Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of 2,2,4,4,6,6-hexakis (4-chlorophenyl)-1,3,5,2,4,6-trithiatristanninane, $C_{36}H_{24}Cl_6S_3Sn_3$

https://doi.org/10.1515/ncrs-2020-0293 Received June 15, 2020; accepted June 24, 2020; available online July 11, 2020

Abstract

 $C_{36}H_{24}Cl_6S_3Sn_3$, monoclinic, $P2_1/c$ (no. 14), a = 10.3180(1) Å, c = 20.9015(2) Å, $\beta = 94.536(10)^{\circ}$ b = 18.1008(1) Å, $V = 3891.42(6) \text{ Å}^3$, Z = 4, $R_{\text{gt}}(F) = 0.0177$, $wR_{\text{ref}}(F^2) = 0.0448$, T = 100(2) K.

CCDC no.: 2011919

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

a Open Access. © 2020 Kong Mun Lo et al., published by De Gruyter. 🕼 BY This work is licensed under the Creative Commons Attribution 4.0 International License.

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.10 \times 0.06 \times 0.04~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	20.7 mm^{-1}
Diffractometer, scan mode:	XtaLAB Synergy, ω
$ heta_{\max}$, completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	47327, 6937, 0.032
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 6635
N(param) _{refined} :	433
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	v	V	7	<u> </u>
	^	у	2	U _{iso} / U _{eq}
Sn1	0.24491(2)	0.57778(2)	0.50844(2)	0.01549(4)
Sn2	0.39887(2)	0.75164(2)	0.57769(2)	0.01476(4)
Sn3	0.11603(2)	0.76134(2)	0.45669(2)	0.01582(4)
S1	0.44349(5)	0.64736(3)	0.51161(2)	0.01871(10)
S2	0.27003(5)	0.84020(3)	0.51547(3)	0.02078(11)
S 3	0.06039(5)	0.65607(3)	0.52062(2)	0.01856(10)
Cl1	0.27701(6)	0.32391(3)	0.73857(3)	0.03366(13)
Cl2	0.25307(6)	0.38242(3)	0.23951(3)	0.03496(13)
Cl3	0.15921(7)	0.59722(3)	0.83106(3)	0.03782(14)
Cl4	0.98627(5)	0.90130(3)	0.61796(3)	0.03142(13)
Cl5	0.32369(6)	0.59405(3)	0.20036(3)	0.03229(13)
Cl6	-0.44251(6)	0.94468(3)	0.41901(3)	0.03753(14)
C1	0.24760(19)	0.49902(11)	0.58427(10)	0.0171(4)
C2	0.2009(2)	0.51276(12)	0.64398(11)	0.0224(4)
H2	0.162880	0.559311	0.652039	0.027*
C3	0.2091(2)	0.45924(13)	0.69186(11)	0.0253(5)
H3	0.175545	0.468477	0.732120	0.030*
C4	0.2673(2)	0.39214(12)	0.67979(11)	0.0219(4)
C5	0.3158(2)	0.37760(12)	0.62154(11)	0.0215(4)
H5	0.356781	0.331707	0.614212	0.026*
C6	0.3040(2)	0.43088(12)	0.57374(11)	0.0203(4)

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Table 2 (continued)

Atom	X	у	Z	$U_{\rm iso}^{\star}/U_{\rm eq}$
H6	0.335062	0.420578	0.533085	0.024*
C7	0.2455(2)	0.51760(11)	0.42087(10)	0.0182(4)
C8	0.3559(2)	0.51690(12)	0.38639(11)	0.0203(4)
H8	0.429800	0.545233	0.401233	0.024*
C9	0.3593(2)	0.47529(12)	0.33059(11)	0.0220(4)
H9	0.434786	0.474989	0.307319	0.026*
C10	0.2513(2)	0.43444(12)	0.30961(11)	0.0239(5)
C11	0.1408(2)	0.43345(13)	0.34316(12)	0.0284(5)
H11	0.067519	0.404598	0.328438	0.034*
C12	0.1391(2)	0.47541(13)	0.39873(11)	0.0254(5)
H12	0.063593	0.475191	0.421985	0.030*
C13	0.31780(19)	0.70915(11)	0.66075(10)	0.0170(4)
C14	0.1899(2)	0.72169(12)	0.67542(10)	0.0187(4)
H14	0.135453	0.753398	0.648942	0.022*
C15	0.1417(2)	0.68813(12)	0.72850(11)	0.0221(4)
H15	0.054910	0.696919	0.738596	0.027*
C16	0.2219(2)	0.64185(12)	0.76630(11)	0.0252(5)
C17	0.3506(2)	0.63001(13)	0.75447(11)	0.0264(5)
H17	0.405222	0.599422	0.781936	0.032*
C18	0.3977(2)	0.66406(12)	0.70139(11)	0.0223(4)
H18	0.485625	0.656576	0.692554	0.027*
C19	0.58702(19)	0.79940(12)	0.59291(10)	0.0178(4)
C20	0.6968(2)	0.75462(12)	0.60179(11)	0.0215(5)
H20	0.687298	0.702438	0.602809	0.026*
C21	0.8204(2)	0.78597(13)	0.60918(11)	0.0225(4)
H21	0.895416	0.755580	0.615149	0.027*
C22	0.8320(2)	0.86194(13)	0.60768(10)	0.0221(4)
C23	0.7246(2)	0.90740(13)	0.59840(12)	0.0253(5)
H23	0.734535	0.959543	0.597100	0.030*
C24	0.6019(2)	0.87565(12)	0.59101(11)	0.0221(4)
H24	0.527300	0.906346	0.584585	0.027*
C25	0.1865(2)	0.71137(12)	0.37349(10)	0.0180(4)
C26	0.1034(2)	0.66423(12)	0.33656(11)	0.0213(4)
H26	0.017199	0.656828	0.348196	0.026*
C27	0.1444(2)	0.62807(13)	0.28329(11)	0.0241(5)
H27	0.087121	0.596487	0.258169	0.029*
C28	0.2710(2)	0.63913(13)	0.26755(10)	0.0237(5)
C29	0.3559(2)	0.68476(13)	0.30317(11)	0.0232(5)
H29	0.442317	0.691314	0.291543	0.028*
C30	0.3136(2)	0.72109(12)	0.35633(11)	0.0200(4)
H30	0.371376	0.752691	0.381119	0.024*
C31	-0.06041(19)	0.82310(12)	0.44495(10)	0.0185(4)
C32	-0.0630(2)	0.89982(12)	0.44359(11)	0.0215(4)
H32	0.016478	0.926535	0.448321	0.026*
C33	-0.1793(2)	0.93794(13)	0.43547(12)	0.0250(5)
H33	-0.180298	0.990401	0.434157	0.030*
C34	-0.2947(2)	0.89801(13)	0.42925(11)	0.0249(5)
C35	-0.2952(2)	0.82229(13)	0.43206(13)	0.0291(5)
H35	-0.375080	0.795905	0.428775	0.035*
C36	-0.1778(2)	0.78463(13)	0.43976(13)	0.0276(5)
H36	-0.177393	0.732189	0.441511	0.033*

Source of material

Tetra(4-chlorophenyl)tin was synthesized from the reaction of stannic chloride (Fluka) with 4-chlorophenylmagnesium bromide (Fluka) in a 1:4 molar ratio. Subsequently, di(4chlorophenyl)tin dichloride was synthesized from the comproportionation reaction of tetra(4-chlorophenyl)tin with stannic chloride (Fluka) in a 1:1 molar ratio to obtain a white precipitate. The dithiocarbamate ligand was prepared in situ (methanol) from the reaction of carbon disulfide (Merck, 0.02 mL, 0.25 mmol) with di-n-butylamine (Merck, 0.04 mL, 0.25 mmol) and NaOH (0.02 mL; 50% w/v); carbon disulfide was added dropwise into the methanol solution (10 mL). The resulting mixture solution was kept at 273 K for 0.5 h. Di(4chlorophenyl)tin dichloride in methanol (10 mL) was added in the solution and the resulting mixture was stirred for 3 h. The filtrate was evaporated until a white precipitate was obtained. The precipitate was washed with *n*-hexane and recrystallized from dimethyl sulfoxide. The title compound was the side-product from the recrystallization of the precipitate.

Yield: 0.10 g (9%). **M.pt** (Mel-temp II digital melting point apparatus): 339–401 K. **IR** (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 1471 (m) ν (C–C); 782 (m) ν (C–Cl); 604 (w) ν (Sn–C); 450 w ν (Sn–S). ¹**H NMR** (Bruker Ascend 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, CDCl₃ solution at 40 °C; ppm): 6.94–7.08 (m, Phenyl-H). ¹³C{¹H} NMR (as for ¹H NMR): 121.4, 122.4, 124.3, 124.8, 127.4, 133.0 (Ph–C).

Experimental details

The hydrogen atoms were geometrically placed (C-H = 0.95 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Comment

Crystal structure determinations of cyclic, trinuclear molecules of the general formula $[R_2SnS]_3$ are comparatively rare. With the exception of the $R = CH_2CH_2C(=O)OEt$ derivative [5], the only other crystallographically characterised species is that with R = Me but, in four polymorphic forms. Thus, tetragonal $P4_1$, Z = 1 [6] and $P4_12_12$, Z = 0.5 [7] are known as well as two monoclinic forms $P2_1/c$, Z = 1 [8] and $P2_1/n$, Z = 2 [9]. The common feature of the structures is the presence of a twisted-boat conformation of the six-membered Sn₃S₃ ring. The title compound, with R = 4-ClC₆H₄, (I), was isolated as a side-product during a course of studies of organotin dithiocarbamates [10, 11]. Herein the crystal structure of (I) is described along with an analysis of the calculated Hirshfeld surfaces.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids) and lacks symmetry. The Sn_3S_3 ring adopts a twisted-boat conformation as is usually observed for molecules of this type [5–9]. In this description, S2 atom is

to a first approximation co-planar with the plane through the three Sn atoms, lying 0.1425(6) Å out of the plane. The S1 and S3 atoms lie to either side of the Sn₃ plane by 1.3639(5) Å, in the same direction as the S2 atom, and 1.4709(5) Å, respectively. Within the ring, the angles subtended at the Sn atoms range from 109.644(18)°, for S1–Sn2–S2, to 111.667(18)°, for S1–Sn3–S3. The angles at the S atoms are narrower, ranging from 100.435(18)°, for Sn1–S3–Sn3, to 103.050(18)°, for Sn1–S1–Sn2. The Sn–S bond lengths span a relatively narrow range, i.e. 2.3989(5) Å, for Sn2–S2, to 2.4221(5) Å, for Sn3–S3. The Sn-atom geometries are approximately tetrahedral based on C_2S_2 donor sets. The widest range of tetrahedral angles of 15.5° is found for the Sn2 atom, i.e. 101.02(6)°, for S1–Sn2–C19, to 116.54(6)°, for S2–Sn2–C13.

In the molecular packing of (I), $Sn \cdots Cl$ $[Sn3 \cdots Cl3^{i} = 3.7193(7) \text{ Å for symmetry operation (i): } x,$ 3/2 - y, -1/2 + z] secondary bonding interactions [12, 13] are apparent. These lead to supramolecular, zig-zag chains, being propagated by glide plane symmetry. Stacking interactions contribute to stability of the chains $[Cg(C13-C18)\cdots Cg(C25-C18)]$ $C30)^{ii}$: 3.5368(13) Å, angle of inclination = 1.37(11)° and off-set = 1.45 Å for (ii): x, 3/2 - y, 1/2 + z]. The chains are linked by phenyl-C-H···S contacts [C6-H6···S1ⁱⁱⁱ: $H6\cdots S1^{iii} = 2.82$ Å, $C6\cdots S1^{iii} = 3.565(2)$ Å with angle at H6 = 136° for (iii) 1 - x, 1 - y, 1 - z] into a supramolecular layer in the bc-plane. Additional links between chains are of the type $Cl \cdots \pi$ (phenyl) [C4-Cl1 \cdots Cg(Cl9-C24)^{iv}: Cl1···Cg(C19-C24)^{iv} = 3.3654(11) Å with angle at $Cl1 = 132.58(8)^{\circ}$ for (iv): 1 - x, -1/2 + y, 3/2 - z]. The connections between layers to consolidate the three-dimensional architecture are of the type $\pi \cdots \pi$ [Cg(C19-C24)···Cg(C31- $(C35)^{v}$: 3.7131(13) Å, angle of inclination = 1.32(11)° and off-set = 1.16 Å for (v): 1 + x, y, z] and Cl··· π [C10- $Cl_{2} \cdots Cg(C_{31}-C_{36})^{v_{i}}$: $Cl_{2} \cdots Cg(C_{31}-C_{36})^{v_{i}} = 3.7394(12) \text{ Å with}$ angle at Cl2 = $150.79(8)^{\circ}$ for (vi): -x, -1/2 + y, 1/2 - z].

To analyse the molecular packing, the Hirshfeld surface was calculated as were full- and delineated two-dimensional Fingerprint plots with the aid of Crystal Explorer 17 [14] and standard protocols [15]. This analysis shows the Sn···Cl secondary bonding interactions only make a very minor contribution to the overall surface contacts, i.e. 0.6%. More significant contacts involving Cl are Cl···H/H···Cl, Cl···C/C···Cl, Cl···S/S···Cl and Cl···Cl contacts, making contributions of 28.3, 8.7, 1.6 and 3.8%, respectively. The S atoms also contribute to other surface contacts: S···H/H···S [6.2%] and S···C/C···S [0.5%]. More significant contributions are made

by C···H/H···C [15.4%], C···C [4.9%] and, especially, H···H [30.0%] contacts.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- 1. Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- 4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. **45** (2012) 849–854.
- Jung, O.-S.; Jeong, J. H.; Sohn, Y. S.: Preparation, properties and structures of estertin(IV) sulphides. Polyhedron 8 (1989) 2557–2563.
- Menzebach, B.; Bleckmann, P.: Die kristallstruktur von hexamethylcyclotristannathian. J. Organomet. Chem. 91 (1975) 291–294.
- Tiekink, E. R. T.: Crystal structure of trimeric dimethyltin sulphide: tetragonal modification. Main Group Met. Chem. 16 (1993) 65–69.
- Jacobsen, H.-J.; Krebs, B.: Die kristallstruktur des monoklinen hexamethylcyclotristannathians. J. Organomet. Chem. 136 (1977) 333–338.
- Singh, N.; Kumar, A.; Molloy, K. C.; Kociok-Köhn, G.: Monoclinic modification of 1,1,3,3,5,5-hexamethyl-cyclo-1,3, 5-tristannathiane. Acta Crystallogr. E64 (2008) m115.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of chlorido-diphenyl-(isopropyl(propyl)carbamodithioato-κ²S, S')-tin(IV), C₁₉H₂₄ClNS₂Sn. Z. Kristallogr. NCS 235 (2020) 211–214.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of (4fluorobenzyl-κ*C*)(bis(2-hydroxyethyl) carbamodithioato -κ²*S*, *S'*)(2,2'-imino-diethanolato-κ³*N*,*O*,*O'*)tin(IV), C₁₆H₂₅FN₂O₄S₂Sn. Z. Kristallogr. NCS **235** (2020) 403–405.
- Alcock, N. W.: Secondary bonding to nonmetallic elements. Adv. Inorg. Chem. Radiochem. 15 (1972) 1–58.
- Tiekink, E. R. T.: Supramolecular assembly based on "emerging" intermolecular interactions of particular interest to coordination chemists. Coord. Chem. Rev. 345 (2017) 209–228.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.