Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of (*N*,*N*-dimethylsulphoxide)-[*N*-(3-ethoxy-2-(oxide) benzylidene)-3-methoxybenzenecarbohydrazonato- $\kappa^3 N$,*O*,*O'*]-dioxo-molybdenum(VI), C₁₉H₂₂MoN₂O₇S

https://doi.org/10.1515/ncrs-2020-0281 Received June 10, 2020; accepted June 25, 2020; available online July 2, 2020

Abstract

C₁₉H₂₂MoN₂O₇S, triclinic, $P\bar{1}$ (no. 2), a = 7.9719(2) Å, b = 10.3854(2) Å, c = 13.1042(3) Å, $\alpha = 81.451(2)^{\circ}$, $\beta = 72.444(2)^{\circ}$, $\gamma = 87.930(2)^{\circ}$, V = 1022.85(4) Å³, Z = 2, $R_{\rm gt}(F) = 0.0181$, $wR_{\rm ref}(F^2) = 0.0503$, T = 100(2) K.

CCDC no.: 2012229

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Brown prism		
Size:	$0.20\times0.14\times0.11~\text{mm}$		
Wavelength:	Cu Kα radiation (1.54184 Å)		
μ:	6.60 mm^{-1}		
Diffractometer, scan mode:	XtaLAB Synergy, ω		
$ heta_{\max}$, completeness:	67.0°, >99%		
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	24067, 3664, 0.023		
Criterion for I _{obs} , N(hkl)gt:	$I_{\rm obs}$ > 2 $\sigma(I_{\rm obs})$, 3660		
N(param) _{refined} :	275		
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]		

Source of material

The ligand, 3-ethoxysalicylaldehyde 3-methoxybenzoic hydrazone was prepared from the 1:1 molar reaction of 3-ethoxysalicylaldehyde (Merck) and 3-methoxybenzoic hydrazide (Sigma-Aldrich). Next, MoO₂(acetylacetonate)₂ (Sigma-Aldrich; 0.33 g, 1 mmol) was added to the freshly prepared Schiff base ligand (1 mmol, 0.302 g) in methanol (40 mL). The resulting solution was refluxed for 3 h. The filtrate was evaporated until a beige precipitate was obtained. The precipitate was recrystallised from acetone-methanol by slow evaporation to yield brown crystals. The mixture was refluxed for 2 h. The title compound was isolated from the recrystallisation of the complex in DMSO. Yield: 0.32 g (63.5%). **M.pt** (Mel-temp II digital melting point apparatus): 457–459 K. **Calcd.** for C₁₉H₂₂MoN₂O₇S: C, 44.02; H, 4.52; N, 5.40; S, 6.18%; Found: C, 43.78; H, 4.21; N, 5.25; S, 6.37%.

This work is licensed under the Creative Commons Attribution 4.0

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ο Open Access. © 2020 Kong Mun Lo et al., published by De Gruyter. ඟ вν International License.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	z	U _{iso} */U _{eq}
Мо	0.63757(2)	0.52131(2)	0.22781(2)	0.00681(6)
S1	0.35944(5)	0.60157(4)	0.08143(3)	0.00964(9)
01	0.72761(15)	0.70120(11)	0.22000(9)	0.0095(2)
02	0.44349(16)	0.39946(12)	0.26529(10)	0.0121(3)
03	1.02885(17)	1.12676(12)	0.07792(10)	0.0158(3)
04	0.30680(17)	0.16869(12)	0.28011(10)	0.0143(3)
05	0.75568(17)	0.44367(12)	0.30673(10)	0.0139(3)
06	0.75092(16)	0.49783(12)	0.09827(10)	0.0131(3)
07	0.45077(17)	0.65056(12)	0.15598(10)	0.0138(3)
N1	0.50584(19)	0.73704(14)	0.37379(12)	0.0099(3)
N2	0.46125(19)	0.61073(14)	0.36605(11)	0.0087(3)
C1	0.6469(2)	0.77439(16)	0.29460(13)	0.0090(3)
C2	0.3272(2)	0.55767(17)	0.44178(14)	0.0103(3)
H2	0.269685	0.605569	0.498753	0.012*
C3	0.2600(2)	0.42909(17)	0.44443(14)	0.0107(3)
C4	0.3193(2)	0.35610(17)	0.35869(14)	0.0102(3)
C5	0.2427(2)	0.23274(17)	0.36720(14)	0.0119(3)
C6	0.1089(2)	0.18586(18)	0.46033(15)	0.0154(4)
H6	0.056701	0.103271	0.465960	0.018*
C7	0.0506(2)	0.25867(18)	0.54533(15)	0.0157(4)
H7	-0.040306	0.225286	0.608556	0.019*
C8	0.1242(2)	0.37857(18)	0.53802(14)	0.0127(4)
H8	0.083584	0.427837	0.596176	0.015*
C9	0.7209(2)	0.90563(16)	0.28371(14)	0.0096(3)
C10	0.8445(2)	0.95763(17)	0.18728(14)	0.0105(3)
H10	0.885136	0.907328	0.129816	0.013*
C11	0.9081(2)	1.08386(17)	0.17577(14)	0.0111(3)
C12	0.8502(2)	1.15780(17)	0.25960(15)	0.0129(4)
H12	0.893928	1.243801	0.251533	0.015*
C13	0.7271(2)	1.10421(18)	0.35587(15)	0.0150(4)
H13	0.686753	1.154527	0.413347	0.018*
C14	0.6630(2)	0.97915(17)	0.36879(15)	0.0128(3)
H14	0.580227	0.943322	0.434967	0.015*
C15	1.1074(3)	1.25225(18)	0.06526(16)	0.0172(4)
H15A	1.016291	1.319053	0.071545	0.026*
H15B	1.195254	1.269555	-0.006061	0.026*
H15C	1.164495	1.254022	0.121628	0.026*
C16	0.2625(2)	0.03221(17)	0.29531(16)	0.0156(4)
H16A	0.133539	0.020704	0.313662	0.019*
H16B	0.301976	-0.015489	0.355084	0.019*
C17	0.3536(3)	-0.01911(18)	0.19127(16)	0.0182(4)
H17A	0.305435	0.022881	0.134240	0.027*
H17B	0.334859	-0.113459	0.201222	0.027*
H17C	0.479985	-0.000186	0.170530	0.027*
C18	0.1309(3)	0.6058(2)	0.15159(17)	0.0254(5)
H18A	0.103717	0.541367	0.217195	0.038*
H18B	0.062940	0.585427	0.104825	0.038*
H18C	0.100001	0.692804	0.171420	0.038*
019	0.3722(3)	0.73839(18)	-0.02091(15)	0.0185(4)
H19A	0.342784	0.817728	0.012768	0.028*
H19B	0.288895	0.726219	-0.060560	0.028*
н19С	0.491842	0.746293	-0.071098	0.028*

IR (Bruker Vertex 70v FTIR Spectrophotometer; cm⁻¹): 1617 (m) ν(C–N), 1596 (s) ν(C–N), 1522 (s) ν(C–O), 1286 (s) ν(C– O), 1081 (m) ν(C–O), 922 (m) ν(Mo–O), 890 (s) ν(Mo–O). ¹**H NMR** (Bruker Ascend 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, DMSO solution, p.p.m.): δ 1.38 (s, 3H, CH₃), 2.50 (s, 6H, SCH₃), 3.85 (s, 2H, OCH₂), 4.09 (s, 3H, OCH₃), 7.01–7.50 (m, 7H, Phenyl-H), 8.93 (s, 1H, NCH). ¹³C{¹H} **NMR** (as for ¹H NMR): δ 15.2 (CH₃), 39.9 (SCH₃), 55.7 (OCH₂), 64.8 (OCH₃), 112.9, 118.6, 119.1, 120.9, 122.0, 126.0, 130.5, 131.8, 148.1, 149.9, 156.7, 159.8 (Aryl–C), 169.0 (CN).

Experimental details

The C-bound H atoms were geometrically placed (C– H = 0.95–0.99 Å) and refined as riding with U_{iso} (H) = 1.2–1.5 U_{eq} (C).

Comment

It is now well established that the sixth coordination site in mononuclear dioxidomolybdenum(VI) complexes of ONOdonor Schiff base dianions is labile [5–8], with exchange between different molecules, e.g. solvent, often observed. Further interest in these molecules arises as a result of investigations of putative anti-cancer potential [6, 8]. In continuation of structural studies of Mo complexes of Schiff bases [6, 9, 10], the title complex, (I), with a coordinated DMSO molecule, was investigated crystallographically with a further analysis of the molecular packing performed through the calculated Hirshfeld surfaces. The molecular structure of (I) is shown in the figure (70% displacement ellipsoids).

The Mo atom is coordinated within a NO₅ donor set defined by cis-oxo atoms [Mo-05, 06=1.7003(12),1.7145(12) Å] a DMSO-O [Mo-O7 = 2.2872(12) Å], and enolic-O [Mo-O1 = 2.0029(12) Å], phenolate-O[Mo-O2 = 1.9325(12) Å] and imine-N [Mo-N2 = 2.2337(14) Å] atoms of the di-negative, tridentate Schiff base ligand. The longer Mo–O6(oxo) bond has the O6 atom approximately trans [160.75(6)°] to the imine-N2 atom, and the more strongly bound oxo-O5 atom trans to the weakly-bound DMSO-O7 atom. The other trans angle in the six-coordinate geometry which approximates an octahedron is 150.01(5)°, for the O1-Mo-O2 angle. In this description, the Mo atom lies 0.3037(7) Å out of the basal plane defined by the O1, O2, O6 and N2 [r.m.s. deviation = 0.0091 Å] in the direction of the O5 atom.

The mode of coordination of the Schiff base di-anion leads to the formation of five- and six-membered chelate rings. The five-membered ring is planar, exhibiting a r.m.s. deviation of 0.0057 Å for the fitted atoms with the maximum deviation being 0.0083(8) Å for the O1 atom.

By constrast, the six-membered ring is non-planar and is best described as being based on an envelope with the Mo atom, the flap, lying 0.486(2) Å above the plane of the five remaining atoms [r.m.s. deviation = 0.0379 Å] with a maximum deviation = 0.0550(12) Å for atom C2. The dihedral angle between the five-membered chelate ring and the planar region of the six-membered ring is 11.25(9)°. The dihedral angle between the outer aromatic rings is 5.61(9)°.

The most closely related structure in the literature is of the analogue where the ethoxy substituent of (I) is methoxy [8]. As would be anticipated, the same trends in geometric parameters are evident.

Non-covalent C—H···O intermolecular interactions provide specific points of contact between molecules in the crystal of (I). The acceptor atoms are oxo-O5 and -O6 exclusively with the former forming three contacts and the later, two. The donor atoms are imine-C—H, phenyl-C—H, methoxy-C—H and DMSO-methyl-C—H [range of H···C = 2.42 to 2.58 Å and range of angles at H = 118 to 133°].

A further analysis of the molecular packing was performed by calculating the Hirshfeld surface as well as the fulland delineated two-dimensional fingerprint plots, following standard protocols [11] and the program Crystal Explorer 17 [12]. The analysis confirms the importance of C—H···O interactions in contributing to the stability of the crystal, contribuing 30.8% of all surface contacts, and second only to H···H contacts, i.e. 43.0%. The other major contribution to surface contacts, at 16.8%, comes from C···H/H···C contacts. The only other contacts making over 1% contributions to the Hirshfeld surface are H···H/H···N [2.7%], N···C/C···N [1.8%] and C···C [1.6%].

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{pRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Crystallogr. 45 (2012) 849–854.
- Ngan, N. K.; Lo, K. M.; Wong, C. S. R.: Synthesis, structure studies and electrochemistry of molybdenum(VI) Schiff base complexes in the presence of different donor solvent molecules. Polyhedron **30** (2011) 2922–2932.
- Asha, T. M.; Kurup, M. R. P.: Synthesis, spectroscopy, electrochemistry, crystal structures and in vitro cytotoxicity of mononuclear molybdenum(VI) complexes incorporating tridentate ONO donor aroylhydrazone with auxiliary coordination site. Inorg. Chim. Acta 483 (2018) 44–52.
- Wang, S.-X.: [N'-(3-Ethoxy-2-oxidobenzylidene)-4-hydroxy-3-methoxybenzohydrazidato]-(methanol)dioxidomolybdenum(VI). Acta Crystallogr. E68 (2012) m358–m359.
- Asha, T. M.; Kurup, M. R. P.: DMSO coordinated dioxidomolybdenum(VI) complexes chelated with 3-methoxybenzhydrazone related ligands: synthesis, structural studies and in vitro cytotoxicity. Polyhedron 169 (2019) 151–161.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of bis{(*N*-[(5-chloro-2-oxidophenyl)methylidene]-2-hydroxybenzenecarbohydrazonato)-dioxo-molybdenum(VI)}(μ₂-4, 4'-bipyridine), C₃₈H₂₆Cl₂Mo₂N₆O₁₀. Z. Kristallogr. NCS 235 (2020) 189–191.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of (dimethyl sulfoxide)-dioxido-[2-hydroxy-N'-(4-oxo-4-phenylbutan-2-ylidene)benzohydrazidato κ³N,O,O'] molybdenum(VI), C₁₉H₂₀MoN₂O₆S. Z. Kristallogr. NCS **235** (2020) 203–205.
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.
- Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).