Fong Sheen Kuan and Edward R.T. Tiekink*

Crystal structure of [O-ethyl N-(4-nitrophenyl)thiocarbamato- κS] $(tri-4-tolylphosphine-\kappa P)$ gold(I) tetrahydrofuran solvate, C₃₀H₃₀AuN₂O₃PS, C₄H₈O

https://doi.org/10.1515/ncrs-2020-0318 Received June 28, 2020; accepted July 10, 2020; available online July 16, 2020

Abstract

 $C_{34}H_{38}AuN_2O_4PS$, triclinic, $P\bar{1}$ (no. 2), a = 10.2034(8) Å, b = 11.5755(9) Å, c = 15.7533(12) Å, $\alpha = 69.948(2)^{\circ}$ $\beta = 86.496(2)^{\circ}$, $\gamma = 71.370(2)^{\circ}$, V = 1653.8(2) Å³, Z = 2, $R_{\rm gt}(F) = 0.0355$, $wR_{\rm ref}(F^2) = 0.0858$, T = 223(2) K.

CCDC no.: 2015448

The molecular structures are shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.16 \times 0.15 \times 0.11$ mm
Wavelength:	Mo Kα radiation (0.71073 Å)
μ:	4.60 mm^{-1}
Diffractometer, scan mode:	Bruker AXS SMART, $arphi$ and ω
θ_{\max} , completeness:	30.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	13916, 9419, 0.029
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} >$ 2 $\sigma(I_{\rm obs})$, 8135
N(param) _{refined} :	391
Programs:	Bruker [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
Au	0.22383(2)	0.23082(2)	0.17550(2)	0.03083(5)
S1	0.33883(11)	0.29783(9)	0.04602(6)	0.0376(2)
P1	0.11606(10)	0.15422(8)	0.30186(6)	0.02898(18)
01	0.1504(3)	0.5087(2)	0.05143(17)	0.0343(5)
02	0.6365(4)	0.3526(4)	-0.3702(2)	0.0636(9)
03	0.7886(3)	0.3784(4)	-0.2961(2)	0.0611(9)
04	0.7170(4)	0.1044(4)	0.8253(2)	0.0624(9)
N1	0.2635(3)	0.5386(3)	-0.0790(2)	0.0351(7)
N2	0.6709(4)	0.3801(3)	-0.3083(2)	0.0455(8)
C1	0.2468(4)	0.4627(3)	-0.0018(2)	0.0292(7)
C2	0.3665(4)	0.4936(3)	-0.1346(2)	0.0316(7)
C3	0.3343(4)	0.4576(4)	-0.2032(3)	0.0440(9)
H3	0.243304	0.458986	-0.211507	0.053*
C4	0.4339(4)	0.4196(4)	-0.2599(3)	0.0443(9)
H4	0.411683	0.393732	-0.306130	0.053*
C5	0.5665(4)	0.4198(4)	-0.2481(2)	0.0344(8)
C6	0.5998(4)	0.4587(5)	-0.1818(3)	0.0491(10)
H6	0.690401	0.459071	-0.174584	0.059*
C7	0.4992(4)	0.4972(5)	-0.1258(3)	0.0474(10)
H7	0.520864	0.526150	-0.081129	0.057*
C8	0.0699(4)	0.6446(3)	0.0152(3)	0.0381(8)
H8A	0.010465	0.661132	-0.037059	0.046*
H8B	0.131022	0.698145	-0.004020	0.046*
C9	-0.0166(5)	0.6752(4)	0.0905(3)	0.0509(11)
H9A	-0.072927	0.765849	0.069454	0.076*
H9B	-0.076311	0.621274	0.108818	0.076*
H9C	0.043616	0.658094	0.141684	0.076*
C10	0.0102(4)	0.2788(3)	0.3442(2)	0.0302(7)
C11	-0.0943(4)	0.2576(3)	0.4019(3)	0.0371(8)

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Fong Sheen Kuan: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore

ට Open Access. © 2020 Fong Sheen Kuan et al., published by De Gruyter. ඟ א This work is licensed under the Creative Commons Attribution 4.0 International License.

|--|

Atom	x	у	z	U _{iso} */U _{eq}
H11	-0.115169	0.179866	0.415846	0.044*
C12	-0.1682(4)	0.3497(4)	0.4393(3)	0.0392(8)
H12	-0.238909	0.334086	0.478256	0.047*
C13	-0.1385(4)	0.4658(3)	0.4196(3)	0.0358(8)
C14	-0.0348(4)	0.4858(4)	0.3617(3)	0.0392(8)
H14	-0.014121	0.563700	0.347176	0.047*
C15	0.0392(4)	0.3939(3)	0.3245(3)	0.0338(7)
H15	0.109958	0.409557	0.285540	0.041*
C16	-0.2192(5)	0.5649(4)	0.4613(3)	0.0481(10)
H16A	-0.169048	0.552662	0.515748	0.072*
H16B	-0.309216	0.554287	0.476587	0.072*
H16C	-0.231273	0.651376	0.418544	0.072*
C17	0.0001(4)	0.0726(3)	0.2862(2)	0.0299(7)
C18	0.0208(4)	-0.0584(3)	0.3287(2)	0.0340(7)
H18	0.098098	-0.109332	0.369254	0.041*
C19	-0.0709(4)	-0.1160(4)	0.3125(3)	0.0412(9)
H19	-0.055585	-0.205089	0.342632	0.049*
C20	-0.1840(5)	-0.0437(4)	0.2525(3)	0.0431(9)
C21	-0.2054(4)	0.0883(4)	0.2086(3)	0.0447(9)
H21	-0.282106	0.138489	0.167528	0.054*
C22	-0.1144(4)	0.1464(4)	0.2250(2)	0.0385(8)
H22	-0.129796	0.235558	0.194961	0.046*
(23	-0.2851(6)	-0.1067(6)	0.2361(3)	0.0649(14)
H23A	-0.363716	-0.040522	0.197950	0.097*
H23B	-0.317002	-0.151269	0.293463	0.097*
H23C	-0.239294	-0.168499	0.206265	0.097*
(24	0 2371(4)	0.0392(3)	0 3950(2)	0.0302(7)
C25	0.2307(4)	0.0479(4)	0.4803(2)	0.0395(8)
H25	0.161253	0.116228	0.491694	0.047*
(26	0 3244(4)	-0.0419(4)	0 5490(3)	0.0416(9)
H26	0 317719		0 606480	0.050*
C27	0.4281(4)	-0.1442(3)	0.5358(3)	0.0380(8)
C28	0.4340(5)	-0.1525(4)	0.4498(3)	0.0482(10)
H28	0 503223	-0.221310	0 438794	0.058*
(29	0.3413(4)	-0.0628(4)	0 3801(3)	0.0414(9)
H29	0 348340		0 322408	0.050*
(30	0.5273(5)	-0.2437(5)	0.6131(3)	0.0588(12)
H30A	0.560104	-0 199961	0.645794	0.0300(12)
H30B	0.605456	-0.295221	0 589547	0.088*
H30C	0.480186	-0.299889	0.653779	0.088*
(31	0.8373(5)	0.0655(7)	0.8817(4)	0.0722(16)
H31A	0.895320	0.120362	0.854553	0.0722(10)
H31R	0.891532	-0.024861	0 890491	0.087*
(32	0.7898(6)	0.024601	0.9680(4)	0.0689(15)
H32A	0 770141	0.169137	0.965985	0.0009(19)
H32R	0 858474	0.021338	1 017603	0.005
(33	0.6602(6)	0.0426(6)	0.9781(4)	0.0663(14)
H330	0 592392	0 090290	1 011000	0.0005(14)
H33R	0 680318	-0.05068/	1 010126	0.000
(34	0 6079(5)	0.0801(5)	0 8818(3)	0.0557(12)
H344	0 582008	0 009750	0 873825	0.057
H34R	0.526249	0.158057	0.866460	0.007*
	0.520247	0.200001	0.000400	0.007

Source of material

The compound was prepared as per the literature [5] and crystals were harvested from a tetrahydrofuran solution of the compound.

Experimental details

The H atoms were geometrically placed (C–H = 0.94–0.98 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. Owing to poor agreement, a number of reflections, i.e. (0 0 1), (-2 – 1 6), (-1 0 6), (0 1 0), (2 8 15), (4 0 4), (-4 6 5), (-2 0 12), (8 0 6) and (-1 0 7), were omitted from the final cycles of refinement. The maximum and minimum residual electron density peaks of 1.36 and 0.84 e Å⁻³, respectively, were located 0.89 and 1.31 Å from the Au and S1 atoms, respectively.

Comment

Conformational flexibility about the S-C bond in phosphanegold(I) thioamide molecules of the general formula $R_3PAu[SC(OR')=NR'']$ means either the alkoxyl-O atom is orientated towards the gold(I) centre, forming an intramolecular Au \cdots O contact, or the arene ring is disposed towards the gold(I) centre, enabling the formation of an intramolecular Au $\cdots \pi$ interaction. DFT calculations suggest the latter is more favourable [6]. Nevertheless, $Au \cdots O$ interactions are generally formed, possibly owing to electronic effects/ steric congestion [7, 8]. Although conformational polymorphs featuring Au···O or Au··· π interactions are comparatively rare [9, 10], unsolvated forms of the title solvate, $(4-tolyl)_3$ PAu[SC(OEt)=NC₆H₄NO₂-4]. THF (I), are known to feature Au···O [5] or Au··· π [11] interactions. In on-going systematic studies of R₃PAu[SC(OR')=NR"] molecules, the crystal and molecular structures of (I) are described.

The molecular structures are shown in the figure (50% displacement ellipsoids). The gold(I) atom is in the expected linear geometry [P1-Au-S1=176.88(3)°] defined by phosphane-P [Au–P1 = 2.2589(9) Å] and thiolato-S [Au– S1 = 2.3115(9) Å] atoms. The thiolato-C1–S1 [1.746(3) Å] and imine-C1-N1 [1.282(6) Å] bond lengths in (I) have lengthened and shortened, respectively, compared with the equivalent thione [1.672(2) Å] and amine [1.354(3) Å] bonds in the parent acid, i.e. $EtOC(=S)N(H)C_6H_4NO_2-4$ [12]. The orientation of the thiolato ligand is such as to place the ethoxy-O1 atom in close proximity to the gold(I) atom with the Au \cdots O separation being 3.009(2) Å]. The Au-S1 [2.3105(8) Å], Au-P1 [2.2611(8) Å] and Au···O1 [2.915(2) Å] separations in the solvent-free form [5] are very close to those in (I) with the shorter Au···O separation correlating with a greater deviation from 180° for the P1-Au-S1 angle [175.80(3)°], i.e. by approximately 1° compared with that in (I). For the conformational polymorph featuring the intramolecular Au $\cdots \pi$ interaction [11], Au-S1 [2.303(3) Å] is experimentally equivalent to those above but, the Au–P1 bond length [2.271(3) Å] appears to have lengthened, perhaps owing to steric congestion due to the proximity of the arene ring.

In the crystal of (I), tolyl-C-H···N(imine) interactions $[C22-H22\cdots N1^{i}: H22\cdots N1^{i} = 2.60 \text{ Å}, C22\cdots N1^{i} = 3.469(5) \text{ Å}$ with angle at H22 = 153° for symmetry operation (i): -x, 1 - v, -z] lead to centrosymmetric dimers. These are connected into a supramolecular chain aligned, approximately, along [-1 -2 6], sustained by tolyl-C-H··· π (tolyl) interactions $[C26-H26\cdots Cg(C17-C22)^{ii}]$: $H26 \cdot \cdot \cdot Cg(C17 - C22)^{ii} = 2.93 \text{ Å}$ with angle at H26 = 133° for (ii) -x, -y, 1-z]. The packing of the chains define columns parallel to the a-axis direction in which reside the solvent THF molecules. The closest contact involving the THF molecule is a tolyl-C-H···O(THF) interaction $[C29-H29\cdots O4^{iii}: H29\cdots O4^{iii} = 2.64$ Å with angle at H29 = 160° for (iii) 1 - x, -y, 1 - z]. The lack of directional interactions between the host and guest molecules accounts for the instability of the crystals of (I), which lose solvent upon standing in the atmosphere.

A further investigation of the molecular packing was conducted by calculating the Hirshfeld surfaces and twodimensional fingerprint plots with the aid of Crystal Explorer 17 [13] following literature procedures [14]. The dominant contacts about the THF molecule are $H \cdots H$ [64.1%] and $H \cdots C/C \cdots H$ [15.2%], with the next most dominant being $H \cdots O/O \cdots H$ at 7.5% and $H \cdots S/S \cdots H$ at 5.6%. The distribution of contacts for the gold-containing molecule follow similar trends with the dominant contacts being $H \cdots H$ [52.2%] and $H \cdots C/C \cdots H[21.0\%]$, but reduced and increased, respectively, compared with the THF molecule. Contacts due to H···N/N···H, with a characteristic forceps-like distribution in the two-dimensional fingerprint plot account for only 2.3% of surface contacts with greater contributions from $H \cdots O/O \cdots H$ [14.2%] and $H \cdots S/S \cdots H$ [5.1%] but at separations exceeding the sums of the respective van der Waals radii.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001–2019.

References

 Bruker. SADABS, SMART & SAINT Software Reference Manuals, Version V5.611. Bruker Analytical X-ray Systems Inc., Madison, WI, USA (2000).

- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Kuan, F. S.; Jotani, M. M.; Tiekink, E. R. T.: New monoclinic form of {*O*-ethyl *N*-(4-nitrophenyl) thiocarbamato-κ*S*}-(tri-4tolylphosphane-κ*P*)gold(l): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E74** (2017) 1465–1471.
- 6. Yeo, C. I.; Khoo, C.-H.; Chu, W.-C.; Chen, B.-J.; Chu, P.-L.; Sim, J.-H.; Cheah, Y.-K.; Ahmad, J.; Halim, S. N. A.; Seng, H.-L.; Ng, S. W.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: The importance of Au··· π (aryl) interactions in the formation of spherical aggregates in binuclear phosphanegold(I) complexes of a bipodal thiocarbamate dianion: a combined crystallographic and computational study, and anti-microbial activity. RSC Adv. **5** (2015) 41401–41411.
- Ho, S. Y.; Cheng, E. C.-C.; Tiekink, E. R. T.; Yam, V. W.-W.: Luminescent phosphine gold(I) thiolates: correlation between crystal structure and photoluminescent properties in [R₃PAu{SC(OMe)=NC₆H₄NO₂-4}] (R = Et, Cy, Ph) and [(Ph₂P-R-PPh₂){AuSC(OMe)=NC₆H₄NO₂-4}₂] (R = CH₂, (CH₂)₂, (CH₂)₃, (CH₂)₄, Fc). Inorg. Chem. **45** (2006) 8165–8174.
- Kuan, F. S.; Ho, S. Y.; Tadbuppa, P. P.; Tiekink, E. R. T.: Electronic and steric control over Au···Au, C-H···O and C-H···π interactions in the crystal structures of mononuclear triarylphosphinegold(I) carbonimidothioates: R₃PAu[SC(OMe)=NR'] for R = Ph, o-tol, m-tol or p-tol, and R' = Ph, o-tol, m-tol, p-tol or C₆H₄NO₂-4. CrystEngComm **10** (2008) 548–564.
- Hall, V. J.; Tiekink, E. R. T.: Crystal structure of triphenylphosphine(*N*-phenyl-*O*-ethylthiocarbamato)gold(I), (C₆H₅)₃PAu(SC(=NPh)OEt). Z. Kristallogr. Cryst. Mater. 203 (1993) 313–315.
- 10. Yeo, C. I.; Tan, S. L.; Otero-de-la-Roza, A.; Tiekink, E. R. T.: A conformational polymorph of Ph₃PAu[SC(OEt)=NPh] featuring an intramolecular Au $\cdots \pi$ interaction. Kristallogr. Cryst. Mater. **231** (2016) 653–661.
- Broker, G. A.; Tiekink, E. R. T.: [*O*-Ethyl *N*-(4-nitrophenyl) thiocarbamato-κ*S*](tri-*p*-tolylphosphine-κ*P*)gold(I). Acta Crystallogr. **E64** (2008) m1582.
- Benson, R. E.; Broker, G. A.; Daniels, L. M.; Tiekink, E. R. T.; Wardell, J. L.; Young, D. J.: (E)-O-Ethyl N-(4-nitrophenyl) thiocarbamate. Acta Crystallogr. E62 (2006) 04106-04108.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.