Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of bromido-triphenyl-(triphenylarsine oxide-κ*O*)tin(IV), C₃₆H₃₀AsBrOSn

https://doi.org/10.1515/ncrs-2020-0138 Received March 11, 2020; accepted April 6, 2020; available online April 24, 2020

Abstract

C₃₆H₃₀AsBrOSn, triclinic, $P\bar{1}$ (no. 2), a = 9.8316(1) Å, b = 10.8781(2) Å, c = 14.9388(2) Å, $\alpha = 102.367(1)^{\circ}$, $\beta = 93.369(1)^{\circ}$, $\gamma = 103.134(1)^{\circ}$, V = 1510.07(4) Å³, Z = 2, $R_{\rm gt}(F) = 0.0175$, $wR_{\rm ref}(F^2) = 0.0469$, T = 100 K.

CCDC no.: 1995010

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters. Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.16 \times 0.08 \times 0.06 \text{ mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	9.70 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	35879, 5393, 0.029
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 5331
N(param) _{refined} :	361
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX/ORTEP [4]

Source of material

Tetraphenyltin (0.85 g, 2 mmol) and 4-(dimethylamino)pyridine hydrobromide perbromide (Sigma-Aldrich; 0.72 g, 2 mmol) were dissolved in ethanol (50 mL). The resulting mixture was stirred at room temperature until a colourless solution was obtained. Next, triphenylarsine oxide (Sigma Aldrich; 0.64 g, 2 mmol) in ethanol (10 mL) was added to the mixture which was then refluxed for 3 h. After filtration, the filtrate was evaporated slowly until colourless crystals formed. The crystals were filtered, washed with a minimum amount of hexane and air-dried. Yield: 0.88 g (59.1%). M.pt (Mel-temp II digital melting point apparatus): 447-449 K. IR (Bruker Vertex 70v FTIR Spectrophotometer; cm^{-1}): 1085 (m) ν(C–C), 997 (m) ν(As–O), 476 (w) ν(Sn–O). ¹H NMR (Bruker Ascend 400 MHz NMR spectrometer, chemical shifts relative to Me₄Si, CDCl₃ solution at 40 °C; ppm): δ 7.47–7.66 (m, 30H, Phenyl-H). ¹³C{¹H} NMR (as for ¹H NMR): δ 128.0, 129.3, 131.5, 131.9, 132.5, 136.4 (Phenyl-C).

Experimental details

The C-bound H atoms were geometrically placed (C– H = 0.95 Å) and refined as riding with U_{iso} (H) = 1.2 U_{eq} (C).

Comment

Recently, the X-ray crystal structure determinations of two new triorganoarsine oxide adduct of organotin species were described, namely six-coordinate, *trans*-(4- $MeC_6H_4CH_2$)_2SnCl₂(O=AsPh₃)₂ [5] and five-coordinate (4- $MeC_6H_4CH_2$)_3SnCl(O=AsPh₃) [6]. The rest of the known,

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2020 Kong Mun Lo et al., published by De Gruyter. (ලා හ License.

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Fable 2 ((continued)	
-----------	-------------	--

Atom	x	у	z	U _{iso} */U _{eo}
Sn	0.78069(2)	0.55247(2)	0.73706(2)	0.01062(5
As	0.69267(2)	0.21868(2)	0.76382(2)	0.00971(6
Br1	0.87976(2)	0.75872(2)	0.66552(2)	0.01932(6
01	0.69163(14)	0.37567(13)	0.79001(9)	0.0131(3
C1	0.6651(2)	0.44394(18)	0.60825(13)	0.0128(4
C2	0.5188(2)	0.4096(2)	0.59939(14)	0.0170(4
H2	0.470875	0.439276	0.649927	0.020
C3	0.4420(2)	0.3326(2)	0.51763(15)	0.0223(5
H3	0.342152	0.311435	0.511968	0.027
C4	0.5110(3)	0.2870(2)	0.44464(15)	0.0231(5
H4	0.458781	0.233455	0.388917	0.028
C5	0.6570(3)	0.3195(2)	0.45267(15)	0.0222(5
H5	0.704572	0.287004	0.402748	0.027
C6	0.7335(2)	0.3993(2)	0.53358(14)	0.0174(4
H6	0.833255	0.423715	0.538001	0.021
C7	0.9875(2)	0.53195(18)	0.77377(13)	0.0138(4
C8	1.0990(2)	0.5641(2)	0.72234(15)	0.0181(4
H8	1.084950	0.598993	0.670421	0.022
C9	1.2304(2)	0.5454(2)	0.74644(17)	0.0241(5
H9	1.305319	0.567521	0.710944	0.029
C10	1.2523(2)	0.4945(2)	0.82198(17)	0.0245(5
H10	1.342130	0.481936	0.838326	0.029
C11	1.1424(2)	0.4620(2)	0.87383(15)	0.0207(4
H11	1.156961	0.426572	0.925439	0.025
C12	1.0119(2)	0.48123(19)	0.85021(14)	0.0162(4
H12	0.937707	0.459715	0.886401	0.019
C13	0.6917(2)	0.65907(19)	0.84714(13)	0.0127(4
C14	0.6474(2)	0.60513(19)	0.92056(14)	0.0159(4
H14	0.646868	0.517112	0.918440	0.019
C15	0.6040(2)	0.6784(2)	0.99664(14)	0.0198(4
H15	0.574648	0.640148	1.046027	0.024
C16	0.6034(2)	0.8065(2)	1.00092(14)	0.0181(4
H16	0.574089	0.856503	1.053098	0.022
C17	0.6460(2)	0.8614(2)	0.92854(15)	0.0205(4
H17	0.645558	0.949286	0.930939	0.025
C18	0.6893(2)	0.7883(2)	0.85240(14)	0.0187(4
H18	0.717795	0.826951	0.803028	0.022
C19	0.7680(2)	0.16074(19)	0.65139(13)	0.0133(4
C20	0.6827(2)	0.0670(2)	0.57993(14)	0.0170(4
H20	0.588107	0.029310	0.587122	0.020
C21	0.7374(2)	0.0287(2)	0.49753(14)	0.0208(4
H21	0.680067	-0.036182	0.448434	0.025
C22	0.8749(2)	0.0847(2)	0.48676(14)	0.0201(4
H22	0.911131	0.059244	0.429995	0.024
C23	0.9601(2)	0.1783(2)	0.55919(15)	0.0190(4
H23	1.054520	0.216347	0.551712	0.023
C24	0.9078(2)	0.21616(19)	0.64194(14)	0.0157(4
H24	0.966066	0.278993	0.691694	0.019
C25	0.7981(2)	0.18617(18)	0.86439(13)	0.0128(4
C26	0.9084(2)	0.1262(2)	0.85161(15)	0.0179(4
H26	0.928468	0.091814	0.791238	0.021
C27	0.9891(2)	0.1175(2)	0.92865(16)	0.0228(5
H27	1.066662	0.079195	0.920912	0.027
C28	0.9568(2)	0.1643(2)	1.01673(16)	0.0224(5
H28	1.012568	0.158006	1.068909	0.027

.089398 0.024*
.089398 0.024*
6272(14) 0.0154(4)
.960667 0.018*
6776(13) 0.0125(4)
344(14) 0.0175(4)
.766518 0.021*
6455(15) 0.0250(5)
.768413 0.030*
0.0272(5)
.761224 0.033*
388(14) 0.0244(5)
.750373 0.029*
0.0173(4)
.748731 0.021*

comparatively rare mononuclear species are also fivecoordinate, that is, $(4-\text{ClC}_6\text{H}_4\text{CH}_2)_3\text{SnCl}(O=\text{AsPh}_3)$ [7], Ph₃SnCl(O=AsPh₃) [8] and $(4-\text{ClC}_6\text{H}_4)_3\text{SnCl}(O=\text{AsPh}_3)$ [8]. In continuation of previous structural studies in this area [5, 6, 8], the crystal and molecular structures of the title triphenylarsine oxide adduct of tri(4-methylbenzyl)tin bromide, Ph₃SnBr(O=AsPh₃), (I), are described.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids) and features a distorted trigonal bipyramidal geometry with the three phenyl rings occupying equatorial positions, and with the bromido [Sn-Br1 = 2.6983(2) Å and As-oxido [Sn-O1 = 2.2493(13) Å]atoms occupying axial positions; Br1-Sn-O1 = 177.18(3)°. The Sn atom lies 0.119(1) Å out of the trigonal plane in the direction of the Br1 atom. The Sn-C bond lengths span an experimentally distinct range, that is, from short Sn-C1 = 2.1326(19), Sn-C7 = 2.147(2) to longer Sn-C13 = 2.1514(19) Å. Similarly, there is a disparity in the C–Sn– C angles with the widest angles of $C1-Sn-C7 = 120.16(7)^{\circ}$ and $C1-Sn-C13 = 124.06(7)^{\circ}$ involving the C1-phenyl ring which forms the smallest dihedral angle with the C₃ plane, that is, 21.95(7)° and the shortest Sn-C1 bond. The comparable dihedral angles for the C7- and C13-phenyl rings are 57.64(5) and 79.388(7)°, respectively, with the greater dihedral angle correlating with the longest Sn-C13 bond. When the molecule of (I) is viewed down the Sn \cdots As axis, the phenyl rings bound to the Sn and As atoms are close to being staggered. The Sn-O1–As angle is bent, presenting an angle of 136.77(7)°. The C₃O donor set around the As atom is based on a tetrahedron with the range of angles subtended at the As atom being a narrow 106.45(8)° for O1-As-C31 to a wide 115.55(7)° for O1-As-C19, indicating relatively minor distortions from the ideal geometry.

The most closely related literature precedent to (I) is the chlorido analogue, $Ph_3SnCl(O=AsPh_3)$, (II) [8]; the structures are not isostructural. As would be expected, very similar coordination geometries are noted. The Cl1–Sn–O1 angles in (II) are 139.3(2) and 139.4(2)° for the two independent molecules comprising the asymmetric unit and are over two degrees wider compared with (I). The As–O bond lengths, that is 1.6709(13) Å in (I), and 1.672(4) and 1.663(4) Å in (II), are equal within experimental errors suggesting little influence exerted by the Sn-bound halide atom upon the mode of coordination of $O=AsPh_3$. Such invariance in the As=O bond lengths is consistent with that noted previously for analogous P=O bonds in phosphineoxide adducts of organotin species [9].

In the molecular packing of (I), As-phenyl-C- $H \cdots Br$ contacts $[C34-H34\cdots Br1^i: H34\cdots Br1^i = 2.91 Å,$ $C34 \cdots Br1^i = 3.752(2)$ Å with angle at H34 = 149° for symmetry operation (i) -1 + x, -1 + y, z] lead to supramolecular chains approximately parallel to [3 5 - 13]. The connections between the chains are of the type phenyl-C–H··· π (phenyl). Thus, Sn-phenyl-C-H··· π (As-phenyl) [C16-H16···Cg(C31-C36)ⁱⁱ: H16···Cg = 2.75 Å with angle at H16 = 142° and $C17-H17\cdots Cg(C24-C30)^{iii}$: $H17\cdots Cg = 2.91$ Å with angle at H17 = 130° for (ii) 1 - x, 1 - y, 2 - z and (iii) x, 1 + y, z] and As-phenyl-C-H··· π (Sn-phenyl) [C29-H29···Cg(C7-C12)^{iv}: H29···Cg = 2.68 Å with angle at H29 = 131° for (iv) 2 - x, 1 - y, 2 - z] are apparent. The layers interdigitate along the c-axis allowing for π -stacking interactions between centrosymmetrically-related Sn-bound phenyl rings [Cg(C1-C6)···Cg(C1-C6)^v = 3.9112(13) Å for (v) 1 - x, 1 - y, 1 - z]. It is noted that the phenyl rings are off-set with a slippage of 1.75 Å [10].

The lack of directional interactions in the crystal of (I) is reflected in the analysis of the calculated Hirshfeld surfaces and two-dimensional fingerprint plots (overall and decomposed). The calculations were performed with Crystal Explorer 17 [11] following standard protocols [12]. The specified H··· Br contacts leading to the supramolecular chain contribute 7.5% to the overall surface whereas the C··· H/H··· C contacts, largely corresponding to the C–H··· π (phenyl) and $\pi \cdots \pi$ interactions, contribute 30.7% of all contacts. Small

contributions of 1.5%, due to $C \cdots C$ contacts, and 0.3%, due to $C \cdots Br/Br \cdots C$ contacts, are also noted. However, the most significant contribution, that is, 60.0%, arise from $H \cdots H$ surface contacts.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant No. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{pRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update.
 J. Appl. Crystallogr. 45 (2012) 849–854.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of dichlorido-bis(4-methylphenyl-κ*C*)-bis(triphenylarsine oxideκ*O*)tin(IV), C₅₀H₄₄As₂Cl₂O₂Sn. Z. Kristallogr. NCS **235** (2020) 183–185.
- Lee, S. M.; Lo, K. M.; Tiekink, E. R. T.: Crystal structure of chlorido-tris(4-methylbenzyl-κ*C*)-(triphenylarsine oxideκ*O*)tin(IV), C₄₂H₄₂AsClOSn. Z. Kristallogr. NCS 235 (2020) 775–777.
- Johari, N. H.; Lo, K. M.; Ng, S. W.: Chloridotris(4-chlorobenzylκC)(triphenylarsine oxide-κO)tin(IV). Acta Crystallogr. E65 (2009) m815.
- Lo, K. M.; Niu, J.-Y.; Wang, J.-P.: Synthesis and structures of coordination compounds of triphenylarsine with triorganotin and triorganolead chlorides Chin. J. Inorg. Chem. 16 (2000) 763–768.
- Gielen, M.; Pan, H.; Tiekink, E. R. T.: Crystal structures of CH₂=CHCH₂OC(0)CH₂CH₂SnCl₃·OPPh₃ and BuOC(0)CH(CH₃) CH₂SnCl₃·OPPh₃. Bull. Soc. Chim. Belg. **102** (1993) 447–453.
- Spek, A. L.: checkCIF validation ALERTS: what they mean and how to respond. Acta Crystallogr. E76 (2020) 1–11.
- Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.