Yee Seng Tan and Edward R.T. Tiekink*

The pseudosymmetric low temperature polymorph of *catena*-poly[(μ_2 -4,4'-bipyridyl- κN ,N')-bis(O,O'-diethyldithiophosphato- κS)-cadmium(II)], {C₁₈H₂₈CdN₂O₄P₂S₄}_n

https://doi.org/10.1515/ncrs-2019-0596 Received August 16, 2019; accepted October 3, 2019; available online October 19, 2019

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 Yee Seng Tan et al., published by De Gruyter. 🚾 אין License.

Abstract

C₁₈H₂₈CdN₂O₄P₂S₄, triclinic, $P\bar{1}$ (no. 2), a = 10.3735(1) Å, b = 15.2066(2) Å, c = 26.5231(2) Å, $\alpha = 85.178(1)^{\circ}$, $\beta = 81.311(1)^{\circ}$, $\gamma = 71.541(1)^{\circ}$, V = 3920.17(7) Å³, Z = 6, $R_{\rm gt}(F) = 0.0214$, $wR_{\rm ref}(F^2) = 0.0556$, T = 100(2) K.

CCDC no.: 1957394

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Colourless block
Size:	$0.25 \times 0.17 \times 0.12~\text{mm}$
Wavelength:	Cu Kα radiation (1.54184 Å)
μ:	11.1 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	93196, 13999, 0.027
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \; \sigma(I_{\rm obs})$, 13237
N(param) _{refined} :	863
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]
Diffractometer, scan mode: θ _{max} , completeness: N(hkl) _{measured} , N(hkl) _{unique} , R _{int} : Criterion for I _{obs} , N(hkl) _{gt} : N(param) _{refined} : Programs:	XtaLAB Synergy, ω 67.1°, >99% 93196, 13999, 0.027 $l_{obs} > 2 \sigma(l_{obs})$, 13237 863 CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

The $Cd[S_2P(OEt)_2]_2$ precursor was prepared in high yield from the in situ reaction of $Cd(NO_3)_2 \cdot 4 H_2O$ (Acros Organics; 15.42 g, 0.05 mol), EtOH (Merck; 12.25 mL, 0.21 mol), P₂S₅ (Sigma-Aldrich; 11.11 g, 0.05 mol) and 50% w/w NaOH solution (Merck; 8.80 mL, 0.11 mol). The title compound was obtained by mixing a suspension of this precursor (0.50 g, 1.04 mmol) and 4,4'-bipyridine (Merck; 0.17 g, 1.09 mmol) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 min. at 373 K. The solution was filtered and the filtrate was collected in a sample vial containing acetonitrile (Merck; 1 mL). Yellow blocks formed after one day. Yield: 0.31 g, (46.7%, based on Cd[S₂P(OEt)₂]₂). M.pt (Stuart SMP 30 Melting point apparatus): 441.2-442.8 K. IR (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm⁻¹): 1161(w) ν (C-O); 1011(s) ν (P-O); 651(s) ν (P-S)_{asym}; 526(m) ν (P-S)_{sym}; 294(m) ν (Zn-S); 380(w) ν (Zn-N).

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

240 — Tan and Tiekink: ${C_{18}H_{28}CdN_2O_4P_2S_4}_n$

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$).

Table 2 (continued)

isotiopi	e aisplacement p	Julumeters (//)	•						
					Atom	X	у	Z	U _{iso} */U _{eq}
Atom	X	У	Z	U _{iso} */U _{eq}	H3B	1.6671	1.3298	0.8786	0.024*
Cd1	1.5000	1.5000	1.0000	0.01370(4)	C4	1.72805(17)	1.32226(11)	0.80105(6)	0.0206(3)
Cd2	0.99420(2)	1.00774(2)	0.82902(2)	0.01264(4)	H4A	1.7366	1.3662	0.7725	0.031*
Cd3	0.48610(2)	0.50816(2)	0.66753(2)	0.01261(4)	H4B	1.6629	1.2908	0.7951	0.031*
Cd4	0.0000	0.0000	0.5000	0.01143(4)	H4C	1.8178	1.2763	0.8038	0.031*
S1	1.75458(4)	1.39011(3)	0.97086(2)	0.01671(8)	C5	1.36800(17)	1.10798(12)	0.70569(6)	0.0251(4)
S2	1.57426(4)	1.58190(3)	0.91043(2)	0.01844(8)	H5A	1.2886	1.1335	0.6865	0.030*
S 3	1.24404(4)	0.89418(2)	0.79515(2)	0.01407(7)	H5B	1.4530	1.0963	0.6811	0.030*
S 4	1.05640(4)	1.08708(3)	0.73771(2)	0.01660(8)	C6	1.3660(2)	1.17591(13)	0.74389(8)	0.0387(4)
S5	0.74364(4)	1.11995(2)	0.86411(2)	0.01433(8)	H6A	1.2792	1.1900	0.7668	0.058*
S 6	0.92630(4)	0.92253(3)	0.91902(2)	0.01681(8)	H6B	1.3752	1.2331	0.7260	0.058*
S 7	0.40848(4)	0.43106(3)	0.75742(2)	0.01660(8)	H6C	1.4424	1.1490	0.7639	0.058*
S 8	0.23302(4)	0.62640(2)	0.69826(2)	0.01414(7)	C7	1.17944(16)	0.88240(11)	0.67220(6)	0.0208(3)
S9	0.74970(4)	0.40599(2)	0.64378(2)	0.01585(8)	H7A	1.0851	0.9251	0.6717	0.025*
S10	0.56458(4)	0.58649(2)	0.57677(2)	0.01529(8)	H7B	1.1770	0.8331	0.6988	0.025*
S11	-0.25303(3)	0.11972(2)	0.52146(2)	0.01302(7)	C8	1.23364(17)	0.84036(11)	0.62106(6)	0.0217(3)
S12	-0.09398(4)	-0.06757(3)	0.59040(2)	0.01622(8)	H8A	1.2323	0.8898	0.5948	0.033*
P1	1.74614(4)	1.47611(3)	0.90928(2)	0.01594(8)	H8B	1.1761	0.8043	0.6135	0.033*
P2	1.23319(4)	0.98531(3)	0.73605(2)	0.01319(8)	H8C	1.3279	0.7996	0.6216	0.033*
P3	0.75004(4)	1.02437(3)	0.92047(2)	0.01323(8)	C9	0.60966(18)	0.90446(11)	0.94661(6)	0.0227(3)
P4	0.23685(4)	0.53738(3)	0.75789(2)	0.01405(8)	H9A	0.5211	0.9173	0.9692	0.027*
P5	0.73483(4)	0.47971(3)	0.57818(2)	0.01306(8)	H9B	0.6846	0.8792	0.9680	0.027*
P6	-0.26432(4)	0.03654(3)	0.58310(2)	0.01269(8)	C10	0.6182(2)	0.83547(12)	0.90801(7)	0.0316(4)
01	1.88007(12)	1.50737(8)	0.90042(5)	0.0281(3)	H10A	0.5460	0.8619	0.8861	0.047*
02	1.77512(11)	1.41986(8)	0.85841(4)	0.0194(2)	H10B	0.6061	0.7788	0.9256	0.047*
03	1.36172(11)	1.02159(8)	0.73289(4)	0.0194(2)	H10C	0.7080	0.8206	0.8870	0.047*
04	1 26937(10)	0.93314(7)	0 68345(4)	0.0172(2)	C11	0 80059(18)	1 11678(14)	0.99069(7)	0 0295(4)
05	0 62149(11)	0.98987(7)	0.00949(4) 0.91951(4)	0.0172(2)	H11A	0 8064	1 1694	0.9668	0.0200(4)
06	0.02149(11) 0.70919(11)	1 07153(8)	0.97464(4)	0.0202(2)	H11B	0.8938	1 0722	0.9908	0.035*
07	0.10438(11)	0 50591(8)	0.76055(4)	0.0202(2)	(12	0 74375(19)	1 15086(14)	1 04332(7)	0.0344(4)
08	0.10400(11) 0.20335(12)	0.59014(8)	0.81030(4)	0.0224(2) 0.0217(2)	H12A	0.6510	1.19000(14)	1 0430	0.0574(4)
00	0.20000(12)	0.40605(7)	0.53653(4)	0.0217(2)	H12R	0.8026	1 1826	1.0450	0.052*
010	0.86847(11)	0.51008(7)	0.55949(4)	0.0204(2)	H12C	0.7405	1 0981	1 0668	0.052*
010	-0.39348(10)	0.01000(7)	0.55545(4) 0.58138(4)	0.0204(2) 0.0183(2)	(13	0.7403	0 42154(12)	0.78799(6)	0.032
012	-0.31358(11)	0.00204(7)	0.63343(4)	0.0109(2)	H134	0.00904(10)	0 4376	0.70755(0)	0.0240(4)
N1	1 41047(13)	1 /031/(9)	0.05545(4)	0.0160(2)	H13R	0.0174	0.38//	0.7997	0.030*
N2	1.41047(13) 1 10313(13)	1.40014(0) 1.10200(0)	0.95054(5)	0.0147(3)	C14	0.1777	0.36684(13)	0.752/0(7)	0.03/0(/)
N2 N3	0.88472(13)	1.10200(9)	0.30709(5) 0.70173(5)	0.0159(5)		0.0402(2)	0.0004(10)	0.7 3249(7)	0.0349(4)
N/A	0.00472(13)	0.91414(9)	0.79173(5)	0.0155(5)		0.0333	0.4002	0.7504	0.052
N4 N5	0.30824(13) 0.38850(13)	0.00097(9)	0.71002(3)	0.0155(3)		0.0280	0.3132	0.7712	0.052
NG	0.00556(13)	0.41330(9) 0.10237(9)	0.02324(5)	0.0151(5)	C15	0.1223	0.5455	0.7240	0.032
	1 2000(2)	1 = 0.022(14)	0.33733(3)	0.0144(3)		0.30080(13)	0.00408(10)	0.02192(7)	0.0279(4)
	1.0900(2)	1.59965(14)	0.09223(8)	0.0200(0)		0.3193	0.0700	0.7929	0.033
	1.0000	1.6407	0.0770	0.025*	П15Б С16	0.3003	0.000/	0.8277	0.000
	1.9/1/	1.0990	0.0073	0.025		0.2405(2)	0.06920(12)	0.86909(8)	0.0552(4)
	1.9008(3)	1.63/50(18)	0.94127(10)	0.0343(7)		0.1532	0.7358	0.8633	0.050*
	1.8184	1.6403	0.9655	0.051*		0.3040	0.7204	0.8769	0.050*
H2B°	1.9093	1.7000	0.9348	0.051^	HI6C	0.2244	0.64/4	0.8978	0.050^
H2C°	1.9817	1.5969	0.9556	0.051^	C17	0.73606(16)	0.43/16(11)	0.48346(5)	0.0203(3)
C1 ⁷⁰	1.8849(7)	1.5/18(5)	0.9376(3)	0.0216(19)*	H1/A	0.7965	0.4756	0.4712	0.024^
HIC	1.9303	1.53/1	0.9667	0.026*	H1/B	0.6402	0.4749	0.4804	0.024*
H1D ^o	1.7908	1.6096	0.9509	0.026*	C18	0.//553(16)	0.35233(11)	0.45246(6)	0.0202(3)
C2/0	1.9625(9)	1.6320(6)	0.9115(3)	0.029(2)*	H18A	0.8707	0.3157	0.4556	0.030*
H2D ^b	1.9780	1.6703	0.9364	0.043*	H18B	0.7667	0.3710	0.4166	0.030*
H2E ^D	1.9104	1.6722	0.8858	0.043*	H18C	0.7150	0.3149	0.4649	0.030*
H2F [₽]	2.0509	1.5937	0.8947	0.043*	C19	0.87354(17)	0.60431(11)	0.56071(6)	0.0227(3)
C3	1.67726(16)	1.37370(11)	0.84969(6)	0.0201(3)	H19A	0.7893	0.6482	0.5492	0.027*
H3A	1.5865	1.4202	0.8471	0.024*	H19B	0.9528	0.6113	0.5367	0.027*

Table 2 (continued)

Atom	x	у	z	U _{iso} */U _{eq}
C20	0.88595(18)	0.62833(13)	0.61323(7)	0.0331(4)
H20A	0.000000(10)	0.02055(15)	0.01525(7)	0.0501(4)
H20R	0.8939	0.6230	0.6121	0.050*
H20C	0.0757	0.5838	0.6252	0.050*
(21	-0 41148(16)	-0.07922(11)	0.0252	0.030
H21A	-0 5034	-0.0635	0.01097(0)	0.0207(5)
H21R	-0 3418	-0 1017	0.6343	0.025*
(22	-0 39642(19)	-0.15352(11)	0.05427(7)	0.025
C22 Η22Δ	-0 4644	-0 1304	0.57 427 (7)	0.0207(4)
H22R	-0 4110	-0 2082	0 5935	0.043*
H22C	-0 3040	-0 1704	0.5552	0.043*
(23	-0 22312(17)	0 14232(12)	0 64848(6)	0.0239(3)
H23A	-0 2114	0 1904	0 6222	0.0297(9)
H23B	-0 1318	0.0972	0.6519	0.029*
C24	-0.28638(19)	0.18625(12)	0.69846(6)	0.0265(4)
H24A	-0.3760	0.2315	0.6946	0.040*
H24B	-0.2265	0.2177	0.7093	0.040*
H24C	-0.2980	0.1383	0.7242	0.040*
C25	1.29635(16)	1.43635(10)	0.93601(6)	0.0189(3)
H25	1.2556	1.5017	0.9332	0.023*
C26	1.23473(16)	1.38024(10)	0.91682(6)	0.0183(3)
H26	1.1536	1.4071	0.9013	0.022*
C27	1.29227(15)	1.28403(10)	0.92030(5)	0.0139(3)
C28	1.41259(15)	1.24951(10)	0.94286(5)	0.0145(3)
H28	1.4567	1.1845	0.9456	0.017*
C29	1.46699(15)	1.31065(10)	0.96118(5)	0.0153(3)
H29	1.5486	1.2859	0.9766	0.018*
C30	1.22807(15)	1.22111(10)	0.90173(5)	0.0147(3)
C31	1.08718(16)	1.24792(11)	0.89998(6)	0.0201(3)
H31	1.0307	1.3076	0.9106	0.024*
C32	1.03005(16)	1.18723(11)	0.88276(6)	0.0199(3)
H32	0.9338	1.2069	0.8820	0.024*
C33	1.23860(15)	1.07632(10)	0.86864(6)	0.0185(3)
H33	1.2925	1.0165	0.8574	0.022*
C34	1.30425(15)	1.13229(10)	0.88567(6)	0.0185(3)
H34	1.4005	1.1104	0.8864	0.022*
C35	0.75204(16)	0.94409(10)	0.78487(6)	0.0180(3)
H35	0.7023	1.0074	0.7905	0.022*
C36	0.68364(15)	0.88783(10)	0.77009(6)	0.0174(3)
H36	0.5897	0.9126	0.7655	0.021*
C37	0.75411(15)	0.79405(10)	0.76200(5)	0.0148(3)
C38	0.89275(16)	0.76309(11)	0.76879(6)	0.0177(3)
H38	0.9455	0.7002	0.7634	0.021*
C39	0.95226(16)	0.82423(11)	0.78335(6)	0.0177(3)
H39	1.0465	0.8016	0.7877	0.021*
C40	0.68703(15)	0.73058(10)	0.74606(5)	0.0141(3)
C41	0.57448(15)	0.76317(10)	0.71928(5)	0.0143(3)
H41	0.5356	0.8279	0.7127	0.017*
C42	0.51964(15)	0.70092(10)	0.70238(5)	0.0153(3)
H42	0.4434	0.7246	0.6839	0.018*
C43	0.67309(16)	0.57796(11)	0.73796(6)	0.0212(3)
H43	0.7071	0.5131	0.7453	0.025*
C44	0.73455(16)	0.63493(10)	0.75613(6)	0.0208(3)
H44	0.8088	0.6092	0.7754	0.025*
C45	0.25348(15)	0.42772(10)	0.63383(5)	0.0166(3)
H45	0.1968	0.4786	0.6534	0.020*
C46	0.19205(15)	0.37032(10)	0.61571(5)	0.0163(3)

Atom	x	у	Z	U _{iso} */U _{eq}
H46	0.0955	0.3826	0.6225	0.020*
C47	0.27323(15)	0.29416(10)	0.58737(5)	0.0140(3)
C48	0.41351(15)	0.28243(10)	0.57759(6)	0.0179(3)
H48	0.4726	0.2326	0.5578	0.021*
C49	0.46629(15)	0.34360(10)	0.59683(6)	0.0180(3)
H49	0.5621	0.3344	0.5896	0.022*
C50	0.21231(15)	0.22850(10)	0.56971(5)	0.0134(3)
C51	0.07757(15)	0.25666(10)	0.55870(5)	0.0149(3)
H51	0.0227	0.3196	0.5619	0.018*
C52	0.02439(15)	0.19246(10)	0.54304(5)	0.0153(3)
H52	-0.0676	0.2132	0.5357	0.018*
C53	0.22560(15)	0.07549(10)	0.54801(6)	0.0171(3)
H53	0.2782	0.0122	0.5441	0.021*
C54	0.28700(15)	0.13476(10)	0.56401(6)	0.0165(3)
H54	0.3791	0.1121	0.5711	0.020*

^aOccupancy: 0.777(4), ^bOccupancy: 0.223(4).

Experimental details

The C-bound H atoms were geometrically placed (C-H = 0.95-0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$. The C1-ethyl group was disordered over two positions. From refinement, the major component had a site occupancy factor of 0.777(4). The major component was refined with anisotropic displacement parameters.

Comment

In continuation of systematic studies into the generation of coordination polymers of the zinc-triad elements [5-7], a new low-temperature (100 K) polymorph of $\{\text{Zn}[S_2P(\text{OEt})_2]_2(4,4'-bipy)\}_n$ was described recently [8]; 4,4'-bipy is 4,4'-bipyridine. In common with the high temperature (296 K) form [9], the structure crystallised as a one-dimensional chain with a zig-zag topology. The particularly interesting feature of the 100 K structure was the presence of four independent repeat units in the asymmetric unit compared with two repeat units in the 296 K form. In the present contribution, the crystal and molecular structures of a new polymorph (100 K) of the cadmium analogoue, $\{Cd[S_2P(OEt)_2]_2(4,4'-bipy)\}_n$, (I), is described and compared with 293 K form [10].

The asymmetric unit of (I) is shown in the figure (70% probability displacement ellipsoids; the minor component of the disordered ethyl group is omitted) and comprises four independent Cd[S₂P(OEt)₂]₂(4,4'-bipy) repeat units, two, with the Cd1- and Cd4-containing entities, having the cadmium atom located on a centre of inversion, and two, with the Cd2- and Cd3-containing entities, in general positions. The full repeat unit containing the Cd1 atom is generated by the application of symmetry operation (i) 3 - x, 3 - y, 2 - z, and that for the Cd4 atom by the application

of (ii) -x, -y, 1-z. The coordination geometries for the Cd1-Cd4 atoms are closely related being based on a trans-N₂S₄ donor set defined by four sulphur atoms, derived from two chelating dithiophosphate ligands, and two pyridylnitrogen atoms derived from two bridging 4,4'-bipy ligands. The coordination geometries are each based on an octahedron. The dithiophosphate ligands are effectively symmetrically chelating with the range of Cd-S bond lengths being 2.6777(4) Å, for Cd1–S1, to 2.7246(4) Å, for Cd2–S6. The most symmetrically bound dithiophosphate ligands coordinate the Cd2 (Cd2-S3, S4 = 2.6888(4) and 2.6957(4) Å) and Cd4 (Cd4–S11, S12=2.6879(3) and 2.6960(4) Å) atoms, and the least symmetrically bound ligands are connected to the Cd1 (Cd1–S1, S2 = 2.6777(4) and 2.7104(4) Å) and Cd3 (Cd3– S9, S10 = 2.6910(4) and 2.7232(4) Å) atoms. These observations indicate there are no correlations in the magnitudes of the Cd-S bonds and the symmetry of the specific repeat unit. Consistent with the observed symmetric mode of coordination of the dithiophosphate ligands is the observation that the associated P-S bonds fall in a narrow range, i.e. 1.9846(5) Å, for P3-S6, to 1.9993(5) Å, for P1-S1. The three independent 4,4'-bipy ligands each lie in general positions and display relatively similar twists as seen in the sequence of N1-/N2-pyridyl, N3-/N4-pyridyl and N5-/N6-pyridyl dihedral angles of 27.42(7), 26.26(7) and 30.16(7)°, respectively. Each of the 4,4'-bipy ligands forms disparate Cd-N bonds lengths [Cd1-N2=2.3881(13) Å & Cd2-N2=2.4423(13) Å,Cd2–N3 = 2.4277(13) Å & Cd3–N4 = 2.4080(12) Å and Cd3– N5 = 2.4043(12) Å & Cd4 - N6 = 2.4365(12) Å].

As indicated in the figure, the repeat units comprising the asymmetric unit in (I) generate a one-dimensional coordination polymer with a linear topology. A linear coordination geometry is also found in the room temperature polymorph where the independent cadmium atom is located on a centre of inversion [10]. Analogous linear coordination polymers are also found in {Cd[S₂P(OR)₂]₂(4,4'-bipy)}_n, for R = iPr and cyclohexyl [11] but, when R = Me [12], a zig-zag chain is observed instead, mimicking the zinc(II) analogue [13]. The structural chemistry of bipyridyl-like adducts of the zinctriad elements is capricious [5] as is that of their homoleptic precursors [14].

In the crystal, the coordination polymers are orientated along the [3 3 1] direction and are connected laterally by methylene-C-H···O(ethoxy) interactions [C5-H5b···O12ⁱⁱⁱ: H5b···O12ⁱⁱⁱ = 2.55 Å, C5b···O12ⁱⁱⁱ = 3.516(2) Å with angle at H5b = 164°, C9-H9a···O6^{iv}: H9a···O6^{iv} = 2.58 Å, C9···O6^{iv} = 3.565(2) Å with angle at H9a = 172°, C13-H13a···O1^v: H13a···O1^v = 2.54 Å, C13···O1^v = 3.497(2) Å with angle at H13a = 163° and C21-H21a···O4^v: H21a···O4^v = 2.56 Å, C21···O4^v = 3.531(2) Å with angle at H21a = 166° for (iii) 2+x, 1+y, z, (iv) 1-x, 2-y, 2-z and (v) -2+x, -1+y, z]. The three-dimensional architecture is consolidated by pyridyl-C-H···O(ethoxy) interactions [C54-H54···O11^{vi}: H54···O11^{vi} = 2.46 Å, C54···O11^{vi} = 3.3642(19) Å with angle at H54 = 160°].

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) 18.
- Tan, Y. S.; Halim, S. N. A.; Tiekink, E. R. T.: Exploring the crystallization landscape of cadmium bis(*N*-hydroxyethyl, *N*-isopropyl-dithiocarbamate), Cd[S₂CN(iPr)CH₂CH₂OH]₂.
 Z. Kristallogr. CM 231 (2016) 113–126.
- Ahmad, J.; How, F. N.-F.; Halim, S. N. A.; Jotani, M. M.; Lee, S. M.; Tiekink, E. R. T.: A new structural motif for cadmium dithiocarbamates: crystal structures and Hirshfeld surface analyses of homoleptic zinc and cadmium morpholine dithiocarbamates. Z. Kristallogr. CM 234 (2019) 341–349.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of a lowtemperature (100 K) polymorph of *catena*-poly[(μ₂-4,4'bipyridine-κ²N,N')-bis(O,O'-diethyldithiophosphato-κ¹S) zinc(II)], C₁₈H₂₈N₂O₄P₂S₄Zn. Z. Kristallogr. NCS 235 (2019) 233–237.
- Zhu, D.-L.; Yu, Y.-P.; Guo, G.-C.; Zhuang, H.-H.; Huang, J.-S.; Liu, Q.; Xu, Z.; You, X.-Z.: *catena*-Poly[bis(*O*,*O*'diethyldithiophosphato-*S*)zinc(II)-µ-4,4'-bipyridyl-*N*:*N*']. Acta Crystallogr. **C52** (1996) 1963–1966.
- Li, T.; Li, Z.-H.; Du, S.-W.: *catena*-Poly-[[bis(*O*,*O*'-diethyl dithiophosphato-κ²*S*,*S*')cadmium(II)]-μ-4,4'-bipyridine-*N*:*N*']. Acta Crystallogr. **E60** (2004) m1912–m1914.
- Lai, C. S.; Tiekink, E. R. T.: Engineering polymers with variable topology – bipyridine adducts of cadmium dithiophosphates. CrystEngComm 6 (2004) 593–605.
- Li, T.; Li, Z.-H.; Du, S.-W.: *catena*-Poly-[[bis(*O*,*O*'-dimethyl dithiophosphato-κ²*S*,*S*')cadmium(II)]-μ-4,4'-bipyridine-*N*:*N*']. Acta Crystallogr. **E61** (2005) m95–m97.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of *catena*-poly[(μ₂-4,4'-bipyridyl-κN,N')-bis(O,O'-dimethyldithiophosphato-κS)zinc(II)], {C₁₄H₂₀N₂O₄P₂S₄Zn}_n. Z. Kristallogr. NCS **234** (2019) 743–745.
- Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 8 (2018) 292.