Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of 4,4'-(oxybis(methylene))bis (bromobenzene), C₁₄H₁₂Br₂O

https://doi.org/10.1515/ncrs-2020-0280 Received June 10, 2020; accepted June 25, 2020; available online July 10, 2020

Abstract

 $C_{14}H_{12}Br_{2}O$, monoclinic, C2 (no. 5), a = 29.7356(3) Å, c = 11.10915(9) Å, b = 5.88712(4) Å, $\beta = 99.1700(8)^{\circ}$, V = 1919.88(3) Å³, Z = 6, $R_{gt}(F) = 0.0166$, $wR_{ref}(F^2) = 0.0443$, T = 100(2) K.

CCDC no.: 2012231

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

Di(4-bromobenzyl)tin dibromide was synthesised by the direct reaction of 4-bromobenzyl bromide (Merck) and

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 1: Data collection and handling.

Colourless prism
$0.14 \times 0.08 \times 0.04 \text{ mm}$
Cu Kα radiation (1.54184 Å)
7.87 mm^{-1}
XtaLAB Synergy, ω
67.1°, >99%
22804, 3289, 0.029
$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 3270
231
CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
Br1	0.71041(2)	1.07282(6)	0.49566(3)	0.02286(10)
01	0.500000	0.6195(6)	0.500000	0.0243(8)
C1	0.65770(10)	0.8905(6)	0.5020(3)	0.0171(7)
C2	0.66291(11)	0.6783(6)	0.5555(3)	0.0190(7)
H2	0.692322	0.620597	0.586411	0.023*
С3	0.62408(10)	0.5515(6)	0.5630(3)	0.0179(6)
H3	0.627095	0.405373	0.599724	0.021*
C4	0.58078(11)	0.6342(6)	0.5177(3)	0.0172(7)
C5	0.57695(11)	0.8488(6)	0.4634(3)	0.0179(7)
H5	0.547658	0.907569	0.432146	0.021*
C6	0.61544(10)	0.9773(6)	0.4546(3)	0.0180(7)
H6	0.612751	1.122309	0.416662	0.022*
C7	0.53983(10)	0.4892(6)	0.5253(3)	0.0188(7)
H7A	0.538544	0.362960	0.465956	0.023*
H7B	0.542269	0.423023	0.607969	0.023*
Br2	0.52995(2)	-0.04917(6)	0.79106(3)	0.02331(10)
Br3	0.94938(2)	-0.07311(5)	0.80258(3)	0.02156(9)
02	0.74410(7)	0.3942(4)	0.8522(2)	0.0202(5)
C8	0.58424(10)	0.1270(6)	0.8185(3)	0.0167(7)
C9	0.58410(10)	0.3387(6)	0.8726(3)	0.0173(6)
H9	0.556937	0.398759	0.894875	0.021*
C10	0.62434(10)	0.4612(6)	0.8936(3)	0.0170(6)
H10	0.624690	0.606480	0.930955	0.020*
C11	0.66434(11)	0.3752(5)	0.8607(3)	0.0157(6)
C12	0.66356(11)	0.1620(6)	0.8063(3)	0.0163(6)
H12	0.690670	0.101474	0.783930	0.020*
C13	0.62348(10)	0.0368(6)	0.7844(3)	0.0167(6)
H13	0.622936	-0.108207	0.746686	0.020*
C14	0.70685(11)	0.5178(6)	0.8814(3)	0.0193(7)

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

a Open Access. © 2020 Kong Mun Lo et al., published by De Gruyter. 🕼 BY This work is licensed under the Creative Commons Attribution 4.0 International License.

Table 2 (continued)

Atom	x	у	Z	U _{iso} */U _{eq}
H14A	0.702225	0.655973	0.830156	0.023*
H14B	0.713253	0.565810	0.967851	0.023*
C15	0.78371(10)	0.5299(6)	0.8572(3)	0.0195(7)
H15A	0.790202	0.607906	0.937059	0.023*
H15B	0.778801	0.647046	0.792493	0.023*
C16	0.82363(10)	0.3810(5)	0.8398(3)	0.0155(7)
C17	0.81764(11)	0.1725(6)	0.7811(3)	0.0172(6)
H17	0.787784	0.121274	0.749548	0.021*
C18	0.85501(10)	0.0381(6)	0.7680(3)	0.0177(6)
H18	0.850948	-0.105026	0.728238	0.021*
C19	0.89837(10)	0.1166(6)	0.8141(3)	0.0170(7)
C20	0.90519(10)	0.3266(6)	0.8701(3)	0.0178(6)
H20	0.935093	0.380005	0.899128	0.021*
C21	0.86749(10)	0.4572(6)	0.8828(3)	0.0180(6)
H21	0.871680	0.601102	0.921646	0.022*

metallic tin powder (Merck) in toluene according to a literature procedure [5]. The prepared organotin compound was recrystallized in dimethyl sulfoxide together with few drops of water. The title compound was obtained as side-product from the recrystallisation process.

Yield: 0.05 g (14.0%). **M.pt** (Mel-temp II digital melting point apparatus): 450–452 K. **IR** (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 1470 (m) v(CC), 1034 (m) v(CO). ¹**H NMR** (Bruker Ascend 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, DMSO- d_6 solution; ppm): 3.38 (s, 4H, CH₂), 7.11–7.28 (m, 4H, Ph-H), 7.33–7.50 (m, 4H, Ph-H). ¹³C{¹H} NMR (as for ¹H NMR): 40.6 (CH₂), 127.1, 127.8, 129.9, 130.3 (Ph-C).

Experimental details

The hydrogen atoms were geometrically placed (C–H = 0.95– 0.99 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The absolute structure was determined based on differences in Friedel pairs included in the data set (Flack-Parsons parameter: 0.000(12) using 1382 quotients). The maximum and minimum residual electron density peaks of 0.62 and 0.25 e Å⁻³, respectively, were located 0.95 and 0.61 Å from the H7b and Br1 atoms, respectively.

Comment

For a rather simple composition, crystal structure determinations of dibenzylether molecules with the general formula $ArCH_2OCH_2Ar$ are comparatively rare. The structure of the parent compound, PhCH_2OCH_2Ph is known [6], as are symmetric 2,2'-Br₂ [7], 2,2'-I₂ [8], 3,3'-(NO₂)₂ [9], 4,4'-(CN)₂ [10] and 3,4,3',4'-(OMe)₄ [11] derivatives. Herein, the crystal and molecular structures of 4-BrPhCH₂OCH₂PhBr-4 (I) are described.

Compound (I) became available as a side-product as detailed in the "Source of material".

The crystallographic asymmetric unit of (I) comprises one-half molecule, being disposed about a 2-fold axis with the O atom lying on the axis, and a full molecule in a general position. The molecular structures in (I) are shown in the figure (70% displacement ellipsoids; unlabelled atoms for the Br1containing molecule are related by the symmetry operation 1 - x, y, 1 - z). The molecules, in common with the literature precedents, feature a central O atom connected on either side by benzyl/substituted benzyl substituents. However, nontrivial conformational differences are apparent, specifically in the relative disposition of the arvl substituents. For the 2-fold symmetric molecule in (I), the dihedral angle between the aryl rings is 48.94(9)°, which compares to 15.96(10)° for the non-symmetric molecule. The other obvious difference between the molecules relates to the Cring-Cmethylene-O- $C_{\text{methylene}}$ torsion angles which are $2 \times 164.7(3)^{\circ}$ for the Br1molecules, and 173.3(3) and 173.4(3) Å for the Br2-molecule. The aforementioned parameters lie within the ranges of comparable values in the literature structures. Thus, the dihedral angle between rings in the 2,2'-Br₂ [7] derivative is a small 3.1° and the widest dihedral angle of 57.38(7)° is found in the 4,4'-(CN)₂ [10] derivative. The greatest difference in the C_{ring}-C_{methylene}-O-C_{methylene} torsion angles, indicating the largest twist in the central residue is found in the 3.4.3',4'-(OMe)₄ [11] species, i.e. 73.27(18) and 177.42(14)°. In all of the other structures, the differences in these torsion angles is less than 10°.

In the crystal of (I), weak non-covalent $\pi \cdots \pi$ stacking $[Cg(C1-C6)\cdots Cg(C16-C21)^i = 3.8582(19) \text{ Å}$, angle of inclination = 1.51(16)° for symmetry operation (i) 3/2 - x, 1/2 + y, 1 - z] and four independent phenyl-C-H··· π (phenyl) [shortest contact: C13-H13···Cg(C1-C6)ⁱⁱ = 2.73 Å with angle at H13 = 132° for (ii) x, -1 + y, z] combine to assemble molecules into a three-dimensional architecture.

A further analysis of the molecular packing scheme was conducted by calculating the Hirshfeld surfaces and two-dimensional fingerprint plots (overall and decomposed) employing Crystal Explorer 17 [12] using standard protocols [13]. First and foremost, the calculations indicated distinct percentage contributions for the two independent molecules comprising the asymmetric unit [13]. As anticipated from the description of the molecular packing, significant contributions to the surface contacts revealed the dominance of $H \cdots H = 31.6\%$ [31.9% for the Br2-molecule] and $C \cdots H/H \cdots C = 21.3\%$ [27.1%]. Very significant contributions are also made by $Br \cdots H/H \cdots Br$ contacts, i.e. 35.6 and 31.7%, respectively, but at separations longer than the sum of the van der Waals radii. The same is true of $Br \cdots Br$ contacts [2.9 and 2.6%]. Other notable contacts are $Br \cdots C/C \cdots Br$

[1.6 and 0.8%], Br····O/O···Br [1.1 and 0.5%], O···H/H···O [0.6 and 2.6%] and C···C [5.4 and 2.7%].

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- 2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Crystallogr. 45 (2012) 849–854.
- Sisido, K.; Takeda, Y.; Kinugawa, Z.: Direct synthesis of organotin compounds I. di- and tribenzyltin chlorides. J. Am. Chem. Soc. 83 (1961) 538–541.
- Nefedov, S. E.; Uvarova, M. A.; Golubichnaya, M. A.; Nefedova, I. V.; Chikhichin, D. G.; Kotseruba, V. A.; Levchenko, O. A.; Kamalov, G. L.: A hexanuclear cobalt(III) complex containing

the pseudocubane fragment $[Co_4(\mu_4-O)_2(\mu_3-O)_2]$ in its metal framework and a solvated dibenzyl ether molecule. Russ. J. Coord. Chem. **40** (2014) 358–365.

- Berndt, A. F.; Corey, E. R.; Glick, M. D.: *o,o'*-Dibromodibenzyl ether. Acta Crystallogr. **B37** (1981) 1294–1296.
- Hashmi, S. K. A.; Schafer, S.; Fischer, P.; Gil, C. D.; Bats, J. W.: Private Communication to the Cambridge Structural Database. Refcode HACMEG, The Cambridge Structural Database, England (2014).
- 9. Jones, P. G.: Bis(*m*-nitrobenzyl) ether. Acta Crystallogr. **C43** (1987) 364–366.
- 10. Xiao, J.; Zhao, H.: 4,4'-(Oxydimethylene)dibenzonitrile. Acta Crystallogr. **E64** (2008) o1436.
- Fun, H. K.; Chinnakali, K.; Sivakumar, K.; Sam, T.-W.; How, S.-E.: Bis(3,4-dimethoxybenzyl) ether and tetramethoxy-4,4'-(2,3-dimethyltetramethylene)dipyrocatechol. Acta Crystallogr. C53 (1997) 1857–1859.
- Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.