Yee Seng Tan and Edward R.T. Tiekink*

Crystal structure of *catena*-poly[(bis(O,O'-diethyl dithiophosphato- $\kappa^2 S$, S')- μ_2 -1,2-bis(3-pyridylmethylene)hydrazine- $\kappa^2 N$:N')cadmium(II)], {C₂₀H₃₀CdN₄O₄P₂S₄}_n

https://doi.org/10.1515/ncrs-2019-0655 Received September 5, 2019; accepted October 17, 2019; available online November 14, 2019

ට Open Access. © 2019 Yee Seng Tan et al., published by De Gruyter. ඟ ви License.

Abstract

 $\begin{array}{ll} C_{20}H_{30}{\rm CdN_4O_4P_2S_4}, \ {\rm triclinic}, \ P\bar{1} \ ({\rm no.}\ 2), \ a=9.0764(3) \ {\rm \mathring{A}}, \\ b=9.3969(3) \ {\rm \mathring{A}}, \ c=9.6964(3) \ {\rm \mathring{A}}, \ \alpha=86.516(3)^{\rm o}, \\ \beta=63.362(3)^{\rm o}, \ \gamma=75.250(3)^{\rm o}, \ V=713.50(4) \ {\rm \mathring{A}}^3, \ Z=1, \\ R_{\rm gt}(F)=0.0166, \ wR_{\rm ref}(F^2)=0.0462, \ T=100(2) \ {\rm K}. \end{array}$

CCDC no.: 1959871

Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Yellow prism
Size:	$0.22\times0.14\times0.11~\text{mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	10.21 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω -scans
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	15508, 2560, 0.021
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{\rm obs} > 2 \ \sigma(I_{\rm obs})$, 2560
N(param) _{refined} :	162
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3],
	WinGX and ORTEP [4]

Source of material

The $Cd[S_2P(OEt)_2]_2$ precursor was prepared in high yield from the in situ reaction of $Cd(NO_3)_2 \cdot 4H_2O$ (Acros Organic; 15.42 g, 0.05 mol), EtOH (Merck; 12.25 mL, 0.21 mol), P₂S₅ (Sigma-Aldrich; 11.11 g, 0.05 mol) and 50% w/w NaOH solution (Merck; 8.80 mL, 0.11 mol). The 1,2-bis(3-pyridylmethylene) hydrazine ligand was prepared in high yield from the 2:1 reaction (reflux) of 3-picolylamine (Aldrich; 2.03 mL, 0.02 mol) and hydrazinium hydroxide (Merck; 0.49 mL, 0.01 mol) in ethanol solution (Merck; 5 mL). The title compound was obtained by mixing a suspension of $Cd[S_2P(OEt)_2]_2$ (0.50 g, 1.04 mmol) and 1,2-bis(3-pyridylmethylene)hydrazine (0.22 g, 1.05 mmol) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 min. at 373 K. The solution was filtered and the filtrate collected in a sample vial containing acetonitrile (Merck; 1 mL). Yellow block crystals formed after one day. Yield: 0.39 g, $(54.1\%, based on Cd[S_2P(OEt)_2]_2)$. M. pt (MelTemp Melting Point Apparatus): 426-428 K. Elem. Anal. (Leco TruSpec Micro CHN Elemental Analyser): Calc.

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	X	у	Z	$U_{\rm iso}^{\star}/U_{\rm ec}$
Cd	0.500000	0.500000	1.000000	0.01167(6)
S1	0.62710(5)	0.21727(4)	0.89421(5)	0.01518(9)
S2	0.82782(5)	0.48870(4)	0.80199(5)	0.01587(9)
P1	0.84648(5)	0.27358(4)	0.78453(5)	0.01265(10)
01	0.98987(15)	0.17908(13)	0.82879(14)	0.0187(2)
02	0.92541(14)	0.21281(13)	0.61007(13)	0.0154(2)
N1	0.41685(17)	0.56317(15)	0.79881(15)	0.0140(3)
N2	0.49294(19)	0.93956(16)	0.54745(17)	0.0203(3)
C1	1.0169(2)	0.2188(2)	0.9563(2)	0.0202(4)
H1A	0.927426	0.198654	1.055805	0.024*
H1B	1.012810	0.324990	0.957880	0.024*
C2	1.1894(2)	0.1272(2)	0.9325(2)	0.0236(4)
H2A	1.216210	0.157193	1.011919	0.035*
H2B	1.275656	0.141812	0.830011	0.035*
H2C	1.188779	0.022857	0.940202	0.035*
C3	1.0940(2)	0.2290(2)	0.4983(2)	0.0199(4)
H3A	1.179689	0.184106	0.535561	0.024*
H3B	1.091571	0.334694	0.484423	0.024*
C4	1.1388(2)	0.1523(2)	0.3478(2)	0.0220(4)
H4A	1.255519	0.152879	0.273481	0.033*
H4B	1.059711	0.203682	0.306990	0.033*
H4C	1.130265	0.050186	0.365003	0.033*
C5	0.4415(2)	0.68340(18)	0.72021(19)	0.0151(3)
H5	0.500008	0.743068	0.741411	0.018'
C6	0.3846(2)	0.72530(19)	0.60771(19)	0.0174(3)
C7	0.2985(2)	0.6367(2)	0.5781(2)	0.0206(4)
H7	0.258755	0.661239	0.502101	0.025*
C8	0.2717(2)	0.5126(2)	0.6608(2)	0.0209(4)
H8	0.212395	0.451349	0.643116	0.025*
C9	0.3327(2)	0.47946(19)	0.76937(19)	0.0170(3)
H9	0.314491	0.394049	0.825640	0.020*
C10	0.4139(2)	0.8573(2)	0.5218(2)	0.0203(4)
H10A	0.373770	0.882130	0.446030	0.024*

for C₂₀H₃₀CdN₄O₄P₂S₄: C, 34.66; H, 4.36; N, 8.09%. Found: C, 34.51; H, 4.08; N, 8.31%. **IR** (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm⁻¹): 1192(w) ν (C–O); 1012(s) ν (P–O); 661(s) ν (P–S); 379(w) ν (Cd–N); 287(m) ν (Zn–S).

Experimental details

H atoms were geometrically placed (C–H = 0.95–0.99 Å) and refined as riding with $U_{iso}(H) = 1.2-1.5U_{eq}(C)$.

Discussion

The potentially bridging bidentate, ligands, npyridylaldazines (n-PyAld), i.e. $n-NC_5H_4C(H)=N N=C(H)C_5H_4N-n$, for n=3 and 4, form one-dimensional coordination polymers in their 1:1 adducts with zinc(II) and cadmium(II) dithiophosphates $[-S_2P(OR)_2]$ [5]. However, very different coordination geometries and topologies of the chains are found in these structures. Thus, for $\{Zn[S_2P(OR)_2](n-PyAld)\}_2$, a distorted tetrahedral N_2S_2 coordination geometry and a twisted chain is found when n = 3 and R = Et [6]. By contrast, when n = 3 and R = isopropyl(iPr), a linear chain with a step-ladder topology and an octahedral *trans*-N₂S₄ donor set is found [7]. In the case when n = 4, and R = Et [8] and cyclohexyl (Cy) [9], zigzag coordination polymers are found but with tetrahedral N₂S₂ and octahedral cis-N₂S₄ donor sets, respectively. A greater homogeneity in the coordination polymers formed by cadmium(II) is noted in that trans-N₂S₄ donor sets are found. Thus, for $\{Cd[S_2P(OR)_2](n-PyAld)\}_2$, when n=3 and R=Me [10], iPr [11, 12] and Cy [13], linear coordination polymers, with a stepladder topology, are found. When n = 4, and R = Et [14] and iPr [11], linear coordination polymers are found. However, it should be noted that zero-dimensional species are sometimes isolated when polymeric species might otherwise be anticipated. An example is seen in the structure of binuclear $\{Zn[S_2P(O-iPr)_2]_2\}_2$ (4-PyAld) [15]. More intriguing are monodentate (terminal) modes of coordination of the 4-PyAld ligand have been noted in some dithiocarbamate $(-S_2CNR_2)$ derivatives, namely Zn[S₂CN(Me)CH₂CH₂OH]₂(4-PyAld), with a square-pyramidal geometry based on a NS₄ donor set [16] and $Cd[S_2CN(nPr)CH_2CH_2OH]_2(4-PyAld)_2$ [*n*-propyl = nPr], with a trans-N₂S₄ donor set [17]. In continuation of systematic studies in this area, herein, the crystal and molecular structures of $\{Cd[S_2P(OEt)_2]_2(3-PyAld)\}_n$, (I), are described.

The cadmium(II) atom in (I) lies on a centre of inversion (the symmetry related dithiophosphate ligand is generated by the symmetry operation (i) 1 - x, 1 - y, 2 - z) and the 3-PyAld molecule is disposed about a centre of inversion (the other half of the 3-PvAld ligand is related by (ii) 1 - x, 2 - y, 1 - z). A view of the coordination geometry is shown in the figure (70% probability displacement ellipsoids) which highlights the trans-N₂S₄ donor set. While to a first approximation, the dithiophosphate ligands are symmetrically chelating to define a plane defined by four S atoms, there is a disparity of 0.026 Å in the Cd–S1 [2.6741(4) Å] and Cd– S2 [2.7003(4) Å] bond lengths. Nevertheless, the P1–S1, S2 [1.9862(6) and 1.9963(6) Å] differ by only 0.01 Å. Significantly, more symmetric coordination modes are noted in the R = Me [10] and iPr [12] analogues but, the situation in (I) matches that seen in the R = Cy structure [13] where the difference in the Cd—S bond lengths amounts to 0.021 Å. The Cd—N bond length is 2.3830(13) Å. The lack of systematic trends in the Zn, Cd-S, N bond lengths is well-known for these systems, even if control of polymer formation and topology was achieved [18–20]. The coordination geometry in (I) is defined by the trans-N₂S₄ donor set and is based on an octahedron with the maximum deviation from the ideal cis angle manifested in the acute S1–Cd–S2 chelate angle of 77.236(12)°.

The linear chain in (I), with a step-ladder topology, is parallel to $[0 \ 1 \ -1]$. Chains are connected into a two-dimensional array by $\pi \cdots \pi$ stacking between pyridyl rings

[inter-centroid separation for Cg(N1,C5–C9)···Cg(N1,C5–C9)ⁱⁱⁱ = 3.6794(10) Å for (iii) 1 - x, 1 - y, 1 - z] and pyridyl-C–H···O(alkoxy) [C7–H7···O2ⁱⁱⁱ: H7···O2ⁱⁱⁱ = 2.42 Å, C7···O2ⁱⁱⁱ = 3.318(2) Å with angle at H7 = 158°] interactions. Layers stack along [-2 2 1] and inter-digitate with sucessive layers but there are no directional interactions between them.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- 1. Rigaku Oxford Diffraction: CrysAlis PRO. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45 (2012) 849–854.
- Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) article no. 18 (29 pages).
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of *catena*-[(bis(*O*,*O*'-diethyl dithiophosphato-*S*,*S*')-µ₂-1,2bis(3-pyridylmethylene)hydrazine-*N*,*N*')zinc(II)], {C₂₀H₃₀N₄O₄P₂S₄Zn}_n, Z. Kristallogr. NCS **235** (2020) 297–299.
- Avila, V.; Tiekink, E. R. T.: catena-Poly[[bis(0,0'-diisopropyl dithiophosphato-κ²S,S')zinc(II)]-μ-1,2-bis(3-pyridylmethylene) hydrazine-κ²N:N']. Acta Crystallogr. E62 (2006) m3530–m3531.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of *catena*-{poly[bis(*O*,*O*'-diethyldithiophosphato-*S*)-(μ₂-1,2-bis(4pyridylmethylene)hydrazine-*N*,*N*')-zinc(II)] di-acetonitrile solvate}, {C₂₀H₃₀N₄O₄P₂S₄Zn.2C₂H₃N}_n. Z. Kristallogr. NCS 234 (2019) 895–897.
- Chen, D.; Lai, C. S.; Tiekink, E. R. T.: *catena*-Poly[[bis(*O*,*O*'dicyclohexyldithiophosphato-κ²,*S*,*S*')zinc(II)]-μ-1,2-bis(4pyridylmethylene)hydrazine-κ*N*:*N*']. Acta Crystallogr. **E61** (2005) m2052–m2054.

- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of *catena*-[(bis(*O*,*O*'-dimethyl dithiophosphato-*S*,*S*')-μ₂-1,2-bis (3-pyridylmethylene)hydrazine-*N*,*N*')cadmium(II)], {C₂₀H₃₀CdN₄O₄P₂S₄}_n. Z. Kristallogr. NCS **235** (2020) 339–341.
- 11. Lai, C. S.; Tiekink, E. R. T.: Polymeric topologies in cadmium(II) dithiophosphate adducts of the isomeric *n*-pyridinealdazines, n = 2, 3 and 4. Z. Kristallogr. C. M. **221** (2006) 288–293.
- Tan, Y. S.; Tiekink, E. R. T.: A redetermination of the crystal structure of *catena*-[(bis(*O*,*O*'-isopropyl dithiophosphato-*S*,*S*')-(μ₂-1,2-bis(3-pyridylmethylene)hydrazine-*N*,*N*')cadmium(II)], {C₂₄H₃₈CdN₄O₄P₂S₄}_n. Z. Kristallogr. NCS **235** (2020) 253–255.
- Lai, C. S.; Tiekink, E. R. T.: Delineating the principles controlling polymer formation and topology in zinc(II)- and cadmium(II)dithiophosphate adducts of diimine-type ligands. J. Molec. Struct. 796 (2006) 114–118.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of *catena*-[(bis(*O*,*O*'-diethyl dithiophosphato-*S*,*S*')-µ₂-1,2-bis (4-pyridylmethylene)hydrazine-*N*,*N*')cadmium(II)], {C₂₀H₃₀CdN₄O₄P₂S₄}_n. Z. Kristallogr. NCS **235** (2020) 335–337.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of tetrakis(0,0'-diisopropyldithiophosphato-κ²S,S')-(μ₂-1,2-bis(4-pyridylmethylene)hydrazine-κ²N:N')zinc(II), C₃₆H₆₆N₄O₈P₄S₈Zn₂. Z. Kristallogr. NCS 234 (2019) 827–829.
- Broker, G. A.; Jotani, M. M.; Tiekink, E. R. T.: Bis[*N*-2hydroxyethyl, *N*-methyldithiocarbamato-κ²*S*,*S*)'-4-{[(pyridin-4-ylmethylidene)hydrazinylidene}methyl]pyridine-κ*N*¹) zinc(II): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. **E73** (2017) 1458–1464.
- Broker, G. A.; Tiekink, E. R. T.: Bis[*N*-(2-hydroxyethyl)-*N*-propyldithiocarbamato-κ²S,S']bis-(4-{[(pyridin-4ylmethylidene)hydrazinylidene]methyl}pyridine-κ*N*¹)cadmium. Acta Crystallogr. **E67** (2011) m320–m321.
- Lai, C. S.; Liu, S.; Tiekink, E. R. T.: Steric control over polymer formation and topology in adducts of zinc dithiophosphates formed with bridging bipyridine ligands. CrystEngComm 6 (2004) 221–226.
- Lai, C. S.; Tiekink, E. R. T.: Engineering polymers with variable topology – bipyridine adducts of cadmium dithiophosphates. CrystEngComm 6 (2004) 593–605.
- Chen, D.; Lai, C. S.; Tiekink, E. R. T.: Supramolecular aggregation in diimine adducts of zinc(II) dithiophosphates: controlling the formation of monomeric, dimeric, polymeric (zig-zag and helical), and 2-D motifs. CrystEngComm 8 (2006) 51–58.