Yee Seng Tan and Edward R.T. Tiekink*

Crystal structure of catena-[(bis($0,0^{\prime}$-diethyl dithiophosphato-S, S^{\prime})- $\mu_{2^{-}}$ 1,2-bis(3-pyridylmethylene)hydrazine- N, N^{\prime})zinc(II)], $\left\{\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Zn}\right\}_{n}$

https://doi.org/10.1515/ncrs-2019-0621
Received August 27, 2019; accepted October 3, 2019; available online October 25, 2019

Abstract

$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{~S}_{4} \mathrm{Zn}$, triclinic, $P \overline{1}$ (no. 2), $a=8.01840(1) \AA$, $b=8.4326(1) \AA, \quad c=23.5086(2) \AA, \quad \alpha=80.478(1)^{\circ}$, $\beta=80.679(1)^{\circ}, \quad \gamma=76.112(1)^{\circ}, \quad V=1509.37(3) \AA^{3}, \quad Z=2$, $R_{\mathrm{gt}}(F)=0.0449, w R_{\mathrm{ref}}\left(F^{2}\right)=0.1182, T=100(2) \mathrm{K}$.

CCDC no.: 1957383

[^0]Table 1: Data collection and handling.

Crystal:	Colourless prism
Size:	$0.16 \times 0.12 \times 0.05 \mathrm{~mm}$
Wavelength:	Cu $K \alpha$ radiation $(1.54184 \AA$ Å)
$\mu:$	$4.99 \mathrm{~mm}^{-1}$
Diffractometer, scan mode:	XtaLAB Synergy, ω
$\theta_{\text {max }}$, completeness:	$67.1^{\circ},>99 \%$
$N(h k l)_{\text {measured }}, N(h k l)_{\text {unique }}, R_{\text {int }}:$	$32995,5385,0.035$
Criterion for $I_{\text {obs }}, N\left(h k l l_{\text {gt }}:\right.$	$I_{\text {obs }}>2 \sigma\left(I_{\text {obs }}\right), 5075$
$N(\text { param })_{\text {refined }}:$	320
Programs:	CrysAlis ${ }^{\text {PRO }}[1]$, SHELX [2, 3],
	WinGX/ORTEP [4]

Part of the polymeric structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

The $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]_{2}$ precursor was prepared in high yield from the in situ reaction of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Alfa Aesar; $14.87 \mathrm{~g}, \quad 0.05 \mathrm{~mol}$), EtOH (Merck; $12.25 \mathrm{~mL}, 0.21 \mathrm{~mol}$), $\mathrm{P}_{2} \mathrm{~S}_{5}$ (Sigma-Aldrich; $11.11 \mathrm{~g}, 0.05 \mathrm{~mol}$) and $50 \% \mathrm{w} / \mathrm{w}$ NaOH solution (Merck; $8.80 \mathrm{~mL}, 0.11 \mathrm{~mol}$). 1,2-Bis(3pyridylmethylene)aldazine was prepared in high yield from reaction of 3-picolylamine (Sigma-Aldrich; $2.03 \mathrm{~mL}, 0.02 \mathrm{~mol}$) and hydrazinium hydroxide (Merck; $0.49 \mathrm{~mL}, 0.01 \mathrm{~mol}$) in ratio 2:1 in ethanol solution (Merck; 5 mL) under reflux for 1 h . The title compound was obtained by mixing a suspension of $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]_{2}(0.50 \mathrm{~g}, 1.15 \mathrm{mmol})$ and 1,2-bis(3pyridylmethylene)hydrazine ($0.25 \mathrm{~g}, 1.19 \mathrm{mmol}$) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 min at 373 K . The solution was filtered and the filtrate was collected in a sample vial containing acetonitrile (Merck; 1 mL). Colourless prisms formed after one day. Yield: 0.49 g , (66.0%, based on $\left.\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]_{2}\right)$. M.pt (Stuart SMP 30 Melting point apparatus): 387.6-388.6 K. IR (Bruker Vertex 70 V equipped with Platinum ATR from 400 to $80 \mathrm{~cm}^{-1}$): 1059(w) v(CO); 1015(s) v(P-O); 651(s) v(P-S)asym; 522(w) v(P-S)sym, 287(m) v(Zn-S); 379(w) v(Zn-N).

Experimental details

The C-bound H atoms were geometrically placed (C -$\mathrm{H}=0.95-0.99 \AA$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2-$ $1.5 U_{\text {eq }}(\mathrm{C})$. The maximum and minimum residual electron

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}).

Atom	\boldsymbol{x}	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Zn	0.45517(5)	0.43245(5)	0.76591(2)	0.01869(13)
S1	0.21866(9)	$0.60295(10)$	$0.80904(3)$	0.02139(18)
S2	0.15525(12)	$0.85492(11)$	$0.90853(4)$	0.0330(2)
S3	$0.43677(12)$	$0.18276(10)$	$0.74057(4)$	0.0306(2)
S4	0.14699(14)	$0.48242(14)$	$0.67405(5)$	0.0457(3)
P1	0.31649(10)	0.68021(10)	0.87091(3)	0.02081(18)
P2	0.29908(13)	0.26753(12)	$0.67376(4)$	0.0332(2)
01	0.4922(3)	0.7231(3)	0.83743(9)	0.0231(5)
02	0.3956 (3)	0.5288(3)	0.91661(9)	0.0239(5)
03	$0.2174(4)$	0.1195(4)	0.66502(13)	0.0475(7)
04	0.4450(4)	0.2507(3)	$0.61834(11)$	0.0403(6)
N1	0.5757(3)	0.5677(3)	$0.69818(11)$	0.0197(5)
N2	0.9449(3)	0.5566(3)	$0.51762(11)$	0.0230(6)
N3	0.6471(3)	0.3375(3)	$0.81908(11)$	0.0197(5)
N4	0.5137(4)	0.0488(3)	0.97312(11)	0.0236(6)
C1	0.6088(5)	0.7746(5)	0.86863(16)	0.0350(8)
H1A	0.6611	0.6810	0.8963	0.042*
H1B	0.5437	0.8648	0.8910	0.042*
C2	0.7471(5)	0.8323(4)	0.82569(17)	0.0312(8)
H2A	0.8065	0.7446	0.8022	0.047*
H2B	0.8306	0.8604	0.8463	0.047*
H2C	0.6951	0.9299	0.8003	0.047*
C3	0.2988(5)	0.4738(5)	0.97098(14)	0.0292(7)
H3A	0.2357	0.5708	0.9903	0.035*
H3B	0.3807	0.4036	0.9970	0.035*
C4	0.1716(5)	0.3781(5)	0.96204(15)	0.0309(8)
H4A	0.0837	0.4503	0.9394	0.046*
H4B	0.1156	0.3363	0.9999	0.046*
H4C	0.2326	0.2854	0.9410	0.046*
C5	0.0770(6)	0.0743(7)	0.7055(2)	0.0529(12)
H5A	-0.0086	0.1746	0.7157	0.064*
H5B	0.1211	0.0120	0.7415	0.064*
C6	-0.0068(7)	-0.0289(7)	0.6788(2)	0.0572(13)
H6A	-0.0333	0.0259	0.6402	0.086*
H6B	-0.1142	-0.0442	0.7034	0.086*
H6C	0.0718	-0.1364	0.6752	0.086*
C7	0.3937(6)	0.2962(7)	0.56081(18)	0.0513(11)
H7A	0.3406	0.4154	0.5545	0.062*
H7B	0.3076	0.2342	0.5561	0.062*
C8	$0.5521(7)$	0.2564(8)	0.5179(2)	0.0666(15)
H8A	0.5214	0.2909	0.4783	0.100*
H8B	0.6003	0.1373	0.5232	0.100*
H8C	0.6383	0.3147	0.5240	0.100*
C9	$0.6851(4)$	$0.4912(4)$	0.65626(13)	0.0205(6)
H9	0.7067	0.3745	0.6594	0.025*
C10	0.7670(4)	0.5761(4)	0.60876(13)	0.0206(6)
C11	$0.7338(4)$	0.7471(4)	0.60405(14)	0.0257(7)
H11	0.7875	0.8089	0.5718	0.031*
C12	0.6212(5)	0.8258(4)	0.64713(15)	$0.0282(7)$
H12	0.5967	0.9425	0.6449	0.034*
C13	0.5449 (4)	0.7323 (4)	0.69354(14)	0.0237(7)
H13	0.4681	0.7867	0.7231	0.028*
C14	0.8853(4)	0.4823 (4)	0.56571(13)	0.0224(7)
H14	0.9179	0.3656	0.5736	0.027*
C15	0.6071 (4)	$0.2397(4)$	0.86746(13)	0.0203(6)
H15	0.4985	0.2090	0.8732	0.024*

Table 2 (continued)

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{U}_{\text {iso }}{ }^{*} / \boldsymbol{U}_{\text {eq }}$
C16	$0.7173(4)$	$0.1802(4)$	$0.91003(13)$	$0.0211(6)$
C17	$0.8778(4)$	$0.2221(4)$	$0.90024(15)$	$0.0257(7)$
H17	0.9567	0.1840	0.9282	0.031^{*}
C18	$0.9216(4)$	$0.3202(4)$	$0.84916(16)$	$0.0288(7)$
H18	1.0317	0.3482	0.8413	0.05^{*}
C19	$0.8039(4)$	$0.3761(4)$	$0.81013(14)$	$0.0240(7)$
H19	0.8339	0.4445	0.7755	0.029^{*}
C20	$0.6654(4)$	$0.0785(4)$	$0.96354(14)$	$0.0228(7)$
H20	0.7445	0.0345	0.9912	0.027^{*}

density peaks of 1.63 and $1.24 \mathrm{e}^{-3}$, respectively, were located 1.15 and $0.75 \AA$ from the H5a and S4 atoms, respectively, belonging to one of the two symmetry-independent diethyl dithiophosphate anions. There is some evidence of disorder in this ligand, which could not be modelled satisfactorily.

Comment

The isomeric, potentially bridging molecules, 1,2-bis(n-pyridylmethylene)hydrazine, $\quad n-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{N}-$ $\mathrm{N}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$-n, often referred to as the n-pyridylaldazines (n -PyAld), have revealed interesting monodentate modes of coordination in their adducts with zinc-triad 1,1-dithiolates [5]. For example, when the metal node is zinc complexed to dithiocarbamate ($\left.{ }^{-} \mathrm{S}_{2} \mathrm{CN}(\mathrm{R}) \mathrm{R}^{\prime}\right)$ and the ligand is 4-PyAld, monodentate coordination of 4-PyAld is observed in mononuclear $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{CN}(\mathrm{iPr}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right]_{2}$ (4-PyAld) with five-coordinate zinc(II) [6]; the non-coordinating pyridyl-nitrogen atom engages in hydroxy- $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ (pyridyl) hydrogen bonding. When 3-PyAld is employed and the 1,1-dithiolate ligand is dithiophosphate $\left[{ }^{-} \mathrm{S}_{2} \mathrm{P}(\mathrm{OR})_{2}\right]$, bidentate bridging is found in $\left\{\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{O}-\mathrm{iPr})_{2}\right]_{2}(3-\mathrm{PyAld})\right\}_{\mathrm{n}}$, (I), which is a one-dimensional coordination polymer with a step-ladder topology [7]. In the present report, the crystal and molecular structures of the ethyl analogue of the latter is described as it is well documented in the structural chemistry of the zinc-triad 1,1-dithiolates that changes in R groups can have profound implications on the ultimate structural motif adopted in the solid-state [5, 8].

The asymmetric unit of (I) comprises $\mathrm{Zn}\left[\mathrm{S}_{2} \mathrm{P}(\mathrm{OEt})_{2}\right]_{2}$ and two-half 3-PyAld molecules as each is disposed about a centre of inversion, as indicated in the figure (70% probability displacement ellipsoids; the unlabelled atoms of the N1-3-PyAld molecule are related by the symmetry operation (i) $2-x, 1-y, 1-z$ and those of the N3-3-PyAld molecule by (ii) $1-x,-y, 2-z$). The zinc(II) centre is tetrahedrally coordinated by two sulphur atoms derived from two monodentate dithiophosphate anions as well as two nitrogen atoms derived from two different 3-PyAld molecules. The
dithiophosphate ligands have different modes of coordination. The S1-dithiophosphate coordinates via the S1 atom $[\mathrm{Zn}-\mathrm{S} 1=2.2896(8) \AA$] and is orientated so the O 1 atom $[\mathrm{Zn} \cdots 01=3.286(2) \AA$], rather than the S2 atom, is directed towards the zinc atom. By contrast, the S3-dithiophosphate ligand coordinates via the S3 atom $[\mathrm{Zn}-\mathrm{S} 3=2.3243(9) \AA$ Å] with the S 4 atom $[\mathrm{Zn} \cdots \mathrm{S} 4=3.4460(10) \AA$] directed towards the zinc atom. As anticipated, the $\mathrm{P}-\mathrm{S}$ bond lengths reflect the different environments of the S1-S4 atoms in that the P1-S1 [2.0208(11) \AA] and P2-S3 [2.0021(13) Å] bond lengths, involving the coordinating sulphur atoms are longer than those not involved in coordination $[\mathrm{P} 1-\mathrm{S} 2=1.9418(11) \AA$ and $\mathrm{P} 2-\mathrm{S} 4=1.9265(14) \AA \AA]$. The $\mathrm{Zn}-\mathrm{N} 1$ [2.050(3) \AA A $]$ and $\mathrm{Zn}-\mathrm{N} 3$ [2.067(3) \AA] bond lengths are experimentally equivalent. The range of tetrahedral angles subtended by the $\mathrm{N}_{2} \mathrm{~S}_{2}$ donor set is a narrow $96.82(8)^{\circ}$, for $\mathrm{S} 3-\mathrm{Zn}-\mathrm{N} 3$, to a wide $121.49(4)^{\circ}$, for $\mathrm{S} 1-\mathrm{Zn}-\mathrm{S} 3$. Small twists are noted in the 3-PyAld bridges as seen in the $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 14-\mathrm{N} 2\left[170.5(3)^{\circ}\right]$ and $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 20-$ N4 [176.2(3) ${ }^{\circ}$] torsion angles.

As seen from the lower view of the figure, the application of symmetry gives rise to a coordination polymer. The topology of the chain is twisted which contrasts the stepladder topology noted for the $\mathrm{R}=\mathrm{i}-\mathrm{Pr}$ analogue [7]. The chain is aligned along $\left[\begin{array}{ll}1 & 1\end{array}-1\right]$. The atom-to-atom connections between chains that sustain the three-dimensional architecture are methylene-C-HN.N(aldazine) [C1$\mathrm{H} 1 \mathrm{~b} \cdots \mathrm{~N} 4^{\mathrm{iii}}: \quad \mathrm{H} 1 \mathrm{~b} \cdots \mathrm{~N} 4^{\mathrm{iii}}=2.62 \AA, \quad \mathrm{C} 1 \cdots \mathrm{~N} 4^{\mathrm{iii}}=3.520(5) \AA$ with angle at $\mathrm{H} 1 \mathrm{~b}=151^{\circ}$ for (iii) $x, 1+y, z$] and pyridyl-$\mathrm{C}-\mathrm{H} \cdots \mathrm{S}($ thiolate $) \quad\left[\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{~S} 1^{\text {iv }}: \quad \mathrm{H} 18 \cdots \mathrm{~S} 1^{\mathrm{iv}}=2.84 \AA\right.$,
$\mathrm{C} 18 \cdots \mathrm{~S} 1^{\text {iv }}=3.675(3) \AA$ with angle at $\mathrm{H} 18=147^{\circ}$ for (iv) $1+x$, $y, z]$ interactions.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

1. Rigaku Oxford Diffraction: CrysAlis ${ }^{P R O}$. Rigaku Corporation, Oxford, UK (2018).
2. Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112-122.
3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3-8.
4. Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849-854.
5. Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals 8 (2018) 18.
6. Broker, G. A.; Jotani, M. M.; Tiekink, E. R. T.: Bis[N-2hydroxyethyl, N-methyldithiocarbamato- $\left.{ }^{2} S, S\right)^{\prime}-4-\{[($ pyridin-4-ylmethylidene)hydrazinylidene\}methyl]pyridine-кN1)zinc(II): crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E73 (2017) 1458-1464.
7. Avila, V.; Tiekink, E. R. T.: catena-Poly[[bis($O, O^{\prime}-$ diisopropyl dithiophosphato- ${ }^{2} S, S^{\prime}$)zinc(II)]- $\mu-1,2$-bis(3pyridylmethylene)hydrazine $\left.-\kappa^{2} N: N^{\prime}\right]$. Acta Crystallogr. E62 (2006) m3530-m3531.
8. Tiekink, E. R. T.: Exploring the topological landscape exhibited by binary zinc-triad 1,1-dithiolates. Crystals 8 (2018) 292.

[^0]: *Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520
 Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

