213(4)
H28	0.116573	1.066655	0.408864	0.026*
C29	0.10569(6)	1.1061(3)	0.33317(9)	0.0217(4)
H29	0.077899	1.141047	0.334987	0.026*
C30	0.12274(6)	1.1005(3)	0.28405(8)	0.0171(4)
C31	0.09965(6)	1.1444(3)	0.23768(9)	0.0219(4)
H31	0.071785	1.180103	0.238081	0.026*
C32	0.11782(7)	1.1350(3)	0.19199(9)	0.0226(5)
H32	0.102702	1.163273	0.160369	0.027*
C33	0.15903(6)	1.0830(3)	0.19276(8)	0.0180(4)
H33	0.171362	1.078298	0.160941	0.022*
C34	0.16408(6)	1.0480(3)	0.28096(7)	0.0132(4)
C35	0.18864(6)	1.0015(3)	0.32802(7)	0.0123(4)

Source of material

Diethanolamine (Merck, 0.29 mL, 3 mmol) was slowly added dropwise into a solution of carbon disulfide (Merck, 0.18 mL, 3 mmol) and potassium hydroxide (Merck, 0.17 g, 3 mmol) in methanol (5 mL) at 0 °C. Then, the mixture was stirred for 2 h. Next, europium(III) nitrate pentahydrate (Sigma-Aldrich, 0.43 g, 1 mmol) and 1,10-phenanthroline (Merck, 0.18 g, 1 mmol) in water (5 mL) was added to the mixture followed by stirring for 4 h. Upon standing at room temperature for 3 days, the white precipitate formed was filtered and dried in air. It was recrystallised from methanol/ DMSO (1:1). The title compound was a side-product obtained from the reaction. Yield: 0.15 g (7.5%). M.pt (Stuart SMP30 digital melting point apparatus): >573 K. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 3361 (b) v(OH), 1540(m) ν(CN), 1504(m) ν(CC), 1410(m) ν(CO), 1077 (m) ν(CS). ¹H NMR (Bruker Ascend 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, DMSO-d₆ solution, p.p.m.): 2.81-2.99 (m, 4H, NCH₂), 4.40-4.51 (m, 4H, OCH₂), 7.74-8.10, 8.45-8.58, 9.01–9.12 (m, 24H, Ar-H). ¹³C{¹H} NMR (as for ¹H NMR): 52.9, (NCH₂), 60.3 (OCH₂), 123.8, 127.2, 128.9, 136.8, 145.9, 150.5 (Ar-C), 197.6 (CS).

Experimental details

The C-bound H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The O-bound H atoms were refined with

 $O-H = 0.84 \pm 0.01$ Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. Owing to poor agreement, five reflections, i.e. (-13 1 16), (-22 2 2), (1 3 14), (-13 5 15) and (-22 0 2), were removed from the final cycles of refinement.

Comment

The crystal and molecular structures described herein of the title salt co-crystal, $[K(phen)_2][S_2CN(CH_2CH_2OH)_2](phen)_{0.5}$, (I), represents a rare report of an alkali metal salt of phen and a dithiocarbamate anion; phen is 1,10-phenanthroline. Indeed, the sole example of a crystallographically determined structure related to (I) is that of Na(phen)_2(S_2CNEt_2) whereby the Na⁺ cation is chelated by two phen molecules as well as by the dithiocarbamate anion [5]. In continuation of investigations into the structures of alkali metal salts of dithiocarbamate anions [6–8], herein details for (I) described.

Referring to the figure (70% displacement ellipsoids), the crystallographic asymmetric unit of (I) comprises a dithiocarbamate anion, half a phen molecule (disposed about a 2-fold axis of symmetry with unlabelled atoms related by the symmetry operation 1 - x, y, 3/2 - z) and a K[(phen)₂]⁺ cation; the later represents the repeat unit of a coordination polymer, as discussed below.

The dithiocarbamate anion exhibits the expected features with experimentally equivalent C-S bond lengths [C1-S1=1.719(2) Å and C1-S2=1.7205(19) Å] and a short C–N bond [C1-N1=1.353(3) Å], the latter being consistent with a significant contribution of the ${}^{(2-)}S_2C=N^{(+)}$ canonical form to the electronic structure of the anion. An intramolecular hydroxyl-O-H····S hydrogen bond is noted $[01-H10\cdots S1: H10\cdots S1 = 2.42(2) \text{ Å}, 01\cdots S1 = 3.2312(16) \text{ Å}$ with angle at $H10 = 162(2)^{\circ}$]. As mentioned above, there is a 2-fold symmetric phen molecule in the crystal. Finally, the third component of the asymmetric unit, i.e. a $K[(phen)_2]^+$ cation, assembles into a helical chain (21 symmetry) along the *b*-axis, as shown in the right-hand view of the figure. Within the asymmetric unit, the K1···N3–N6 bond lengths are 2.7773(16), 2.9373(16), 2.7795(16) and 2.9025(16) Å, respectively. The repeat units are connected by three additional $K1 \cdots N4^{i} - N6^{i}$ contacts, i.e. 2.9692(16), 2.8973(16) and 2.8843(16) Å, respectively; symmetry operation (i) 1/2 - x, -1/2 + y, 1/2 - z. The N₇ donor set about the K1 ion is, to a first approximation, based on a cube with one position vacant. The $K1 \cdots N3^i$ separation is 4.0123(16) Å, a separation which correlates with the K1-N3 contact being the shortest of all $K \cdot \cdot \cdot N$ contacts.

Globally, the molecular packing of (I) comprises columns of cations, parallel to the *b*-axis assembled into rows in the *ab*-plane with the neutral phen molecules between neighbouring columns. The connections between the chains are of the type chain-phen-C-H··· π (phen) [shortest contact C19-H19····Cg(C9ⁱⁱ-C11ⁱⁱ,C9ⁱⁱⁱ-C11ⁱⁱⁱ) = 2.49 Å with angle at H19=152° for (ii) 1 - x, 1 - y, 1 - z and (iii) x, 1 - y, -1/2 + z] so that supramolecular layers are formed. Interspersed between layers are the dithiocarbamate anions which form hydroxyl-O-H···S(dithiocarbamate) hydrogen bonds $[02-H20\cdots S2^{iv}: H20\cdots S2^{iv} = 2.369(16) \text{ Å},$ $O2 \cdot \cdot \cdot S2^{iv} = 3.1727(15)$ Å with angle at H20 = 161(2)° for (iv) x, -1 + v, z which serve to connect anions along the b-axis. The dithiocarbamate anions also link phen molecules, coordinated and non-coordinated, via phen- $C-H\cdots O(hvdroxyl)$ [shortest contact: C21–H21···O2^v: H21···O2^v = 2.50 Å, $C21 \cdots O2^{v} = 3.367(2)$ Å with angle at $H21 = 152^{\circ}$ for (v) x, 1 + y, z] and phen-C-H···S(dithiocarbamate) [C16-H16····S1^{vi}: H16····S1^{vi} = 2.86 Å, C16····S1^{vi} = 3.755(2) Å with angle at H16 = 158° for (vi) x, 2 - y, -1/2 + z] contacts to consolidate the three-dimensional architecture.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Mirkovic, T.; Nair, S. P.; Scholes, G. D.; Lough, A. J.: (*N*,*N*-Diethyldithiocarbamato-κ²*S*,*S*')bis(1,10-phenanthroline) sodium(I). Acta Crystallogr. E62 (2006) m833–m835.
- Howie, R. A.; de Lima, G. M.; Menezes, D. C.; Wardell, J. L.; Wardell, S. M. S. V.: Young, D. J.; Tiekink, E. R. T.: The influence of cation upon the supramolecular aggregation patterns of dithiocarbamate anions functionalised with hydrogen bonding capacity – the prevalence of charge-assisted O–H···S interactions. CrystEngComm 10 (2008) 1626–1637.
- Lo, K. M.; Lee, S. M.; Zaldi, N. Bt.; Hussen, R. S. D.; Tiekink, E. R. T.: Crystal structure of *catena*-{di-aqua-sodium [*n*-butyl(methyl)carbamothioyl]-sulfanide}_n, [C₆H₁₆NNaO₂S₂]_n. Z. Kristallogr. NCS **234** (2019) 1333–1335.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of *catena*{di-aqua-sodium-[*N*-(hydroxyethyl),*N*-isopropyl-dithiocarbamato]}_n, [C₆H₁₆NNaO₂S₂]_n. Z. Kristallogr. NCS 235 (2020) NCRS-2020-0292.