Yee Seng Tan and Edward R.T. Tiekink*

A redetermination of the crystal structure of *catena*-poly[(bis(O,O'-isopropyl dithiophosphato- $\kappa^2 S, S'$)-(μ_2 -1,2-bis(3-pyridylmethylene) hydrazine- $\kappa^2 N, N'$)cadmium(II)], {C₂₄H₃₈CdN₄O₄P₂S₄}_n

https://doi.org/10.1515/ncrs-2019-0641 Received August 30, 2019; accepted October 3, 2019; available online October 17, 2019

Yee Seng Tan: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

ට Open Access. © 2019 Yee Seng Tan et al., published by De Gruyter. ඟ ви License.

Abstract

C₂₄H₃₈CdN₄O₄P₂S₄, monoclinic, P2₁/n (no. 14), a = 12.2264(1) Å, b = 10.8805(1) Å, c = 12.9590(1) Å, $\beta = 108.172(1)^{\circ}$, V = 1637.95(3) Å³, Z = 2, $R_{gt}(F) = 0.0183$, $wR_{ref}(F^2) = 0.0468$, T = 100(2) K.

CCDC no.: 1957391

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Table 1: Data collection and handling.

Crystal:	Yellow plate
Size:	$0.13 \times 0.08 \times 0.03 \text{ mm}$
Wavelength:	Cu <i>Kα</i> radiation (1.54184 Å)
μ:	8.94 mm ⁻¹
Diffractometer, scan mode:	XtaLAB Synergy, ω
θ_{\max} , completeness:	67.1°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	20310, 2925, 0.027
Criterion for I _{obs} , N(hkl) _{gt} :	$I_{ m obs}$ $>$ 2 $\sigma(I_{ m obs})$, 2812
N(param) _{refined} :	182
Programs:	CrysAlis ^{PRO} [1], SHELX [2, 3], WinGX/ORTEP [4]

Source of material

The $Cd[S_2P(OiPr)_2]_2$ precursor was prepared in high yield from the *in situ* reaction of $Cd(NO_3)_2 \cdot 4 H_2O$ (Acros Organic; 15.42 g, 0.05 mol), iPrOH (Merck; 16.05 mL, 0.21 mol), P_2S_5 (Sigma-Aldrich; 11.11 g, 0.05 mol) and 50% w/w NaOH solution (Merck; 8.80 mL, 0.11 mol). 1,2-Bis(3pyridylmethylene)hydrazine was prepared in high yield from the reaction (reflux) of 3-picolylamine (Aldrich; 2.03 mL, 0.02 mol) and hydrazinium hydroxide (Merck; 0.49 mL, 0.01 mol) in ethanol solution (Merck; 5 mL). The title compound was obtained by mixing a suspension of Cd[S₂P(OiPr)₂]₂ (0.50 g, 0.93 mmol) and 1,2-bis(3pyridylmethylene)hydrazine (0.20 g, 0.95 mmol) in dimethylformamide (Merck; 5 mL), followed by stirring for 30 min at 373 K. The solution was filtered and the filtrate transferred to a vial containing acetonitrile (Merck; 1 mL). Yellow crystals formed after one day. Yield: 0.50 g, (71.8%, based

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	X	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cd	0.500000	0.500000	0.500000	0.01180(6)
S 1	0.69732(3)	0.43408(4)	0.46778(3)	0.01209(9)
S 2	0.56960(3)	0.71056(4)	0.42854(3)	0.01499(10)
P1	0.69306(3)	0.60475(4)	0.40785(3)	0.01118(10)
01	0.67671(10)	0.60406(11)	0.28177(9)	0.0159(3)
02	0.81785(9)	0.66439(11)	0.45351(9)	0.0149(2)
N1	0.39584(11)	0.43433(14)	0.31914(10)	0.0127(3)
N2	0.05064(12)	0.46461(14)	0.01847(11)	0.0141(3)
C1	0.74818(17)	0.5275(2)	0.23550(15)	0.0238(4)
H1	0.785854	0.461264	0.288120	0.029*
C2	0.6692(2)	0.4708(2)	0.13343(18)	0.0369(5)
H2A	0.608986	0.423730	0.150917	0.055*
H2B	0.713476	0.416033	0.101442	0.055*
H2C	0.633747	0.535907	0.081476	0.055*
С3	0.8387(2)	0.6081(3)	0.2140(2)	0.0561(8)
H3A	0.801431	0.674617	0.164499	0.084*
H3B	0.886090	0.559034	0.180837	0.084*
H3C	0.887469	0.643109	0.282563	0.084*
C4	0.88713(14)	0.66523(18)	0.56840(13)	0.0194(4)
H4	0.879395	0.584297	0.602022	0.023*
C5	0.85025(17)	0.7655(2)	0.62818(15)	0.0284(5)
H5A	0.858669	0.844867	0.595719	0.043*
H5B	0.898277	0.764436	0.704478	0.043*
H5C	0.769497	0.753254	0.623740	0.043*
C6	1.01057(16)	0.6814(2)	0.56736(18)	0.0339(5)
H6A	1.031905	0.611637	0.529750	0.051*
H6B	1.062453	0.685079	0.642170	0.051*
H6C	1.016738	0.757740	0.529477	0.051*
C7	0.29587(15)	0.48664(16)	0.26350(13)	0.0137(4)
H7	0.270844	0.556636	0.293778	0.016*
C8	0.22667(13)	0.44330(16)	0.16321(12)	0.0123(3)
C9	0.26435(14)	0.34128(17)	0.11888(13)	0.0157(4)
H9	0.219390	0.309253	0.050633	0.019*
C10	0.36786(15)	0.28734(18)	0.17539(14)	0.0187(4)
H10	0.395498	0.217828	0.146720	0.022*
C11	0.43099(14)	0.33687(17)	0.27531(13)	0.0161(4)
H11	0.502267	0.299663	0.314042	0.019*
C12	0.11717(15)	0.50510(15)	0.10886(14)	0.0140(4)
H12	0.095577	0.575692	0.141063	0.017*

on Cd[S₂P(OiPr)₂]₂). **M. pt.** (Stuart SMP 30 Melting point apparatus): 453.5–454.9 K. **Elem. Anal.** [Leco TruSpec Micro CHN Elemental Analyser]: Calc. for C₂₄H₃₈CdN₄O₄P₂S₄: C, 38.47; H, 5.11; N, 7.48%. Found: C, 38.87; H, 5.47; N, 7.77%. **IR** (Bruker Vertex 70 V equipped with Platinum ATR from 400 to 80 cm⁻¹): 1178(w) v(C–O); 968(s) v(P–O); 657(s) v(P–S); 384(w) v(Cd–N); 278(m) v(Cd–S).

Experimental details

The H atoms were geometrically placed (C–H = 0.95–1.00 Å) and refined as riding with U_{iso} (H) = 1.2–1.5 U_{eq} (C).

Comment

A recent review describes the diverse structural chemistry of the zinc-triad 1,1-dithiolates with bipyridyl-type molecules [5]. Early systematic studies of the zinc(II) [6, 7] and cadmium(II) [8] dithiophosphates $[-S_2P(OR)_2]$ were motivated by evaluating the control of coordination polymer formation and, when one-dimensional coordination polymers did form, the topology of the resulting chain. This is nicely illustrated in the 1:1 adducts formed between $Cd[S_2P(OR)_2]_2$ and *trans*-1,2-bis(4-pyridyl)propane (bpp). When R = iPr, a linear one-dimensional chain was characterized in the solidstate, i.e. $\{Cd[S_2P(0-iPr)_2]_2(bpp)\}_n$, but when the steric bulk of R is increased to cyclohexyl (Cy), only binuclear species could be isolated, i.e. $\{Cd[S_2P(OCy)_2]_2(bpp)\}_2$ with bpp coordinating in a bidentate, bridging mode [8]. It was in this context the title compound, $\{Cd[S_2P(0-iPr)_2]_2(3-PyAld)\}_n$ (I) was originally characterized by crystallographic methods [9]; 3-PyAld is 3-pyridylaldazine, i.e. 3-NC₅H₄C(H)=N-N=C(H)C₅H₄N-3. While the original connectivity was determined unambiguously as a one-dimensional coordination polymer with a step-ladder topology, disorder was noted in the structure. Herein, a low temperature (100 K) redetermination of (I) is described in which the disorder is no longer apparent and, with the aid of Cu Ka radiation, a better resolution data set was achieved with the result that significantly improved standard uncertainty values are evident. The new data will enable a better comparison of geometric parameters with related structures in the literature.

The asymmetric unit of (I) comprises half a Cd[S₂P(O iPr_{2} entity as, the cadmium atom lies on a centre of inversion, and half a 3-PyAld molecule, being disposed about a centre of inversion, as indicated in the figure (70% probability displacement ellipsoids; the unlabelled atoms of "Cd[S₂P(O iPr_{2}^{2} are related by the symmetry operation (i) 1 - x, 1 - y, 1-z, and those for the 3-PyAld molecule are related by (ii) -x, 1-y, -z). The cadmium(II) atom is octahedrally coordinated within a trans-N2S4 donor set defined by two chelating dithiophosphate ligands and two nitrogen atoms derived from symmetry related pyridyl-nitrogen atoms. The Cd-S1 [2.6715(4) Å] and Cd—S2 [2.7059(4) Å] bond lengths differ by less that 0.04 Å, a result consistent with a symmetric mode of coordination of the dithiophosphato ligand. The small disparity in the P1–S1 [2.0073(6) Å] and P1–S2 [1.9820(6) Å] bond lengths also reflects this observation. Nevertheless, the longer P1-S1 bond involves the more tighly bound S1 atom. The Cd-N1 bond length is 2.4008(13) Å. The greatest distortion from the regular octahedral geometry is manifested in the acute S1-P1-S2 chelate angle of 77.18(1)°.

The lower view of the figure highlights the resultant coordination polymer after the application of translational

symmetry. The topology of the linear chain is that of a step-ladder, as noted for the $\{Zn[S_2P(O-iPr)_2]_2(3-PyAld)\}_n$ analogue [10], indeed, the structures are isostructural. A step-ladder topology was also found in $\{Cd[S_2P(OCy)_2]_2(3-PyAld)\}_n$, isolated as a chloroform solvate [11], but in the recently determined $\{Zn[S_2P(OEt)_2]_2(3-PyAld)\}_n$ derivative, a twisted topology was noted [12].

In the crystal, the chain is aligned along the [1 0 1] direction. The only directional links between chains are of the type pyridyl-C-H···S [C9-H9···S1ⁱⁱⁱ: H9···S1ⁱⁱⁱ = 2.84 Å, C9···S1ⁱⁱⁱ = 3.5329(18) Å with angle at H9 = 131° for (iii) -1/2 + x, 1/2 - y, -1/2 + z] and as these occur laterally, the result is a supramolecular layer. Layers stack without directional interactions between them.

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

References

- Rigaku Oxford Diffraction: CrysAlis^{PRO}. Rigaku Corporation, Oxford, UK (2018).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. C71 (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.

- 5. Tiekink, E. R. T.: Perplexing coordination behaviour of potentially bridging bipyridyl-type ligands in the coordination chemistry of zinc and cadmium 1,1-dithiolate compounds. Crystals **8** (2018) 18.
- Lai, C. S.; Liu, S.; Tiekink, E. R. T.: Steric control over polymer formation and topology in adducts of zinc dithiophosphates formed with bridging bipyridine ligands. CrystEngComm 6 (2004) 221–226.
- Chen, D.; Lai, C. S.; Tiekink, E. R. T.: Supramolecular aggregation in diimine adducts of zinc(II) dithiophosphates: controlling the formation of monomeric, dimeric, polymeric (zig-zag and helical), and 2-D motifs. CrystEngComm 8 (2006) 51–58.
- Lai, C. S.; Tiekink, E. R. T.: Engineering polymers with variable topology – bipyridine adducts of cadmium dithiophosphates. CrystEngComm 6 (2004) 593–605.
- Lai, C. S.; Tiekink, E. R. T.: Polymeric topologies in cadmium(II) dithiophosphate adducts of the isomeric *n*-pyridinealdazines, n = 2, 3 and 4. Z. Kristallogr. CM 221 (2006) 288–293.
- Avila, V.; Tiekink, E. R. T.: catena-Poly[[bis(0,0'diisopropyl dithiophosphato-κ² S,S')zinc(II)]-μ-1,2-bis(3pyridylmethylene)hydrazine-κ²N:N']. Acta Crystallogr. E62 (2006) m3530-m3531.
- Lai, C. S.; Tiekink, E. R. T.: Delineating the principles controlling polymer formation and topology in zinc(II)- and cadmium(II)dithiophosphate adducts of diimine-type ligands. J. Mol. Struct. **796** (2006) 114–118.
- Tan, Y. S.; Tiekink, E. R. T.: Crystal structure of catena-[(bis(0,0'-diethyl dithiophosphato-S,S')-µ₂-1,2bis(3-pyridylmethylene)hydrazine-N,N')zinc(II)], {C₂₀H₃₀N₄O₄P₂S₄Zn}_n. Z. Kristallogr. NCS **234** (2019) doi.org/10.1515/ncrs-2019-0621.