



Received 28 November 2019 Accepted 2 December 2019

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

**Keywords:** crystal structure; diamide; hydrogen bonding; Hirshfeld surface analysis; computational chemistry.

CCDC reference: 1969282

**Supporting information**: this article has supporting information at journals.iucr.org/e



#### Sang Loon Tan and Edward R. T. Tiekink\*

Research Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. \*Correspondence e-mail: edwardt@sunway.edu.my

The molecular structure of the title bis-pyridyl substituted diamide hydrate,  $C_{14}H_{14}N_4O_2H_2O_2$ , features a central  $C_2N_2O_2$  residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methylene groups. The pyridyl rings lie to the same side of the plane, *i.e.* have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them  $[87.86(5)^{\circ}]$ . Owing to an *anti* disposition between the carbonyl-O atoms in the core, two intramolecular amide-N-H···O(carbonyl) hydrogen bonds are formed, each closing an S(5)loop. Supramolecular tapes are formed in the crystal via amide-N- $H \cdots O(\text{carbonyl})$  hydrogen bonds and ten-membered { $\cdots HNC_2O_2$ } synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water molecules via water-O-H···N(pyridyl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methylene- $C-H\cdots O(\text{water})$  and methylene- $C-H\cdots \pi(\text{pyridyl})$  interactions, give rise to a layer parallel to  $(10\overline{1})$ ; the layers stack without directional interactions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding interactions, and to the significant influence of the water molecule of crystallization upon the molecular packing. The analysis also indicates the contribution of methylene-C-H···O(carbonyl) and pyridyl-C-H...C(carbonyl) contacts to the stability of the inter-layer region. The calculated interaction energies are consistent with importance of significant electrostatic attractions in the crystal.

## 1. Chemical context

Having both amide and pyridyl functionality, bis(pyridin-nylmethyl)ethanediamide molecules of the general formula n- $NC_5H_4CH_2N(H)C(=O)C(=O)CH_2C_5H_4N-n$ , for n = 2, 3 and 4, hereafter <sup>n</sup>LH<sub>2</sub>, are attractive co-crystal coformers via conventional hydrogen bonding. In the same way, complexation to metals may also be envisaged. It is therefore not surprising that there is now a wealth of structural information for these molecules occurring in co-crystals, salts and metal complexes, as has been reviewed recently (Tiekink, 2017). Complementing hydrogen-bonding interactions, the  ${}^{n}LH_{2}$ molecules, for n = 3 (Hursthouse *et al.*, 2003; Goroff *et al.*, 2005; Jin et al., 2013) and n = 4 (Goroff et al., 2005; Wilhelm et al., 2008; Tan & Tiekink, 2019c), are well-known to form N···I halogen-bonding interactions and, indeed, some of the earliest studies were at the forefront of pioneering systematic investigations of halogen bonding. It was during the course of ongoing studies into co-crystal formation (Tan, Halcovitch et al.,



# research communications

2019; Tan & Tiekink, 2019a,b,c) and complexation to zinc(II) 1,1-dithiolates (Arman *et al.*, 2018; Tiekink, 2018; Tan, Chun *et al.*, 2019), that the title compound, <sup>3</sup>*L*H<sub>2</sub>·H<sub>2</sub>O, (I), was isolated. Herein, the crystal and molecular structures of (I) are described along with a detailed analysis of the molecular packing by means of an analysis of the calculated Hirshfeld surfaces, two-dimensional fingerprint plots and the calculation of energies of interaction.



## 2. Structural commentary

The molecular structures of the two constituents comprising the crystallographic asymmetric unit of (I) are shown in Fig. 1. The <sup>3</sup>LH<sub>2</sub> molecule lacks crystallographic symmetry and comprises a central  $C_2N_2O_2$  residue connected at either side to two 3-pyridyl residues *via* methylene links. The six atoms of the central residue are almost co-planar as seen in their r.m.s. deviation of 0.0205 Å: the maximum deviations above and below the plane are 0.0291 (9) Å for N3 and 0.0321 (11) Å for C8. The N1- and N3-pyridyl rings form dihedral angles of 59.71 (6) and 68.42 (6) $^{\circ}$ , respectively, with the central plane and lie to the same side of the plane, having a syn-periplanar relationship. The dihedral angle formed between the pyridyl rings is 87.86 (5)°, indicating an almost edge-to-face relationship. The carbonyl-O atoms have an anti disposition enabling the formation of intramolecular amide-N-H···O(carbonyl) hydrogen bonds that close S(5) loops, Table 1.

#### 3. Supramolecular features

Significant conventional hydrogen bonding is noted in the crystal of (I) with the geometric parameters characterizing these included in Table 1. The most striking feature of the supramolecular association is the formation of tapes *via* 



Figure 1

The molecular structure of the constituents of (I) showing the atomlabelling scheme and displacement ellipsoids at the 70% probability level. The water-O-H···N(pyridyl) hydrogen bond is indicated by the dashed line. amide-N-H···O(carbonyl) hydrogen bonds leading to a sequence of inter-connected ten-membered  $\{\cdots$  HNC<sub>2</sub>O $\}_2$  synthons. Two such tapes are connected by hydrogen bonds provided by the water molecule of crystallization. Thus, alternating water molecules in helical chains of hydrogenbonded water molecules, being aligned along the *b*-axis direction and propagated by  $2_1$  symmetry, connect to  ${}^3LH_2$  via water-O-H···N(pyridyl) hydrogen bonds to form the one-dimensional aggregate shown in Fig. 2(*a*). The presence of methylene-C-H···O(water) and methylene-C-H··· $\pi$ (pyridyl) contacts stabilizes a layer lying parallel to (101). The layers stack without directional interactions between them, Fig. 2(*b*).



## Figure 2

Molecular packing in the crystal of (I): (a) one-dimensional chain whereby tapes sustained by amide-N-H···O(carbonyl) hydrogen bonds and ten-membered {···HNC<sub>2</sub>O}<sub>2</sub> synthons are connected, *via* water-O-H···N(pyridyl) hydrogen bonds, by helical chains of hydrogen-bonded water molecules sustained by water-O-H···O(water) hydrogen bonds and (b) a view of the unit-cell contents in projection down the *b* axis, highlighting the stacking of layers. The amide-N-H···O(carbonyl) hydrogen bonds are shown as blue dashed lines and hydrogen bonds involving the water molecules, by orange dashed lines. The C-H···O and C-H··· $\pi$  interactions are shown as green and purple dashed lines, respectively.

| Table 1           |                |  |
|-------------------|----------------|--|
| Hydrogen-bond geo | ometry (Å, °). |  |

|                                       | •        |                         |              |                           |
|---------------------------------------|----------|-------------------------|--------------|---------------------------|
| $D - H \cdot \cdot \cdot A$           | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
| $N2-H2N\cdots O2$                     | 0.85 (2) | 2.36 (2)                | 2.7279 (18)  | 107.0 (16)                |
| N3−H3N···O1                           | 0.86(2)  | 2.299 (19)              | 2.6924 (18)  | 108.0 (15)                |
| $O1W-H1W\cdots N1$                    | 0.95 (2) | 1.86 (2)                | 2.7958 (18)  | 169 (2)                   |
| $O1W - H2W \cdot \cdot \cdot O1W^{i}$ | 0.88(2)  | 1.97 (2)                | 2.8364 (15)  | 166 (2)                   |
| $N2-H2N\cdots O1^{ii}$                | 0.85 (2) | 2.03 (2)                | 2.8227 (18)  | 155.2 (18)                |
| N3−H3N···O2 <sup>iii</sup>            | 0.86(2)  | 2.02(2)                 | 2.8022 (18)  | 151.6 (17)                |
| $C9-H9A\cdots O1W^{iv}$               | 0.99     | 2.45                    | 3.3772 (19)  | 156                       |
| $C6-H6B\cdots Cg1^{iii}$              | 0.99     | 2.74                    | 3.7043 (16)  | 166                       |
|                                       |          |                         |              |                           |

Symmetry codes: (i)  $-x + \frac{3}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$ ; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv)  $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$ .

# 4. Hirshfeld surface analysis

The calculations of the Hirshfeld surfaces and two-dimensional fingerprint plots were performed on the crystallographic asymmetric unit shown in Fig. 1, using *Crystal Explorer 17* (Turner *et al.*, 2017) and based on the procedures as described previously (Tan, Jotani *et al.*, 2019). The analysis identified a number of red spots on the  $d_{norm}$  surface of  ${}^{3}LH_{2}$  with varying degrees of intensity indicating the presence of interactions with contact distances shorter than the sum of the respective van der Waals radii (Spackman & Jayatilaka, 2009). Referring to the images of Fig. 3, the most intense red spots stem from the amide-N-H···O(carbonyl) and water-O-H···N(pyridyl) hydrogen bonds, Table 1. Some additional



Figure 3

The  $d_{\text{norm}}$  mapping of the Hirshfeld surface for  ${}^{3}L\text{H}_{2}$  in (I) within the range of -0.3259 to 1.0656 arbitrary units, showing the red spots for (a) N2-H2N···O1 (intense, connected by green dashed line), N3-H3N···O2 (intense, green dashed line) and C6-H6A···O2 (diminutive, green dashed line) interactions, (b) O1W-H1W···N1 (intense, yellow dashed line), C5-H5···N4 (moderately intense, yellow dashed line) and C7···O1 (diminutive, blue dashed line) interactions.

| Table 2                                                  |  |
|----------------------------------------------------------|--|
| Summary of short interatomic contacts (Å) in $(I)^{a}$ . |  |

| Contact                    | Distance | Symmetry operation                                    |
|----------------------------|----------|-------------------------------------------------------|
| $O2 \cdot \cdot \cdot H3N$ | 1.89     | x, 1 + y, z                                           |
| $O1 \cdot \cdot \cdot H2N$ | 1.89     | x, -1 + y, z                                          |
| $O2 \cdot \cdot \cdot H6A$ | 2.57     | 1 - x, 1 - y, 1 - z                                   |
| N4···H5                    | 2.52     | $-\frac{1}{2} + x, \frac{3}{2} - y, -\frac{1}{2} + z$ |
| C7···H12                   | 2.64     | -x, -y, 1-z                                           |
| $O1W \cdot \cdot \cdot H1$ | 2.55     | $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$   |
| C7···O1                    | 3.16     | 1 - x, -y, 1 - z                                      |
| $N1 \cdot \cdot \cdot H1W$ | 1.83     | <i>x</i> , <i>y</i> , <i>z</i>                        |

Notes: (a) The interatomic distances were calculated in Crystal Explorer 17 (Turner et al., 2017) whereby the X-H bond lengths are adjusted to their neutron values.

contacts are detected through the Hirshfeld surface analysis for  $C1-H1\cdots O1W$ ,  $C5-H5\cdots N4$ ,  $C12-H12\cdots C7$ ,  $C6-H6A\cdots O2$  and  $C7\cdots O1$  interactions with the red spots ranging from moderately to weakly intense. The data in Table 2 provide a succinct summary of interatomic contacts revealed in the above analysis; the  $O2\cdots H6A$  and  $C7\cdots H12$  contacts occur in the inter-layer region.

To verify the nature of the aforementioned interactions, the  ${}^{3}LH_{2}$  molecule in (I) was subjected to electrostatic potential mapping. The results show that almost all of the interactions identified through the  $d_{norm}$  mapping are electrostatic in nature as can be seen from the distinctive blue (electro-



#### Figure 4

The electrostatic potential mapped onto the Hirshfeld surface within the isosurface value of -0.0964 to 0.1012 atomic units for  ${}^{3}LH_{2}$  in (I), showing the charge complementarity for (a) C6-H6A···O2 (green dashed lines), (b) N2-H2N···O1 and N3-H3N···O2 (green dashed lines) and (c) C5-H5···N4 (yellow dashed line), O1W-H1W···N1 (yellow dashed line) and C7···O1 (blue dashed lines) interactions. The yellow circles in (a) and (b) highlight the dispersive nature of the methylene-C-H··· $\pi$ (pyridyl) interaction with no charge complementarity.

# research communications

positive) and red (electronegative) regions on the surface, albeit with varying intensity, Fig. 4. A notable exception is found for the methylene-C $-H\cdots\pi$ (pyridyl) interaction which is manifested in the pale regions in Fig. 4(*a*) and (*b*). This indicates no charge complementarity consistent with the interaction beings mainly dispersive in nature.

The quantification of the close contacts to the Hirshfeld surface was performed through the analysis of the twodimensional fingerprint plots for (I) as well as for the individual molecular components. As shown in Fig. 5(a), the overall fingerprint plot of (I) exhibits a bug-like profile with a pair of symmetric spikes. This is in contrast to the asymmetric profile of  ${}^{3}LH_{2}$ , with splitting of the spike in the internal region due to the formation of the O-H···N hydrogen bond, Fig. 5(e), suggesting a prominent role played by the water molecule in influencing the overall contacts in (I). The observation is very



| _ | •   |         |                  | _        |
|---|-----|---------|------------------|----------|
|   |     | X 8 1   | <br>$\mathbf{n}$ | h.       |
|   |     | * • • • |                  |          |
|   | - 2 | ~~      | <br>~            | <u> </u> |
|   |     | -       |                  |          |

(a) The overall two-dimensional fingerprint plots for (I) and for the individual  ${}^{3}LH_{2}$  and water molecules, and those delineated into (b)  $H\cdots H$ , (c)  $H\cdots O/O\cdots H$ , (d)  $H\cdots C/C\cdots H$  and (e)  $H\cdots N/N\cdots H$  contacts. The percentage contributions to the surfaces are indicated therein.

| Table 3                         |                 |              |          |  |
|---------------------------------|-----------------|--------------|----------|--|
| Summary of interaction energies | $(kJ mol^{-1})$ | ) calculated | for (I). |  |

| Contact                               | $E_{\rm ele}$ | $E_{\rm pol}$ | $E_{\rm dis}$ | $E_{\rm rep}$ | $E_{\rm tot}$ |
|---------------------------------------|---------------|---------------|---------------|---------------|---------------|
| $N2-H2N\cdotsO1^{i}+$                 |               |               |               |               |               |
| $N3-H3N\cdots O2^{i}$                 | -68.5         | -15.0         | -49.2         | 86.4          | -73.0         |
| $C12-H12\cdots C7^{ii}$               | -6.7          | -2.0          | -46.1         | 26.0          | -32.7         |
| $C6-H6A\cdots O2^{iii}$               | -12.9         | -2.9          | -28.2         | 13.5          | -32.0         |
| $O1W - H1W \cdot \cdot \cdot N1^{iv}$ | -51.9         | -11.2         | -6.5          | 65.1          | -28.6         |
| $O1W - H2W \cdots O1W^{v}$            | -36.9         | -7.1          | -3.5          | 34.3          | -26.2         |
| $C7 \cdots O1^{vi}$                   | -2.3          | -3.0          | -31.4         | 18.4          | -20.7         |
| $C5-H5\cdots N4^{vii}$                | -9.4          | -2.0          | -8.1          | 8.7           | -13.0         |
| $C1-H1\cdots O1W^{viii}$              | -8.1          | -1.3          | -3.9          | 3.9           | -10.5         |

Symmetry operations: (i) x, 1 + y, z; (ii) -x, -y, 1 - z; (iii) 1 - x, 1 - y, 1 - z; (iv) x, y, z; (v)  $\frac{3}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z;$  (vi) 1 - x, - y, 1 - z; (vii)  $\frac{1}{2} + x, \frac{3}{2} - y, \frac{1}{2} + z;$  (viii)  $\frac{3}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z.$ 

different to that of the benzene solvate of  ${}^{4}LH_{2}$  in which the overall surface contacts for  ${}^{4}LH_{2}$  are not very much influenced by the benzene molecule as demonstrated by the similar profiles for the solvate and individual  ${}^{4}LH_{2}$  molecule (Tan, Halcovitch *et al.*, 2019). The decomposition of the overall profile of (I) shows that the most significant contacts are primarily H···H contacts (43.5%), followed by O···H/H···O (21.1%), C···H/H···C (19.6%) and N···H/H···N (9.8%) contacts, with all of these interactions having  $d_{i} + d_{e}$  distances less than the respective sums of van der Waals radii (vdW), *i.e.* H···H ~2.26 Å [ $\Sigma$ (vdW) = 2.40 Å], O···H/H···O ~1.88 Å [ $\Sigma$ (vdW) = 2.72 Å], C···H/H···C ~2.62 Å [ $\Sigma$ (vdW) = 2.90 Å] and N···H/H···N ~2.50 Å [ $\Sigma$ (vdW) = 2.75 Å].

As for the individual  ${}^{3}LH_{2}$  molecule, the dominance of these contacts follows the order  $H \cdots H$  (41.1%;  $d_{i} + d_{e} 2.33$  Å),  $C \cdots H/H \cdots C$  (21.2%;  $d_{i} + d_{e} 2.60$  Å),  $O \cdots H/H \cdots O$  (17.9%;  $d_{i} + d_{e} 1.88$  Å) and  $N \cdots H/H \cdots N$  (13.5%;  $d_{i} + d_{e} 1.80$  Å). While the aforementioned interactions are almost evenly distributed between the internal and external contacts for (I), some contacts for  ${}^{3}LH_{2}$  are found to either to be inclined towards the internal or external contact region compared with (I), such as that displayed by (internal)- $O \cdots H$ -(external) (8.4%) versus (internal)- $H \cdots O$ -(external) (9.5%) and (internal)- $N \cdots H$ -(external) (8.8%) versus (internal)- $H \cdots N$ -(external) (4.6%), respectively, Fig. 5(c)–(e).

The hydrate molecule exhibits a completely different fingerprint profile, which is dominated by three major contacts, namely  $H \cdot \cdot \cdot H$  (46.9%;  $d_i + d_e 2.26$  Å),  $O \cdot \cdot \cdot H/H \cdot \cdot O$  (39.4%;  $d_i + d_e 1.88$  Å) and  $H \cdot \cdot N$  (13.7%;  $d_i + d_e 1.80$  Å). In particular, the second most dominant contacts are found to be heavily inclined toward (internal)- $O \cdot \cdot H$ -(external) (30.5%) as compared to (internal)- $H \cdot \cdot O$ -(external) (8.9%), presumably due to relatively large contact surface area.

# 5. Computational chemistry

All associations between molecules in (I), as described in *Hirshfeld surface analysis*, were subjected to the calculation of the interaction energy using *Crystal Explorer 17* (Turner *et al.*, 2017) based on the method described previously (Tan, Jotani *et al.*, 2019) to evaluate the strength of each interaction, Table 3. Among those close contacts, the  $({}^{3}LH_{2})_{2}$  dimer



Figure 6

Perspective views of the energy framework of (I), showing the (a) electrostatic force, (b) dispersion force and (c) total energy diagram. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 100 with a cut-off value of 8 kJ mol<sup>-1</sup> within  $2 \times 1 \times 2$  unit cells.

connected by a ten-membered  $\{\cdots HNC_2O\}_2$  synthon has the greatest  $E_{int}$  energy of  $-73.0 \text{ kJ mol}^{-1}$  which is comparable in energy to the classical eight-membered  $\{\cdots HOCO\}_2$  synthon (Tan & Tiekink, 2019a). Perhaps unexpectedly, the C12-H12···C7 contact which also sustains a pair of  ${}^{3}LH_{2}$  molecules constitutes the second strongest interaction with  $E_{int}$  =  $-32.7 \text{ kJ mol}^{-1}$ , and this is followed by the C6-H6A···O2 (-32.0 kJ mol<sup>-1</sup>), O1W-H1W···N1 (-28.6 kJ mol<sup>-1</sup>),  $O1W - H2W \cdot \cdot \cdot O1W$  $(-26.2 \text{ kJ mol}^{-1}),$  $C7 \cdot \cdot \cdot O1$  $(-20.7 \text{ kJ mol}^{-1})$ , C5-H5···N4  $(-13.0 \text{ kJ mol}^{-1})$  and C1-H1...O1W  $(-10.5 \text{ kJ mol}^{-1})$  interactions. As expected, the N2-H2N···O1, N3-H3N···O2, O1W-H1W···N1 and O1W-H2W···O1W interactions are associated with distinct electropositive and electronegative sites and therefore, are mainly governed by electrostatic forces, while the rest of the close contacts are dispersive in nature. The relatively stable nature of the C12-H12···C7 and C6-H6A···O2 interactions as compared to the O1W-H1W...N1 and O1W- $H2W \cdots O1W$  interactions could be due to the presence of low repulsion energies in the former as compared to the latter.

The crystal of (I) is mainly sustained by electrostatic forces owing to the strong N2-H2 $N \cdot \cdot O1/N3$ -H3 $N \cdot \cdot O2$ , O1W-H1 $W \cdot \cdot N1$  and O1W-H2 $W \cdot \cdot O1W$  hydrogen bonding leading to a barricade-like electrostatic energy framework parallel to (101), as shown in Fig. 6(*a*). This is further stabilized by the dispersion forces arising from other supporting interactions which result in another barricade-like dispersion energy framework parallel to (100), Fig. 6(*b*). The overall energy framework for (I) is shown in Fig. 6(*c*).

 Table 4

 A comparison of the distribution of contacts (%) to the calculated

 Hirshfeld surfaces for (I) and for Forms I and II (Jotani *et al.*, 2016).

| Contact                                           | (I)  | Form I | Form IIa | Form IIb |
|---------------------------------------------------|------|--------|----------|----------|
| H···H                                             | 41.1 | 44.1   | 35.8     | 36.9     |
| $C{\cdot}{\cdot}{\cdot}H/H{\cdot}{\cdot}{\cdot}C$ | 21.2 | 16.7   | 31.4     | 22.4     |
| $O{\cdots} \cdot H/H{\cdots} O$                   | 17.9 | 15.7   | 14.2     | 19.6     |
| $N \cdots H/H \cdots N$                           | 13.5 | 16.7   | 18.0     | 19.5     |
| $C \cdot \cdot \cdot O / O \cdot \cdot \cdot C$   | 2.3  | 2.1    | 0.1      | 0.1      |
| Other                                             | 3.9  | 4.7    | 0.5      | 1.5      |

A comparison of the distribution of contacts on the Hirshfeld surfaces between the  ${}^{3}LH_{2}$  molecule in (I) and in its two polymorphic forms, *i.e.* Form I and Form II (Jotani *et al.*, 2016), with latter having two independent molecules, was performed. This analysis returned the data shown in Table 4 and indicates that  ${}^{3}LH_{2}$  in (I) is relatively closer to Form I as compared to the independent molecules comprising Form II.

This conclusion is consistent with the analysis of the packing similarity in which a comparison of (I) and Form I exhibits an r.m.s. deviation of 0.895 Å while a comparison with Form II exhibits an r.m.s. deviation of 1.581 Å, despite only one out of 20 molecules displaying some similarity with the reference  ${}^{3}LH_{2}$  molecule in (I), Fig. 7. The packing analysis was performed using *Mercury* (Macrae *et al.*, 2006), with the analysis criteria being set that only molecules within the 20%



Figure 7

A comparison of the molecular packing of  ${}^{3}LH_{2}$ : (*a*) (I) (red) and Form I (green) and (*b*) (I) (red) and Form II (blue), showing the differences in terms of molecular connectivity of  ${}^{3}LH_{2}$  with r.m.s. deviations of 0.895 and 1.581 Å, respectively.

#### Table 5

Geometric data, *i.e.* central C–C bond lengths (Å) and dihedral angles (°), for  ${}^{3}LH_{2}$  in its polymorphs, solvates and (neutral) co-crystals; see Scheme 2 for the chemical diagrams of (II) and (III).

| Compound                                                                                            | Symmetry       | Conformation | C-C         | C <sub>2</sub> N <sub>2</sub> O <sub>2</sub> /(3-py) | (3-py)/(3-py) | REFCODE  | Reference                  |
|-----------------------------------------------------------------------------------------------------|----------------|--------------|-------------|------------------------------------------------------|---------------|----------|----------------------------|
| Polymorphs                                                                                          |                |              |             |                                                      |               |          |                            |
| Form I                                                                                              | _              | U            | 1.544 (4)   | 74.98 (10), 84.61 (9)                                | 88.40 (7)     | OWOHAL   | Jotani et al. (2016)       |
| Form II <sup>a</sup>                                                                                | $\overline{1}$ | S            | 1.5383 (16) | 77.29 (4)                                            | 0             | OWOHAL01 | Jotani et al. (2016)       |
|                                                                                                     | ī              | S            | 1.5460 (16) | 75.93 (3)                                            | 0             |          |                            |
| Solvate                                                                                             |                |              |             |                                                      |               |          |                            |
| (I)                                                                                                 | _              | U            | 1.541 (2)   | 59.71 (6), 68.42 (6)                                 | 87.86 (5)     | -        | This work                  |
| Co-crystals of ${}^{3}LH_{2}$ with                                                                  |                |              |             |                                                      |               |          |                            |
| $HO_2CCH_2N(H)C(=O)N(H)CH_2CO_2H$                                                                   | $\overline{1}$ | S            | 1.515 (3)   | 81.41 (7)                                            | 0             | CAJQEK   | Nguyen et al. (2001)       |
| HO <sub>2</sub> CCH <sub>2</sub> N(H)C(=O)C(=O)N(H)CH <sub>2</sub> CO <sub>2</sub> H                | 1              | S            | 1.532 (19)  | 64.2 (3)                                             | 0             | CAJQAG   | Nguyen et al. (2001)       |
| $2-NH_2C_6H_4CO_2H$                                                                                 | 1              | S            | 1.543 (2)   | 74.64 (4), 74.64 (4)                                 | 0             | DIDZAT   | Arman <i>et al.</i> (2012) |
| (II)                                                                                                | 1              | S            | 1.533 (3)   | 79.50 (6)                                            | 0             | EMACIG   | Suzuki et al. (2016)       |
| $C_6F_4I_2$                                                                                         | 1              | S            | 1.544 (4)   | 70.72 (9)                                            | 0             | IPOSIP   | Hursthouse et al. (2003)   |
| 2-HO <sub>2</sub> CC <sub>6</sub> H <sub>4</sub> SSC <sub>6</sub> H <sub>4</sub> CO <sub>2</sub> -2 | _              | U            | 1.543 (3)   | 61.22 (5), 69.43 (5)                                 | 72.12 (8)     | KUZSOO   | Arman et al. (2010)        |
| $4-NO_2C_6H_4CO_2H$                                                                                 | 1              | S            | 1.530 (2)   | 78.20 (4)                                            | 0             | PAGFIP   | Syed et al. (2016)         |
| (III)                                                                                               | $\overline{1}$ | S            | 1.550 (17)  | 80.5 (4)                                             | 0             | REWVUM   | Jin et al. (2013)          |
| I-C=C-C=C-I                                                                                         | $\overline{1}$ | S            | 1.542 (10)  | 76.6 (2)                                             | 0             | WANNOP   | Goroff et al. (2005)       |
| I-C=C-C=C-C=C-I                                                                                     | $\overline{1}$ | S            | 1.548 (11)  | 84.7 (2)                                             | 0             | WANPIL   | Goroff et al. (2005)       |
| Br-C=C-C=C-Br                                                                                       | 1              | S            | 1.530 (9)   | 84.79 (18)                                           | 0             | WUQQUW   | Jin et al. (2015)          |

tolerance for both distances and angles were included in the calculation while molecules with a variation >20% were discarded, and that molecular inversions were allowed during calculation. It is therefore also apparent through this analysis that the water molecules in (I) play a crucial role in influencing the packing of  ${}^{3}LH_{2}$  in (I).

# 6. Database survey

The  ${}^{3}LH_{2}$  molecule has been characterized in two polymorphs (Jotani et al., 2016) and in a number of (neutral) co-crystals. A characteristic of these structures is a long central C-C bond and conformational flexibility in terms of the relative disposition of the 3-pyridyl substituents with respect to the central  $C_2N_2O_2$  chromophore (Tiekink, 2017). Indeed, the relatively long length of the central C–C bonds often attracts a level C alert in PLATON (Spek, 2009). Of the data included in Table 5 [for the chemical diagrams of (II) and (III), see Scheme 2], the shorter of the C-C bonds is 1.515 (3) Å, found in the cocrystal of <sup>3</sup>LH<sub>2</sub> with HO<sub>2</sub>CCH<sub>2</sub>N(H)C(=O)N(H)CH<sub>2</sub>CO<sub>2</sub>H (Nguyen et al., 2001) and the longest bond of 1.550 (17) Å is found in the co-crystal of  ${}^{3}LH_{2}$  with (III) (Jin *et al.*, 2013). In terms of conformational flexibility, the two polymorphs of  ${}^{3}LH_{2}$  highlight this characteristic of these molecules (Jotani et al., 2016). In Form I, the pyridyl rings lie to the same side of the central  $C_2N_2O_2$  and therefore, have a syn-periplanar relationship, or, more simply, a U-shape. In Form II, comprising two independent molecules, each is disposed about a centre of inversion so the relationship is anti-periplanar, or S-shaped. DFT calculations revealed that the difference in energy between the two conformations is less than 1 kcal<sup>-1</sup> (Jotani *et al.*, 2016). Despite this result, most of the  ${}^{3}LH_{2}$ molecules are centrosymmetric, S-shaped. For the U-shaped molecules, the dihedral angles between the central plane and pyridyl rings range from 59.71 (6) to 84.61 (9)°. The comparable range for the S-shaped molecules, for which both dihedral angles are identical from symmetry, is 64.2 (3) to 84.79 (18)°.



# 7. Synthesis and crystallization

The precursor, *N*,*N*'-bis(pyridin-3-ylmethyl)oxalamide, was prepared according to the literature (Schauer *et al.*, 1997). Crystallization of the precursor in a DMF (1 ml) and ethanol (1 ml) mixture resulted in the isolation of the title hydrate, (I); m.p.: 409.4–410.7 K. IR (cm<sup>-1</sup>): 3578  $\nu$ (O–H), 3321  $\nu$ (N–H), 3141–2804  $\nu$ (C–H), 1687–1649  $\nu$ (C=O), 1524–1482  $\nu$ (C=C), 1426  $\nu$ (C–N), 710  $\nu$ (C=C).

# 8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6. The carbon-bound H atoms were placed in calculated positions (C–H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with  $U_{iso}$ (H) set to 1.2–1.5 $U_{eq}$ (C). The oxygen- and nitrogenbound H atoms were located in a difference-Fourier map and refined with O–H = 0.84±0.01 Å and N–H = 0.88±0.01 Å, respectively, and with  $U_{iso}$ (H) set to 1.5 $U_{eq}$ (O) or 1.2 $U_{eq}$ (N). Owing to poor agreement, one reflection, *i.e.* (551), was omitted from the final cycles of refinement.

## **Funding information**

Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (grant No. STR-RCTR-RCCM-001-2019).

# References

- Arman, H. D., Miller, T., Poplaukhin, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2590–o2591.
- Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mater. 227, 825–830.
- Arman, H. D., Poplaukhin, P. & Tiekink, E. R. T. (2018). Z. Kristallogr. New Cryst. Struct. 233, 159–161.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Goroff, N. S., Curtis, S. M., Webb, J. A., Fowler, F. W. & Lauher, J. W. (2005). Org. Lett. 7, 1891–1893.
- Hursthouse, M. B., Gelbrich, T. & Plater, M. J. (2003). Private communication (refcode: IPOSIP). CCDC, Cambridge, England.
- Jin, H., Plonka, A. M., Parise, J. B. & Goroff, N. S. (2013). *CrystEngComm*, **15**, 3106–3110.
- Jin, H., Young, C. N., Halada, G. P., Phillips, B. L. & Goroff, N. S. (2015). Angew. Chem. Int. Ed. 54, 14690–14695.
- Jotani, M. M., Zukerman-Schpector, J., Madureira, L. S., Poplaukhin, P., Arman, H. D., Miller, T. & Tiekink, E. R. T. (2016). Z. Kristallogr. Cryst. Mater. 231, 415–425.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). *J. Appl. Cryst.* **39**, 453–457.
- Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. **123**, 11057–11064.
- Rigaku OD (2018). CrysAlis PRO. Oxford Diffraction, Yarnton, England.
- Schauer, C. L., Matwey, E., Fowler, F. W. & Lauher, J. W. (1997). J. Am. Chem. Soc. 119, 10245–10246.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
   Suzuki, M., Kotyk, J. F. K., Khan, S. I. & Rubin, Y. (2016). J. Am. Chem. Soc. 138, 5939–5956.
- Syed, S., Halim, S. N. A., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 76–82.

| Table 6     |            |
|-------------|------------|
| Experimenta | al details |

| Crystal data                                                                |                                                   |
|-----------------------------------------------------------------------------|---------------------------------------------------|
| Chemical formula                                                            | $C_{14}H_{14}N_4O_2{\cdot}H_2O$                   |
| M <sub>r</sub>                                                              | 288.31                                            |
| Crystal system, space group                                                 | Monoclinic, $P2_1/n$                              |
| Temperature (K)                                                             | 100                                               |
| a, b, c (Å)                                                                 | 12.4784 (4), 5.0247 (1), 22.2410 (6)              |
| β (°)                                                                       | 90.170 (3)                                        |
| $V(Å^3)$                                                                    | 1394.51 (6)                                       |
| Z                                                                           | 4                                                 |
| Radiation type                                                              | Cu Ka                                             |
| $\mu (\mathrm{mm}^{-1})$                                                    | 0.82                                              |
| Crystal size (mm)                                                           | $0.09 \times 0.07 \times 0.03$                    |
| Data collection                                                             |                                                   |
| Diffractometer                                                              | XtaLAB Synergy Dualflex AtlasS2                   |
| Absorption correction                                                       | Gaussian ( <i>CrysAlis PRO</i> ; Rigaku OD, 2018) |
| $T_{\min}, T_{\max}$                                                        | 0.921, 1.000                                      |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections    | 16961, 2871, 2441                                 |
| R <sub>int</sub>                                                            | 0.053                                             |
| $(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$                          | 0.631                                             |
| Refinement                                                                  |                                                   |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                         | 0.043, 0.116, 1.04                                |
| No. of reflections                                                          | 2871                                              |
| No. of parameters                                                           | 202                                               |
| H-atom treatment                                                            | H atoms treated by a mixture of                   |
|                                                                             | independent and constrained refinement            |
| $\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$ | 0.30, -0.24                                       |
|                                                                             |                                                   |

Computer programs: *CrysAlis PRO* (Rigaku OD, 2018), *SHELXS* (Sheldrick, 2015*a*), *SHELXL2017* (Sheldrick, 2015*b*), *ORTEP-3 for Windows* (Farrugia, 2012), *DIAMOND* (Brandenburg, 2006) and *publCIF* (Westrip, 2010).

- Tan, S. L., Halcovitch, N. R. & Tiekink, E. R. T. (2019). *Acta Cryst.* E**75**, 1133–1139.
- Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.
- Tan, S. L. & Tiekink, E. R. T. (2019a). Acta Cryst. E75, 1-7.
- Tan, S. L. & Tiekink, E. R. T. (2019b). Z. Kristallogr. New Cryst. Struct. 234, 1113–1116.
- Tan, S. L. & Tiekink, E. R. T. (2019c). Z. Kristallogr. New Cryst. Struct. 234, 1117–1119.
- Tan, Y. S., Chun, H. Z., Jotani, M. M. & Tiekink, E. R. T. (2019). Z. Kristallogr. Cryst. Mater. 234, 165–175.
- Tiekink, E. R. T. (2017). Multi-Component Crystals: Synthesis, Concepts, Function, edited by E. R. T. Tiekink & J. Schpector-Zukerman, pp. 289–319. Singapore: De Gruyter.
- Tiekink, E. R. T. (2018). Crystals, 8, article No. 18 (29 pages).
- Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *Crystal Explorer 17*. The University of Western Australia.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wilhelm, C., Boyd, S. A., Chawda, S., Fowler, F. W., Goroff, N. S., Halada, G. P., Grey, C. P., Lauher, J. W., Luo, L., Martin, C. D., Parise, J. B., Tarabrella, C. & Webb, J. A. (2008). *J. Am. Chem. Soc.* 130, 4415–4420.

# supporting information

Acta Cryst. (2020). E76, 25-31 [https://doi.org/10.1107/S2056989019016153]

*N*,*N*'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate: crystal structure, Hirshfeld surface analysis and computational study

# Sang Loon Tan and Edward R. T. Tiekink

**Computing details** 

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: *SHELXS* (Sheldrick, 2015*a*); program(s) used to refine structure: *SHELXL2017* (Sheldrick, 2015*b*); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

N,N'-Bis(pyridin-3-ylmethyl)ethanediamide monohydrate

Crystal data  $C_{14}H_{14}N_4O_2 \cdot H_2O$ F(000) = 608 $M_r = 288.31$  $D_{\rm x} = 1.373 {\rm Mg} {\rm m}^{-3}$ Monoclinic,  $P2_1/n$ Cu *K* $\alpha$  radiation,  $\lambda = 1.54184$  Å a = 12.4784 (4) Å Cell parameters from 5162 reflections b = 5.0247 (1) Å $\theta = 4.0 - 75.9^{\circ}$ c = 22.2410 (6) Å  $\mu = 0.82 \text{ mm}^{-1}$ T = 100 K $\beta = 90.170 (3)^{\circ}$ V = 1394.51 (6) Å<sup>3</sup> Prism, colourless  $0.09 \times 0.07 \times 0.03 \text{ mm}$ Z = 4Data collection XtaLAB Synergy Dualflex AtlasS2 2871 independent reflections diffractometer 2441 reflections with  $I > 2\sigma(I)$ Detector resolution: 5.2558 pixels mm<sup>-1</sup>  $R_{\rm int} = 0.053$  $\theta_{\rm max} = 76.7^{\circ}, \ \theta_{\rm min} = 4.0^{\circ}$  $\omega$  scans Absorption correction: gaussian  $h = -14 \rightarrow 15$ (Crysalis PRO; Rigaku OD, 2018)  $k = -6 \rightarrow 6$  $T_{\min} = 0.921, T_{\max} = 1.000$  $l = -27 \rightarrow 28$ 16961 measured reflections Refinement Refinement on  $F^2$ Secondary atom site location: difference Fourier Least-squares matrix: full map  $R[F^2 > 2\sigma(F^2)] = 0.043$ Hydrogen site location: mixed  $wR(F^2) = 0.116$ H atoms treated by a mixture of independent S = 1.04and constrained refinement 2871 reflections  $w = 1/[\sigma^2(F_o^2) + (0.0553P)^2 + 0.7659P]$ where  $P = (F_0^2 + 2F_c^2)/3$ 202 parameters  $(\Delta/\sigma)_{\rm max} < 0.001$ 0 restraints  $\Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3}$ Primary atom site location: structure-invariant direct methods  $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ 

# Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|     | x             | у           | Ζ            | $U_{ m iso}*/U_{ m eq}$ |
|-----|---------------|-------------|--------------|-------------------------|
| 01  | 0.39488 (9)   | -0.1106 (2) | 0.53440 (5)  | 0.0211 (3)              |
| O2  | 0.28502 (10)  | 0.4170 (2)  | 0.45056 (5)  | 0.0245 (3)              |
| N1  | 0.51280 (11)  | 0.8092 (3)  | 0.72982 (6)  | 0.0230 (3)              |
| N2  | 0.40224 (11)  | 0.3337 (3)  | 0.55256 (6)  | 0.0178 (3)              |
| H2N | 0.3890 (16)   | 0.486 (4)   | 0.5378 (9)   | 0.021*                  |
| N3  | 0.26914 (11)  | -0.0297 (3) | 0.43753 (6)  | 0.0176 (3)              |
| H3N | 0.2848 (16)   | -0.182 (4)  | 0.4529 (8)   | 0.021*                  |
| N4  | -0.08573 (13) | 0.1419 (4)  | 0.36223 (9)  | 0.0434 (5)              |
| C1  | 0.52700 (13)  | 0.6284 (3)  | 0.68624 (7)  | 0.0205 (3)              |
| H1  | 0.598157      | 0.573079    | 0.677719     | 0.025*                  |
| C2  | 0.44417 (12)  | 0.5164 (3)  | 0.65271 (7)  | 0.0176 (3)              |
| C3  | 0.34062 (13)  | 0.6008 (3)  | 0.66496 (7)  | 0.0202 (3)              |
| H3  | 0.281622      | 0.530908    | 0.642955     | 0.024*                  |
| C4  | 0.32438 (13)  | 0.7884 (3)  | 0.70976 (7)  | 0.0224 (3)              |
| H4  | 0.254145      | 0.849326    | 0.718705     | 0.027*                  |
| C5  | 0.41200 (13)  | 0.8860 (3)  | 0.74135 (7)  | 0.0227 (3)              |
| Н5  | 0.400111      | 1.012319    | 0.772402     | 0.027*                  |
| C6  | 0.47006 (13)  | 0.3104 (3)  | 0.60569 (7)  | 0.0202 (3)              |
| H6A | 0.545984      | 0.329839    | 0.593668     | 0.024*                  |
| H6B | 0.461045      | 0.130847    | 0.623270     | 0.024*                  |
| C7  | 0.37291 (12)  | 0.1213 (3)  | 0.52134 (7)  | 0.0163 (3)              |
| C8  | 0.30359 (12)  | 0.1859 (3)  | 0.46578 (7)  | 0.0170 (3)              |
| C9  | 0.20743 (13)  | -0.0186 (3) | 0.38182 (7)  | 0.0196 (3)              |
| H9A | 0.228818      | -0.169871   | 0.355973     | 0.024*                  |
| H9B | 0.225732      | 0.147561    | 0.360270     | 0.024*                  |
| C10 | 0.08770 (13)  | -0.0283 (3) | 0.39089 (7)  | 0.0199 (3)              |
| C11 | 0.02169 (15)  | 0.1432 (4)  | 0.35990 (9)  | 0.0370 (5)              |
| H11 | 0.054734      | 0.272529    | 0.334924     | 0.044*                  |
| C12 | -0.13026 (14) | -0.0379 (4) | 0.39790 (8)  | 0.0304 (4)              |
| H12 | -0.206194     | -0.042293   | 0.400717     | 0.036*                  |
| C13 | -0.07261 (17) | -0.2165 (5) | 0.43067 (11) | 0.0486 (6)              |
| H13 | -0.107827     | -0.342052   | 0.455703     | 0.058*                  |
| C14 | 0.03821 (16)  | -0.2127 (5) | 0.42700 (10) | 0.0450 (6)              |
| H14 | 0.079722      | -0.336857   | 0.449325     | 0.054*                  |
| O1W | 0.71328 (9)   | 0.9787 (2)  | 0.77119 (5)  | 0.0217 (3)              |
| H1W | 0.642 (2)     | 0.942 (4)   | 0.7593 (9)   | 0.033*                  |
| H2W | 0.7244 (18)   | 1.141 (5)   | 0.7574 (10)  | 0.033*                  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

# supporting information

| $U^{11}$    | $U^{22}$                                                                                                                                                                                                                                                                                                         | $U^{33}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $U^{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $U^{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $U^{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0241 (6)  | 0.0137 (5)                                                                                                                                                                                                                                                                                                       | 0.0254 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0006 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0029 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0011 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0323 (7)  | 0.0139 (5)                                                                                                                                                                                                                                                                                                       | 0.0272 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0018 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0065 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0007 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0189 (7)  | 0.0242 (7)                                                                                                                                                                                                                                                                                                       | 0.0261 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0010 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0026 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0033 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0207 (7)  | 0.0122 (6)                                                                                                                                                                                                                                                                                                       | 0.0206 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0009 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0012 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0013 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0192 (7)  | 0.0131 (6)                                                                                                                                                                                                                                                                                                       | 0.0205 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0005 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0011 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0001(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0187 (8)  | 0.0514 (11)                                                                                                                                                                                                                                                                                                      | 0.0600 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0009 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0268 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0160 (7)  | 0.0205 (8)                                                                                                                                                                                                                                                                                                       | 0.0248 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0001 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0022 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0008 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0178 (7)  | 0.0156 (7)                                                                                                                                                                                                                                                                                                       | 0.0195 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0013 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0013 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0023 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0161 (7)  | 0.0219 (8)                                                                                                                                                                                                                                                                                                       | 0.0227 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0035 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0016 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0002 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0170 (8)  | 0.0263 (8)                                                                                                                                                                                                                                                                                                       | 0.0239 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0002 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0023 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0018 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0213 (8)  | 0.0243 (8)                                                                                                                                                                                                                                                                                                       | 0.0226 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0008 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0003 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0034 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0192 (8)  | 0.0175 (7)                                                                                                                                                                                                                                                                                                       | 0.0239 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0014 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0037 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0018 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0151 (7)  | 0.0140 (7)                                                                                                                                                                                                                                                                                                       | 0.0198 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0001 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0032 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0010 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0168 (7)  | 0.0151 (7)                                                                                                                                                                                                                                                                                                       | 0.0192 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0013 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0028 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0003 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0195 (8)  | 0.0196 (7)                                                                                                                                                                                                                                                                                                       | 0.0197 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0003 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0004 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.0012 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0206 (8)  | 0.0193 (7)                                                                                                                                                                                                                                                                                                       | 0.0198 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0013 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.0023 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0198 (9)  | 0.0432 (11)                                                                                                                                                                                                                                                                                                      | 0.0481 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0018 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.0005 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0262 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0187 (8)  | 0.0370 (10)                                                                                                                                                                                                                                                                                                      | 0.0355 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0035 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0031 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0028 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.0268 (10) | 0.0584 (14)                                                                                                                                                                                                                                                                                                      | 0.0605 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.0057 (10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0068 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0343 (12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0241 (10) | 0.0509 (13)                                                                                                                                                                                                                                                                                                      | 0.0601 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0014 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0001 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0345 (11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.0186 (6)  | 0.0205 (6)                                                                                                                                                                                                                                                                                                       | 0.0261 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.0009(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.0027(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0012(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | $U^{11}$<br>0.0241 (6)<br>0.0323 (7)<br>0.0189 (7)<br>0.0207 (7)<br>0.0192 (7)<br>0.0187 (8)<br>0.0160 (7)<br>0.0178 (7)<br>0.0161 (7)<br>0.0161 (7)<br>0.0170 (8)<br>0.0213 (8)<br>0.0192 (8)<br>0.0192 (8)<br>0.0195 (8)<br>0.0206 (8)<br>0.0198 (9)<br>0.0187 (8)<br>0.0268 (10)<br>0.0241 (10)<br>0.0186 (6) | $U^{11}$ $U^{22}$ $0.0241$ (6) $0.0137$ (5) $0.0323$ (7) $0.0139$ (5) $0.0189$ (7) $0.0242$ (7) $0.0207$ (7) $0.0122$ (6) $0.0192$ (7) $0.0131$ (6) $0.0187$ (8) $0.0514$ (11) $0.0160$ (7) $0.0205$ (8) $0.0178$ (7) $0.0156$ (7) $0.0161$ (7) $0.0219$ (8) $0.0170$ (8) $0.0263$ (8) $0.0170$ (8) $0.0243$ (8) $0.01213$ (8) $0.0243$ (8) $0.0192$ (8) $0.0175$ (7) $0.0151$ (7) $0.0140$ (7) $0.0168$ (7) $0.0151$ (7) $0.0195$ (8) $0.0196$ (7) $0.0206$ (8) $0.0193$ (7) $0.0198$ (9) $0.0432$ (11) $0.0187$ (8) $0.0370$ (10) $0.0268$ (10) $0.0584$ (14) $0.0241$ (10) $0.0205$ (6) | $U^{11}$ $U^{22}$ $U^{33}$ 0.0241 (6)0.0137 (5)0.0254 (6)0.0323 (7)0.0139 (5)0.0272 (6)0.0189 (7)0.0242 (7)0.0261 (7)0.0207 (7)0.0122 (6)0.0206 (6)0.0192 (7)0.0131 (6)0.0205 (6)0.0187 (8)0.0514 (11)0.0600 (11)0.0160 (7)0.0205 (8)0.0248 (8)0.0178 (7)0.0156 (7)0.0195 (7)0.0161 (7)0.0219 (8)0.0227 (7)0.0170 (8)0.0263 (8)0.0239 (7)0.0170 (8)0.0243 (8)0.0226 (7)0.0192 (8)0.0175 (7)0.0239 (7)0.0151 (7)0.0140 (7)0.0198 (7)0.0195 (8)0.0196 (7)0.0192 (7)0.0195 (8)0.0193 (7)0.0198 (7)0.0198 (9)0.0432 (11)0.0481 (11)0.0187 (8)0.0370 (10)0.0355 (9)0.0268 (10)0.0584 (14)0.0605 (14)0.0241 (10)0.0509 (13)0.0601 (13)0.0186 (6)0.0205 (6)0.0261 (6) | $U^{11}$ $U^{22}$ $U^{83}$ $U^{12}$ 0.0241 (6)0.0137 (5)0.0254 (6)0.0006 (4)0.0323 (7)0.0139 (5)0.0272 (6)0.0018 (5)0.0189 (7)0.0242 (7)0.0261 (7) $-0.0010$ (5)0.0207 (7)0.0122 (6)0.0206 (6)0.0009 (5)0.0192 (7)0.0131 (6)0.0205 (6)0.0000 (7)0.0187 (8)0.0514 (11)0.0600 (11)0.0000 (7)0.0160 (7)0.0205 (8)0.0248 (8)0.0001 (6)0.0178 (7)0.0156 (7)0.0195 (7) $-0.0013$ (6)0.0161 (7)0.0263 (8)0.0227 (7) $-0.0002$ (6)0.0170 (8)0.0263 (8)0.0239 (7) $-0.0002$ (6)0.0192 (8)0.0175 (7)0.0239 (7) $-0.0003$ (6)0.0192 (8)0.0175 (7)0.0239 (7) $-0.00013$ (6)0.0192 (8)0.0175 (7)0.0198 (7) $-0.0003$ (6)0.0195 (8)0.0193 (7) $-0.0013$ (6)0.0195 (8)0.0193 (7) $0.0198$ (7) $-0.0013$ (6)0.0198 (9)0.0432 (11) $0.0481$ (11) $-0.0013$ (6)0.0198 (9)0.0432 (11) $0.0481$ (11) $-0.0013$ (6)0.0187 (8)0.0370 (10) $0.355$ (9) $-0.0035$ (7)0.0268 (10) $0.0594$ (14) $0.0605$ (14) $-0.0057$ (10)0.0241 (10) $0.0509$ (13) $0.0601$ (13) $0.0144$ (9) | $U^{11}$ $U^{22}$ $U^{33}$ $U^{12}$ $U^{13}$ 0.0241 (6)0.0137 (5)0.0254 (6)0.0006 (4) $-0.0029 (4)$ 0.0323 (7)0.0139 (5)0.0272 (6)0.0018 (5) $-0.0065 (5)$ 0.0189 (7)0.0242 (7)0.0261 (7) $-0.0010 (5)$ $-0.0026 (5)$ 0.0207 (7)0.0122 (6)0.0206 (6)0.0009 (5) $-0.0012 (5)$ 0.0192 (7)0.0131 (6)0.0205 (6)0.0005 (5) $-0.0011 (5)$ 0.0187 (8)0.0514 (11)0.0600 (11)0.0000 (7) $-0.0009 (7)$ 0.0160 (7)0.0205 (8)0.0248 (8)0.0001 (6) $-0.0022 (6)$ 0.0178 (7)0.0156 (7)0.0195 (7) $-0.0013 (6)$ $-0.0013 (6)$ 0.0161 (7)0.0219 (8)0.0227 (7) $-0.0035 (6)$ $-0.0013 (6)$ 0.0170 (8)0.0263 (8)0.0239 (7) $-0.0002 (6)$ $0.0023 (6)$ 0.0151 (7)0.0140 (7)0.0198 (7) $-0.0001 (5)$ $0.0028 (6)$ 0.0152 (8)0.0195 (7) $-0.0013 (6)$ $-0.0028 (6)$ 0.0192 (8)0.0196 (7)0.0197 (7) $-0.0003 (6)$ $-0.0003 (6)$ 0.0195 (8)0.0196 (7)0.0197 (7) $-0.0013 (6)$ $-0.0002 (6)$ 0.0198 (9)0.0432 (11) $0.0481 (11)$ $-0.0057 (10)$ $0.0031 (7)$ 0.0268 (10)0.0584 (14) $0.0605 (14)$ $-0.0057 (10)$ $0.0068 (9)$ 0.0241 (10)0.0509 (13) $0.0601 (13)$ $0.0014 (9)$ $-0.0001 (9)$ |

Atomic displacement parameters  $(Å^2)$ 

Geometric parameters (Å, °)

| 01—C7    | 1.2313 (18) | C4—H4    | 0.9500      |
|----------|-------------|----------|-------------|
| O2—C8    | 1.2314 (18) | С5—Н5    | 0.9500      |
| N1—C5    | 1.341 (2)   | С6—Н6А   | 0.9900      |
| N1-C1    | 1.341 (2)   | C6—H6B   | 0.9900      |
| N2—C7    | 1.3244 (19) | С7—С8    | 1.541 (2)   |
| N2-C6    | 1.456 (2)   | C9—C10   | 1.509 (2)   |
| N2—H2N   | 0.85 (2)    | С9—Н9А   | 0.9900      |
| N3—C8    | 1.323 (2)   | С9—Н9В   | 0.9900      |
| N3—C9    | 1.4579 (19) | C10-C14  | 1.374 (2)   |
| N3—H3N   | 0.86 (2)    | C10-C11  | 1.376 (2)   |
| N4—C12   | 1.326 (2)   | C11—H11  | 0.9500      |
| N4—C11   | 1.342 (2)   | C12—C13  | 1.361 (3)   |
| C1—C2    | 1.392 (2)   | C12—H12  | 0.9500      |
| C1—H1    | 0.9500      | C13—C14  | 1.386 (3)   |
| C2—C3    | 1.388 (2)   | C13—H13  | 0.9500      |
| C2—C6    | 1.507 (2)   | C14—H14  | 0.9500      |
| C3—C4    | 1.387 (2)   | O1W—H1W  | 0.95 (2)    |
| С3—Н3    | 0.9500      | O1W—H2W  | 0.88 (2)    |
| C4—C5    | 1.387 (2)   |          |             |
| C5—N1—C1 | 117.34 (14) | O1—C7—N2 | 125.30 (14) |
|          |             |          |             |

| C7—N2—C6                | 121.32 (13)              | O1—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.84 (13)              |
|-------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| C7—N2—H2N               | 118.1 (13)               | N2—C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 113.84 (13)              |
| C6—N2—H2N               | 119.8 (13)               | O2—C8—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 125.51 (14)              |
| C8—N3—C9                | 122.84 (13)              | O2—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 121.59 (13)              |
| C8—N3—H3N               | 117.8 (13)               | N3—C8—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 112.89 (13)              |
| C9—N3—H3N               | 119.4 (13)               | N3—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 113.95 (12)              |
| C12—N4—C11              | 116.55 (16)              | N3—C9—H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.8                    |
| N1-C1-C2                | 124 18 (15)              | C10-C9-H9A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 108.8                    |
| N1—C1—H1                | 117.9                    | N3C9H9B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 108.8                    |
| $C_2$ — $C_1$ — $H_1$   | 117.9                    | $C_{10}$ $C_{9}$ $H_{9B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108.8                    |
| $C_2$ $C_1$ $C_1$       | 117.5<br>117.51(14)      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 107.7                    |
| $C_3 = C_2 = C_1$       | 117.31(14)<br>123.21(14) | $C_{14}$ $C_{10}$ $C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 116 47 (16)              |
| $C_{1} = C_{2} = C_{0}$ | 123.21(14)<br>110.28(14) | $C_{14} = C_{10} = C_{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110.47(10)<br>123.13(15) |
| $C_1 = C_2 = C_0$       | 119.20(14)<br>110.13(14) | $C_{14} = C_{10} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 123.13(13)<br>120.31(15) |
| $C_2 = C_3 = C_4$       | 119.13 (14)              | $N_{1} = C_{10} = C_{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120.31(13)<br>125.07(17) |
| $C_2 = C_3 = H_3$       | 120.4                    | N4 - C11 - U11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 123.07 (17)              |
| C4 - C3 - H3            | 120.4                    | $\mathbf{N}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{\mathbf{M}_{m}_{m}_{m}_{m}_{m}_{m}_{m}_{m}_{m}_{m$ | 117.5                    |
| $C_{5}$                 | 119.17 (15)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 117.5                    |
| $C_3 = C_4 = H_4$       | 120.4                    | N4-C12-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 123.24 (17)              |
| C3-C4-H4                | 120.4                    | N4—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 118.4                    |
| NI-C5-C4                | 122.66 (15)              | C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118.4                    |
| NI—C5—H5                | 118.7                    | C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.05 (18)              |
| C4—C5—H5                | 118.7                    | С12—С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                    |
| N2-C6-C2                | 112.50 (12)              | С14—С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                    |
| N2—C6—H6A               | 109.1                    | C10-C14-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.61 (18)              |
| С2—С6—Н6А               | 109.1                    | C10—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.2                    |
| N2—C6—H6B               | 109.1                    | C13—C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.2                    |
| С2—С6—Н6В               | 109.1                    | H1W—O1W—H2W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 103.3 (19)               |
| H6A—C6—H6B              | 107.8                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
| C5—N1—C1—C2             | -0.1 (2)                 | 01—C7—C8—O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -176.62 (15)             |
| N1—C1—C2—C3             | 0.8 (2)                  | N2C7C8O2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9 (2)                  |
| N1-C1-C2-C6             | -178.75 (14)             | O1—C7—C8—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8 (2)                  |
| C1—C2—C3—C4             | -0.5 (2)                 | N2-C7-C8-N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -175.72 (13)             |
| C6—C2—C3—C4             | 178.98 (14)              | C8—N3—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -94.71 (17)              |
| C2—C3—C4—C5             | -0.3 (2)                 | N3-C9-C10-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -48.5 (2)                |
| C1—N1—C5—C4             | -0.8 (2)                 | N3-C9-C10-C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 135.08 (17)              |
| C3—C4—C5—N1             | 1.0 (3)                  | C12—N4—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.8 (3)                  |
| C7—N2—C6—C2             | -146.60 (14)             | C14—C10—C11—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.4(3)                  |
| C3—C2—C6—N2             | 37.4 (2)                 | C9—C10—C11—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 176.3 (2)                |
| C1—C2—C6—N2             | -143.09 (14)             | C11—N4—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.6(3)                  |
| C6—N2—C7—O1             | 3.0 (2)                  | N4—C12—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0 (4)                  |
| C6—N2—C7—C8             | -178.56 (13)             | C11—C10—C14—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.3(3)                  |
| C9—N3—C8—O2             | 3.0 (2)                  | C9-C10-C14-C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -176.9(2)                |
| C9—N3—C8—C7             | -176.35(12)              | $C_{12}$ $C_{13}$ $C_{14}$ $C_{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.5 (4)                  |
|                         | -/ 0.00 (12)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |

| D—H···A                                     | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|---------------------------------------------|-------------|--------------|--------------|------------|
| N2—H2 <i>N</i> ···O2                        | 0.85 (2)    | 2.36 (2)     | 2.7279 (18)  | 107.0 (16) |
| N3—H3 <i>N</i> ···O1                        | 0.86 (2)    | 2.299 (19)   | 2.6924 (18)  | 108.0 (15) |
| O1 <i>W</i> —H1 <i>W</i> …N1                | 0.95 (2)    | 1.86 (2)     | 2.7958 (18)  | 169 (2)    |
| $O1W - H2W - O1W^{i}$                       | 0.88 (2)    | 1.97 (2)     | 2.8364 (15)  | 166 (2)    |
| N2—H2 <i>N</i> ···O1 <sup>ii</sup>          | 0.85 (2)    | 2.03 (2)     | 2.8227 (18)  | 155.2 (18) |
| N3—H3 <i>N</i> ····O2 <sup>iii</sup>        | 0.86 (2)    | 2.02 (2)     | 2.8022 (18)  | 151.6 (17) |
| C9—H9 <i>A</i> ···O1 <i>W</i> <sup>iv</sup> | 0.99        | 2.45         | 3.3772 (19)  | 156        |
| C6—H6B····Cg1 <sup>iii</sup>                | 0.99        | 2.74         | 3.7043 (16)  | 166        |
|                                             |             |              |              |            |

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+3/2, *y*+1/2, -*z*+3/2; (ii) *x*, *y*+1, *z*; (iii) *x*, *y*-1, *z*; (iv) *x*-1/2, -*y*+1/2, *z*-1/2.