
9

Kong Mun Lo, See Mun Lee and Edward R.T. Tiekink*

Crystal structure of dichlorido-octamethyl-bis(μ_3 -oxido)-bis(μ_2 -2-(phenylamino)ethanolato- $\kappa^2O:O$) tetratin(IV), $C_{24}H_{44}Cl_2N_2O_4Sn_4$

https://doi.org/10.1515/ncrs-2019-0567 Received August 5, 2019; accepted September 22, 2019; available online October 9, 2019

Abstract

C₂₄H₄₄Cl₂N₂O₄Sn₄, orthorhombic, *Pbca* (no. 61), a=13.9593(2) Å, b=11.1227(2) Å, c=21.6656(3) Å, V=3363.91(9) Å³, Z=4, $R_{\rm gt}(F)=0.0252$, $wR_{\rm ref}(F^2)=0.0642$, T=100(2) K.

CCDC no.: 1955109

The molecular structure is shown in the figure. Table 1 contains crystallographic data and Table 2 contains the list of the atoms including atomic coordinates and displacement parameters.

Source of material

All chemicals and solvents were used as purchased without purification. The melting point of the compound was measured on a Mel-Temp II digital melting point apparatus and

Kong Mun Lo and See Mun Lee: Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Table 1: Data collection and handling.

Crystal: Colourless prism Size: $0.16\times0.12\times0.06~\text{mm}$ Wavelength: Cu $K\alpha$ radiation (1.54178 Å) $25.0 \ mm^{-1}$ XtaLAB Synergy, ω Diffractometer, scan mode: θ_{max} , completeness: 67.1°, >99% N(hkl)_{measured}, N(hkl)_{unique}, R_{int}: 21693, 3006, 0.042 Criterion for I_{obs} , $N(hkl)_{gt}$: $I_{\rm obs} > 2 \ \sigma(I_{\rm obs}), 2840$ N(param)_{refined}: CrysAlisPRO [1], SHELX [2, 3], Programs: WinGX/ORTEP [4]

was uncorrected. The IR spectrum was recorded on a Perkin-Elmer RX1 spectrophotometer in the range 4000 to 400 cm⁻¹.

The dithiocarbamate salt, $K[S_2CN(Ph)CH_2CH_2OH]$, was prepared *in situ* (methanol) from the reaction of CS_2 (Merck, 0.25 mmol) with 2-anilinoethanol (Merck, 0.25 mmol) and KOH (0.03 mL; 50% w/v); CS_2 was added dropwise into the methanolic solution (10 mL). The resulting mixture solution was kept at 273 K for 0.5 h. Dimethyltin dichloride (0.25 mmol, 0.05 g) in methanol (10 mL) was added to the prepared salt. The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated slowly until a white precipitate was formed. The precipitate was recrystallised from methanol and dimethylformamide. The title molecule was isolated as a side-product obtained from the slow evaporation of the solvent. Yield: 0.02 g (16%). **M.pt:** >573 K. **IR** (cm $^{-1}$) 467 (w) v(Sn-O), 1487 (m) v(C-N), 1018 (s) v(C-O).

Experimental details

The C-bound H atoms were geometrically placed (C— $\rm H=0.95-0.99~\mathring{A})$ and refined as riding with $U_{\rm iso}(\rm H)=1.2-1.5U_{\rm eq}(\rm C)$. The N-bound H-atom was located in a difference Fourier map but was refined with a distance restraint of N—H = $0.88\pm0.01~\mathring{A}$, and with $U_{\rm iso}(\rm H)$ set to $1.2U_{\rm eq}(\rm N)$.

Comment

Diorganotin dichloride molecules are well-known to be subject to hydrolysis [5, 6] and it was in this context the crystals of the title tetra-tin oxido-cluster $\{[(Me_2SnCl)(Me_2Sn)(OCH_2CH_2N(H)Ph)]O\}_2$, (I), was isolated.

47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia

Open Access. © 2019 Kong Mun Lo et al., published by De Gruyter.

This work is licensed under the Creative Commons Attribution 4.0 Public

^{*}Corresponding author: Edward R.T. Tiekink, Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, e-mail: edwardt@sunway.edu.my. https://orcid.org/0000-0003-1401-1520

Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2).

Atom	х	у	Z	U _{iso} */U _{eq}
Sn1	0.53720(2)	0.28294(2)	0.47533(2)	0.01347(9)
Sn2	0.46391(2)	0.01011(2)	0.42686(2)	0.01254(9)
Cl1	0.59652(6)	0.30565(8)	0.58783(4)	0.01838(18)
01	0.51453(17)	0.1109(2)	0.49898(11)	0.0165(5)
02	0.47623(17)	0.1953(2)	0.39460(12)	0.0180(5)
N1	0.5083(2)	0.4455(3)	0.34412(15)	0.0203(7)
H1N	0.480(3)	0.510(2)	0.360(2)	0.024*
C1	0.4119(2)	0.3840(3)	0.49237(18)	0.0188(7)
H1A	0.3558	0.3315	0.4893	0.028*
H1B	0.4068	0.4487	0.4618	0.028*
H1C	0.4151	0.4188	0.5339	0.028*
C2	0.6758(2)	0.3090(4)	0.43797(17)	0.0200(8)
H2A	0.6890	0.2463	0.4074	0.030*
H2B	0.7234	0.3047	0.4711	0.030*
H2C	0.6791	0.3881	0.4181	0.030*
С3	0.3131(3)	0.0038(4)	0.42892(19)	0.0243(9)
H3A	0.2906	0.0202	0.4709	0.036*
НЗВ	0.2914	-0.0762	0.4161	0.036*
H3C	0.2871	0.0645	0.4007	0.036*
C4	0.5720(3)	-0.0579(4)	0.36759(19)	0.0238(8)
H4A	0.6352	-0.0416	0.3855	0.036*
H4B	0.5673	-0.0187	0.3272	0.036*
H4C	0.5637	-0.1449	0.3626	0.036*
C5	0.4829(3)	0.2247(3)	0.33104(18)	0.0216(8)
H5A	0.4448	0.1666	0.3067	0.026*
H5B	0.5505	0.2183	0.3176	0.026*
C6	0.4466(3)	0.3514(4)	0.31875(18)	0.0232(8)
H6A	0.4410	0.3632	0.2736	0.028*
H6B	0.3818	0.3598	0.3368	0.028*
C7	0.5856(3)	0.4890(3)	0.30925(18)	0.0200(8)
C8	0.6262(3)	0.6010(4)	0.32490(18)	0.0255(8)
Н8	0.5995	0.6463	0.3579	0.031*
C9	0.7039(3)	0.6458(4)	0.2931(2)	0.0334(10)
H9	0.7300	0.7218	0.3040	0.040*
C10	0.7444(3)	0.5798(5)	0.2449(2)	0.0373(11)
H10	0.7984	0.6098	0.2231	0.045*
C11	0.7046(3)	0.4702(5)	0.2294(2)	0.0342(11)
H11	0.7320	0.4246	0.1968	0.041*
C12	0.6259(3)	0.4255(4)	0.26014(18)	0.0248(8)
H12	0.5988	0.3509	0.2478	0.030*

The difficulties associated with hydrolysis notwithstanding, recent work has highlighted the potential anti-tumour activity of related tetra-tin oxido clusters [7, 8], a well-documented attribute of organotin compounds [9]. Herein, the crystal and molecular structures of (I) are described.

The molecular structure of (I) is shown in the figure (70% displacement ellipsoids; unlabelled atoms are related by the symmetry operation (i) 1-x, -y, 1-z); the entire molecule is generated by the application of a crystallographic centre of inversion. The molecule is constructed about a

central Sn_2O_2 core, containing endocyclic Sn2 atoms. The μ_3 -O1 oxido atom of the core also binds to an exocyclic Sn1 atom. Further links between the Sn1 and Sn2 atoms are provided by a μ_2 -O2 alkoxide atom. The coordination geometry for the Sn1 atom is completed by two methyl groups and a chloride atom [Sn1-Cl1 = 2.5866(9) Å], while that of the Sn2 atom is completed by two methyl substituents. Within the core, the Sn2-O1, O1ⁱ bond lengths of 2.049(2) and 2.118(2) Å, respectively, and the $01-\text{Sn}2-01^{i}=73.76(10)^{\circ}$ and Sn2-01- $\mathrm{Sn2}^{\mathrm{i}} = 106.24(10)^{\mathrm{o}}$ bond angles indicate the core has the shape of a distorted rhombus. The Sn1-O2 [2.176(3) Å] and Sn2-02 [2.181(3) Å] bond lengths indicate the μ_2 -O(alkoxide) bridge is symmetric. Each of the penta-coordinate geometries is highly distorted. For the Sn1 atom, the donor set is defined by C2ClO2 atoms with the widest angle defined by the Cl1 and O2 atoms [Cl1-Sn1-O2=157.89(7)°] whereas for the Sn2 atom, the widest angle in the C₂O₃ geometry is defined by the O2 and O1ⁱ atoms $[O2-Sn2-O1^i = 146.31(9)^o]$. The next widest angles are subtended by the tin-bound methyl substituents [C1-Sn1-C2 = 138.66(15)° and C3-Sn2- $C4 = 135.40(16)^{\circ}$]. The value of τ is a parameter that quantifies five-coordinate geometries, equalling 0.0 for an ideal square-pyramidal coordination geometry and 1.0 for an ideal trigonal-bipyramid [10]. In (I), $\tau = 0.32$ for the Sn1 atom and $\tau = 0.18$ for the Sn2 atom, each indicative of tendancies towards a square-pyramidal coordination geometry. The sequence of three edge-shared Sn₂O₂ rhombi have the shape of a kinked ladder.

The most prominent feature of the molecular packing is the formation of amine-N—H···Cl hydrogen bonds [N1—H1n···Cl1ⁱⁱ: H1n···Cl1ⁱⁱ = 2.57(3) Å, N1···Cl1ⁱⁱ = 3.461(3) Å with angle at H1n = 177(2)° for (ii) 1-x, 1-y, 1-z]. These give rise to a linear supramolecular chain along the b-axis direction. The chains are linked into a supramolecular layer in the bc-plane by weak methylene-C—H··· π (phenyl) interactions [C5—H5···Cg(C7–C12)ⁱⁱⁱ: H5···Cg(C7–C12)ⁱⁱⁱ = 2.79 Å, C5···Cg(C7–C12)ⁱⁱⁱ = 3.766(4) Å with angle at H5 = 170° for (iii) 1-x, -1/2+y, 1/2-z]. Layers stack along the a-axis without significant directional interactions between them.

Finally, the Hirshfeld surfaces and two-dimensional fingerprint (full and decomposed) plots were calculated on the entire tetra-tin oxido-cluster using Crystal Explorer 17 [11] and standard procedures [12]. This analysis points to the significance of $H\cdots H$ contacts which contribute 76.0% of all contacts to the Hirshfeld surface. The only other two contacts registered are $C\cdots H/H\cdots C$ [12.7%] and $Cl\cdots H/H\cdots Cl$ [10.9%].

Acknowledgements: Sunway University Sdn Bhd is thanked for financial support of this work through Grant no. STR-RCTR-RCCM-001-2019.

DE GRUYTER

References

- Agilent Technologies: CrysAlis^{PRO}. Agilent Technologies, Santa Clara, CA, USA (2010).
- Sheldrick, G. M.: A short history of SHELX. Acta Crystallogr. A64 (2008) 112–122.
- 3. Sheldrick, G. M.: Crystal structure refinement with SHELXL. Acta Crystallogr. **C71** (2015) 3–8.
- Farrugia, L. J.: WinGX and ORTEP for Windows: an update. J. Appl. Crystallogr. 45 (2012) 849–854.
- Dakternieks, D.; Jurkschat, J.; van Dreumel, S.; Tiekink, E. R. T.: Molecular dynamics within diorganotin systems: solution and solid state studies of new mixed distannoxane dimers [tBu₂(Cl)SnOSn(Cl)R₂]₂. Inorg. Chem. 36 (1997) 2023–2029.
- Lo, K. M.; Lee, S. M.; Tiekink, E. R. T.: Crystal structure of octa(4-chlorobenzyl)-dichlorido-bis(μ₂-methanolato)-bis(μ₃-oxo)-tetratin(IV), C₅₈H₅₄Cl₁₀O₄Sn₄. Z. Kristallogr. NCS 235 (2019) 175–177.
- Hong, M.; Yang, Y.; Li, C.; Xu, L.; Li, D.; Li, C.: Study of the effect
 of molecular structure and alkyl groups bound with tin(IV)
 on their cytotoxicity of organotin(IV) 2-phenyl-4-selenazole
 carboxylates. RSC Adv. 5 (2015) 102885–102894.

- Casas, J. S.; Castiñeiras, A.; Couce, M. D.; Sánchez, A.; Sordo, J.; Vázquez-López, E.: New tin-oxometallates from the hydrolysis of SnEt₂²⁺ in the presence of 2,6-lutidine-α²,3-diol and different anions. Chem. Sel. 2 (2017) 1983–1991.
- Gielen, M.; Tiekink, E. R. T.: Metallotherapeutic drugs and metal-based diagnostic agents: the use of metals in medicine. John Wiley & Sons Ltd: Chichester, England (2005) 421–439.
- Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C.: Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]- copper(II) perchlorate. J. Chem. Soc., Dalton Trans (1984) 1349–1356.
- Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Spackman, P. R.; Jayatilaka, D.; Spackman, M. A.: Crystal Explorer v17. The University of Western Australia, Australia (2017).
- 12. Tan, S. L.; Jotani, M. M.; Tiekink, E. R. T.: Utilizing Hirshfeld surface calculations, non-covalent interaction (NCI) plots and the calculation of interaction energies in the analysis of molecular packing. Acta Crystallogr. **E75** (2019) 308–318.