Chien Ing Yeo and Edward R.T. Tiekink*

Crystal structure of [2-carboxybenzene-1-thiolato-S]-(triethylphosphane-P)-gold(I), C₁₃H₂₀AuO₂PS

https://doi.org/10.1515/ncrs-2020-0314 Received June 24, 2020; accepted July 17, 2020; available online August 4, 2020

Abstract

$C_{13}H_{20}AuO_2PS$,	triclinic,	ΡĪ	(no. 2),	<i>a</i> = 7.7509(2) Å,
b = 12.7840(3) Å,	c = 1	5.868	9(4) Å,	$\alpha = 89.087(2)^{\circ},$

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Open Access. © 2020 Chien Ing Yeo et al., published by De Gruyter. CC) BY International License.

 $\beta = 87.065(2)^{\circ}, \quad \gamma = 84.797(2)^{\circ}, \quad V = 1563.78(7) \text{ Å}^3, \quad Z = 4,$ $R_{\text{gt}}(F) = 0.0282, \quad wR_{\text{ref}}(F^2) = 0.0795, \quad T = 100 \text{ K}.$

CCDC no.: 2017067

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.12 \times 0.12 \times 0.10$ mm
Wavelength:	Cu <i>Kα</i> radiation (1.54178 Å)
μ:	19.8 mm ⁻¹
Diffractometer, scan mode:	SuperNova, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	33726, 5582, 0.026
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 5541
N(param) _{refined} :	337
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

NaOH (Merck, 0.020 g, 0.5 mmol) in water (1 mL) was added to Et_3PAuCl (0.175 g, 0.5 mmol) in acetonitrile (15 mL), followed by the addition of 2-thiosalicylic acid (Merck, 0.077, 0.5 mmol) in chloroform (15 mL). The solution was stirred at room temperature for 2 h and left for slow evaporation, yielding yellow crystals after 3 weeks.

Yield: 0.192 g (82%). **M. pt.** (Biobase automatic melting point apparatus MP450): 378–379 K. Anal. Calc. for C₁₃H₂₀AuO₂PS: C, 33.34; H, 4.30. Found: C, 33.16; H, 4.45%. **IR** (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 2962 (w) v(O–H), 1675 (s) v(C=O), 1034 (s) v(C–S). ¹**H NMR** (Bruker Ascend 400 MHz NMR spectrometer with chemical shifts relative to tetramethylsilane in CDCl₃ solution at 298 K, ppm): δ 13.38 (s, br, 1H, COOH), 8.31 (d, 1H, aryl-H1, ${}^{3}J_{\rm HH} = 7.76$ Hz), 7.64 (d, 1H, aryl-H4, ${}^{3}J_{\rm HH} = 7.75$ Hz), 7.28 (td, 1H, aryl-H3, ${}^{3}J_{\rm HH} = 7.46$ Hz, ${}^{4}J_{\rm HH} = 1.42$ Hz), 7.19 (t, 1H, aryl-H2, ${}^{3}J_{\rm HH} = 7.55$ Hz), 1.83

This work is licensed under the Creative Commons Attribution 4.0

Chien Ing Yeo: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

1356 — Yeo and Tiekink: C₁₃H₂₀AuO₂PS

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Table 2 (continued)

Atom	x	у	Z	U _{iso} */U _{eq}
Au1	0.50883(3)	0.00400(2)	0.62533(2)	0.01695(8)
S1	0.51936(19)	0.15960(11)	0.54900(10)	0.0176(3)
P1	0.4835(2)	-0.13732(13)	0.71078(10)	0.0197(3)
01	0.5054(6)	0.3766(3)	0.4836(3)	0.0243(10)
02	0.2764(6)	0.4800(3)	0.5335(3)	0.0239(10)
H20	0.342(9)	0.528(5)	0.523(5)	0.036*
C1	0.2995(8)	0.1966(5)	0.5296(4)	0.0163(12)
C2	0.2379(8)	0.3014(5)	0.5143(4)	0.0192(13)
C3	0.0597(9)	0.3287(5)	0.5028(4)	0.0211(13)
H3	0.019177	0.400267	0.494073	0.025*
C4	-0.0566(8)	0.2525(5)	0.5042(4)	0.0218(13)
H4	-0.175666	0.270843	0.494799	0.026*
C5	0.0035(9)	0.1494(5)	0.5194(4)	0.0233(14)
H5	-0.075813	0.096854	0.521893	0.028*
C6	0.1779(8)	0.1211(5)	0.5310(4)	0.0203(13)
H6	0.215939	0.049248	0.540148	0.024*
C7	0.3519(8)	0.3881(5)	0.5094(4)	0.0176(12)
	0.3280(9)	-0.2210(5)	0.6735(4)	0.0226(14)
Н8А Цор	0.215/62	-0.1/8135	0.669032	0.027*
	0.307329	-0.2439/7	0.01504/	0.027°
	0.2956(10)	-0.3169(6)	0.7266(5)	0.0313(10)
HOR	0.400239	-0.300931	0.734109	0.047
HOC	0.217131	-0.207585	0.098192	0.047
C10	0.245541	-0.297383	0.782097	0.047
H10A	0.4000(0)	-0.157890	0.852179	0.0207(13)
H10B	0 492153	-0.054046	0 840284	0.032*
C11	0.2321(10)	-0.0287(6)	0.8148(5)	0.0351(17)
H11A	0.242097	0.030508	0.775329	0.053*
H11B	0.200238	-0.001986	0.871513	0.053*
H11C	0.142545	-0.071719	0.796789	0.053*
C12	0.6804(9)	-0.2244(6)	0.7250(5)	0.0321(16)
H12A	0.659261	-0.273834	0.772234	0.039*
H12B	0.708177	-0.266118	0.673247	0.039*
C13	0.8354(9)	-0.1638(7)	0.7434(5)	0.0376(18)
H13A	0.866651	-0.121771	0.693694	0.056*
H13B	0.934210	-0.213525	0.756902	0.056*
H13C	0.804665	-0.117359	0.791430	0.056*
Au2	0.59078(3)	0.51272(2)	0.87572(2)	0.01876(8)
S2	0.57186(19)	0.65473(12)	0.96535(10)	0.0193(3)
P2	0.6184(2)	0.38291(13)	0.77943(10)	0.0214(3)
03	0.5334(5)	0.8749(3)	1.0236(3)	0.0194(9)
04	0.7240(6)	0.9782(3)	0.9625(3)	0.0219(9)
H40	0.638(7)	1.023(5)	0.968(5)	0.033*
C14	0.7837(8)	0.6944(5)	0.9649(4)	0.0158(12)
C15	0.8173(8)	0.7990(5)	0.9791(4)	0.0167(12)
C16	0.9883(8)	0.8263(5)	0.9809(4)	0.0197(13)
H16	1.008377	0.897408	0.989856	0.024*
C17	1.1285(8)	0.7518(5)	0.9700(4)	0.0229(14)
H17	1.243781	0.770500	0.973433	0.027*
C18	1.0966(8)	0.6488(5)	0.9539(4)	0.0232(14)
H18	1.191391	0.597038	0.944968	0.028*
C19	0.9291(8)	0.6208(5)	0.9507(4)	0.0209(13)
H19	0.911223	0.550106	0.938723	0.025*
C20	0.6769(8)	0.8850(5)	0.9908(4)	0.0171(12)

Atom	X	у	Z	$U_{\rm iso}*/U_{\rm eq}$
C21	0.4200(9)	0.3413(6)	0.7394(5)	0.0284(15)
H21A	0.355127	0.402647	0.713204	0.034*
H21B	0.450985	0.288662	0.694858	0.034*
C22	0.3016(11)	0.2940(7)	0.8070(5)	0.0404(19)
H22A	0.366264	0.235349	0.835339	0.061*
H22B	0.202021	0.268595	0.780535	0.061*
H22C	0.260457	0.347805	0.848480	0.061*
C23	0.7411(10)	0.2658(5)	0.8204(5)	0.0280(15)
H23A	0.851327	0.286981	0.840825	0.034*
H23B	0.674297	0.239266	0.869828	0.034*
C24	0.7841(13)	0.1755(6)	0.7588(6)	0.046(2)
H24A	0.676841	0.155295	0.736149	0.069*
H24B	0.841928	0.115312	0.788345	0.069*
H24C	0.861153	0.198047	0.712449	0.069*
C25	0.7360(10)	0.4232(6)	0.6843(4)	0.0290(15)
H25A	0.755135	0.362778	0.645725	0.035*
H25B	0.663476	0.479354	0.655688	0.035*
C26	0.9112(11)	0.4634(7)	0.7002(5)	0.0416(19)
H26A	0.893056	0.526444	0.735021	0.062*
H26B	0.969476	0.480615	0.646145	0.062*
H26C	0.983284	0.408926	0.729547	0.062*

(dq, 6H, PCH₂, ${}^{3}J_{HH} = 7.71$ Hz, ${}^{2}J_{PH} = 9.80$ Hz), 1.17 (dt, 9H, CH₃, ${}^{3}J_{HH} = 7.65$ Hz, ${}^{3}J_{PH} = 18.77$ Hz) ppm. ${}^{31}P{}^{1}H$ NMR {CDCl₃}: 37.5 ppm.

Experimental details

The carbon-bound H-atoms were placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H)$ set to 1.2–1.5 $U_{eq}(C)$. The O-bound H atoms were refined with O–H = 0.84 ± 0.01 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$. Owing to poor agreement, five reflections, i.e. (3 2 1), (3 5 7), (3 6 5), (3 3 7) and (-4 – 1 9), were omitted from the final cycles of refinement. The maximum and minimum electron density peaks of 2.10 and 1.18 eÅ⁻³, respectively, were located 2.07 and 0.82 Å from the Au2 and H25B atoms, respectively.

Comment

The structural chemistry of the *n*-mercaptobenzoic acids (HSC₆H₄CO₂H-n; n-HmbaH) and anions derived from these has been reviewed recently, i.e. n = 2 [5] and n = 3 & 4 [6]. Prominent among these are phosphanegold(I) species owing, in part, to unpredictable crystallisation outcomes despite the universal adoption of a linear P–Au–S coordination geometry. For example [7, 8], for Cy₃PAu(2-mbaH), two conformational polymorphs were isolated, one with the anticipated eight-membered {···HOCO}₂ synthon arising from hydroxyl-O–H···O(carbonyl) hydrogen bonds occurring about a centre of inversion so the dimeric aggregate

has an open conformation; Cy is cyclohexyl. The other conformation had a more spherical shape as an intramolecular hvdroxyl-O-H···S(thiolate) hvdrogen bond formed instead [7, 8]. In another study of binuclear molecules (dppe)[Au(2mbaH)]₂ [9], supramolecular chains mediated by { \cdots HOCO}₂ synthons were formed but, when co-crystallised dimethyl sulphoxide (DMSO), zero dimensional aggregates formed instead owing to the presence of hydroxyl-O-H···O(DMSO) hydrogen bonding; dppe is Ph₂PCH₂CH₂PPh₂. Different solvates of (o-tolyl)₃PAu(2-mbaH) exhibited solvent-dependent solid-state photoluminescence [10], a trait often observed for phosphanegold(I) thiolates [11]. Complimenting the above are long-standing evaluations of biological potential, especially for anti-cancer [12] /anti-bacterial [13] activity, again, as often observed for phosphanegold(I) thiolate analogues [14]. The present crystal structure determination of the title compound Et₃PAu(2-mbaH), (I), was investigated in continuation of studies in this area.

The crystallographic asymmetric unit of (I) comprises two independent molecules as shown in the figure (70% displacement ellipsoids). The molecules have very similar conformations in which the gold atom is linearly coordinated by thiolate-S [Au1-S1 = 2.3180(15) Å; Au2–S2 = 2.3137(15) Å] and phosphane-P [Au1-P1 = 2.2583(16) Å; Au2-P2 = 2.2622(16) Å] atoms; the P1-Au1-S1 angle = 173.90(6)° and P2-Au2-S2 = 175.11(6)°. The differences in the C–O bond lengths [C1–O1, O2 = 1.235(8) and 1.317(7) Å; C20-O3, O4 = 1.221(8) and 1.341(8) Å] confirm protonation at each of the O2 and O4 atoms. The 2-mbaH ligand is not aligned to sit directly over the P-Au-S axis, rather is twisted as seen in the Au1-S1-C1-C2 torsion angle of 155.4(5)° [Au2–S2–C14–C15 = 151.5(5)°]. Finally, the carboxylic acid residues are directed away from the rest of the molecule to facilitate hydrogen bonding interactions.

The most prominent intermolecular interactions in the crystal of (I) are hydroxyl-O-H···O(carbonyl) hydrogen bonds occurring about a centre of inversion, indicating each molecule self-associates to form a dimeric aggregate $[02-H20\cdots01^{i}: H20\cdots01^{i}=1.77(7)$ Å, $02 \cdots 01^{i} = 2.607(6)$ Å with angle at H20 = 171(6)° and 04-H40...03ⁱⁱ: H40...03ⁱⁱ = 1.78(6) Å, 04...03ⁱⁱ = 2.616(6) Å with angle at $H40 = 176(7)^{\circ}$ for symmetry operations (i): 1-x, 1-y, 1-z and (ii): 1-x, 2-y, 2-z]. Globally, the Au1-aggregates assemble into homo-molecular layers in the *ab*-plane with the goldphosphane residues projecting to either side of the plane. A similar situation pertains for the Au2-aggregates. The layers stack alternatively along the c-axis. Within the Au1-layers, methylene-C-H····O(carbonyl) interactions are apparent [C8-H8b···· $O1^{iii}$: H8b···O1ⁱⁱⁱ = 2.44 Å, C8···O1ⁱⁱⁱ = 3.347(8) Å with angle at H8b = 152° for (iii): 1 - x, -y, 1 - z]. Within the Au2-layers, the connections between molecules are of the type phenyl-C-H···S(thiolate) [C17-H17···S2^{iv}: H17···S2^{iv} = 2.82 Å, C17···S2^{iv} = 3.544(6) Å with angle at H17 = 134° for (iv): 1 + x, y, z]. The only apparent directional contacts between layers are methylene-C-H···S(thiolate) interactions [C21-H21b···S1: H21b···S1 = 2.86 Å, C21···S1 = 3.844(8) Å with angle at H21b = 171°].

The Hirshfeld surfaces and two-dimensional fingerprint plots were calculated for overall (I) and for each of the independent molecules. This was accomplished with Crystal Explorer 17 [15] following standard protocols [16]. For (I), most of the surface contacts involve H with the greatest contribution coming from $H \cdots H$ contacts [53.3%]. The next most dominant contacts are $H \cdots C/C \cdots H$ [16.8%], $H \cdots O/O \cdots H$ [15.9%], with characteristic spikes ascribed to the $O-H \cdots O$ hydrogen bonding, and H···S/S···H [8.1%]. Very similar percentage contributions to the surface contacts are noted for each of the Au1- and Au2-containing molecules. In terms of differentiating between the Au1- and Au2-molecules, H···H contacts are more dominant for the Au1-molecule [53.6 versus 51.4%] while the $H \cdots C/C \cdots H$ [16.3 versus 16.9%], $H \cdots O/O \cdots H$ [14.9 versus 15.7%] and $H \cdots S/S \cdots H$ [9.1 versus 9.5%] contacts are marginally decreased.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- Agilent Technologies: CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, USA (2014).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Wehr-Candler, T.; Henderson, W.: Coordination chemistry of the thiosalicylate ligand. Coord. Chem. Rev. 313 (2016) 111–155.
- Tiekink, E. R. T.; Henderson, W.: Coordination chemistry of 3and 4-mercaptobenzoate ligands: versatile hydrogen-bonding isomers of the thiosalicylate (2-mercaptobenzoate) ligand. Coord. Chem. Rev. 341 (2017) 19–52.
- Cookson, P. D.; Tiekink, E. R. T.: Syntheses and structural studies of triorganophosphinegold(I) mercaptobenzoate complexes. J. Coord. Chem. 26 (1992) 313–320.
- Smyth, D. R.; Vincent, B. R.; Tiekink, E. R. T.: Polymorphism in (tricyclohexylphosphine)gold(I) 2-mercaptobenzoate. a tale of two structural motifs. Cryst. Growth Des. 1 (2001) 113–117.
- Smyth, D. R.; Vincent, B. R.; Tiekink, E. R. T.: Solvent mediated disruption of intermolecular association in phosphinegold(I) thiolates: the relative importance of carboxylic acid dimer

formation on crystal structure. CrystEngComm **2** (2000) 115–120.

- Yun, S.-S.; Kim, J.-K.; Jung, J.-S.; Park, C.; Kang, J.-G.; Smyth, D. R.; Tiekink, E. R. T.: Pseudo-polymorphism in the tri(*o*tolyl)phosphinegold(I) 2-mercaptobenzoates: crystallographic, thermal decomposition, and luminescence studies. Cryst. Growth Des. 6 (2006) 899–909.
- 11. Tiekink, E. R. T.; Kang, J.-G.: Luminescence properties of phosphinegold(I) halides and thiolates. Coord. Chem. Rev. **253** (2009) 1627–1648.
- de Vos, D.; Clements, P.; Pyke, S. M.; Smyth, D. R.; Tiekink, E. R. T.: Characterisation and in vitro cytotoxicity of triorganophosphinegold(I) 2-mercaptobenzoate complexes. Met.-Based Drugs 6 (1999) 31–40.
- Nomiya, K.; Yamamoto, S.; Noguchi, R.; Yokoyama, H.; Kasuga, N. C.; Ohyama, K.; Kato, C.: Ligand-exchangeability of 2-coordinate phosphinegold(I) complexes with AuSP and AuNP

cores showing selective antimicrobial activities against Grampositive bacteria. crystal structures of [Au(2-(Hmpa)(PPh₃)] and [Au(6-Hmna)(PPh₃)] (2-H₂mpa = 2-mercaptopropionic acid, 6-H₂mna = 6-mercaptonicotinic acid). J. Inorg. Biochem. **95** (2003) 208–220.

- 14. Yeo, C. I.; Ooi, K. K.; Tiekink, E. R. T.: Gold-based medicine: a paradigm shift in anti-cancer therapy? Molecules **23** (2018) article no. 1410.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- 16. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.